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Abstract. Making use of the so-called optimal measures dealt with in [1-2], we characterize
the boundedness of measurable functions, the uniform boundedness and some well-known
asymptotic behaviours of sequences of measurable functions (such as discrete, equal as well
as pointwise types of convergence). The so-called quasi-uniform convergence is also charac-
terized in the fourth section.
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1. Introduction

Making use of the so-called ’optimal measures’ (cf. [1-2]), our main goal here is to
characterize some well-known notions in Analysis such as the boundedness of measur-
able functions, the uniform boundedness as well as some commonly used asymptotic
behaviors of sequences of measurable functions. We should like to mention that our
results in [1-2] and in this article might interest everyone who handles measurable
functions. Before we tackle our paper, let us first recall the following results (as we
need them later on).

All along (Ω,F) will stand for any measurable space (where the elements of F are
referred to as measurable sets).

By an optimal measure we mean a set function p : F → [0, 1] fulfilling the
following axioms:

P1. p (∅) = 0 and p (Ω) = 1.

P2. p (B
S
E) = p (B) ∨ p (E) for all measurable sets B and E.

P3. p

µ ∞T
n=1

En

¶
= lim

n→∞ p (En) , for every decreasing sequence of measurable sets

(En) .

(The symbols
W

and
V

will stand for the maximum and minimum respectively.)
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First we shall summarize the background of the Theory of Optimal Measures .

Let s =
nP
i=1

biχ (Bi) be an arbitrary nonnegative measurable simple function,

where {Bi : i = 1, . . . , n} ⊂ F is a partition of Ω. Then the so-called optimal average

of s is defined by oΩsdp =
nW
i=1

bip (Bi) , where χ (B) is the indicator function of the

measurable set B. We note that this quantity does not depend on the decompositions
of s (cf. [1] , Theorem 1.0., page 135).

The optimal average of a measurable function f is defined by oΩ |f | dp = sup oΩsdp,
where the supremum is taken over all measurable simple functions s ≥ 0 for which
s ≤ |f | . (From now on m.f.’s will stand for measurable functions.)

Let f be any m.f. We shall say that f belongs to:

1. A∞ (p) if p ( |f | ≤ b) = 1 for some constant b ∈ (0, ∞) .
2. Aα (p) if oΩ |f |α dp <∞, α ∈ [1, ∞) .

For any α ∈ [1, ∞] , the space Aα (p) endowed with the norm k · kα , defined by

kfkα =
½
inf {b ∈ (0, ∞) : p ( |f | ≤ b) = 1} , if f ∈ A∞ (p) , α =∞
α
p
oΩ |f |α dp, if f ∈ Aα (p) , α ∈ [1, ∞)

is a Banach space. (For more about this refer to [1].)

In [2] we have obtained the following results for all optimal measures p.

By (p-)atom we mean a measurable set H, p (H) > 0 such that whenever B ∈ F ,
B ⊂ H, then p (B) = p (H) or p (B) = 0.

A p-atom H is decomposable if there exists a subatom B ⊂ H such that p (B) =
p (H) = p (H\B) . If no such subatom exists, we shall say that H is indecomposable.

Fundamental Optimal Measure Theorem. Let (Ω, F) be a measurable space and
p an optimal measure on it. Then there exists a collection H (p) = {Hn : n ∈ J} of
disjoint indecomposable p-atoms, where J is some countable (i.e. finite or countably
infinite) index-set such that for any measurable set B, with p (B) > 0, we have that

p (B) = max
n
p
³
B
\

Hn

´
: n ∈ J

o
.

Moreover the only limit point of the set {p (Hn) : n ∈ J} is 0 provided that J is a
countably infinite set. (H (p) is referred to as p-generating countable system.)

In proving the Fundamental Optimal Measure Theorem we used Zorn’s lemma
which, as we know, is equivalent to the Axiom of Choice. It is worth noting that in
[6] the above structure theorem has been proven without Zorn’s lemma.

By a quasi-optimal measure we mean a set function q :F → [0, ∞) satisfying the
axioms P1.-P3. with the hypothesis q (Ω) = 1 in P1. replaced by 0 < q (Ω) <∞.
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We say that a quasi-optimal measure q is absolutely continuous relative to an
optimal measure p (abbreviated q << p) if q (B) = 0 whenever p (B) = 0, B ∈ F .
Remark A. Every m.f. is constant almost surely on each indecomposable atom (cf.
[2], page 84, Remark 2.1.).

Theorem B. (cf. [1] page 139, Theorem 3.1.)

1. If (fn) is an increasing sequence of nonnegative m.f.’s, then lim
n→∞oΩfndp =

o
Ω

³
lim
n→∞fn

´
dp.

2. If (gn) is a decreasing sequence of nonnegative m.f.’s with g1 ≤ b for some

b ∈ (0, ∞) , then lim
n→∞oΩgndp = oΩ

³
lim
n→∞gn

´
dp.

Lemma C. Let q be a quasi-optimal measure, absolutely continuous relative to an op-
timal measure p. Then H∗ (p) = {H ∈ H (p) : q (H) > 0} is a q-generating countable
system (where H (p) denotes a p-generating countable system).

Lemma D. (cf. [1] page 141, Lemma 3.2.) If (fn) and (hn) are sequences of
nonnegative m.f.’s, then for every optimal measure p, we have that

1. oΩ
³
lim inf
n→∞ fn

´
dp ≤ lim inf

n→∞ oΩ fndp;

2. lim sup
n→∞

oΩ hndp ≤ oΩ
µ
lim sup
n→∞

hn

¶
dp, provided that (hn) is a uniformly bounded

sequence.

NOTATIONS.

1. P will denote the set of all optimal measures defined on (Ω, F) .
2. P<∞ is the collection of all optimal measures whose generating systems are

finite.

3. P∞ is the set of all optimal measures whose generating systems are countably
infinite.

4. For every fixed ω ∈ Ω, the optimal measure pω (defined on (Ω, F) by pω (B) = 1
if ω ∈ B, and 0 if ω /∈ B) will be referred to as ω-concentrated optimal measure.

5. |E| stands for the cardinality of the measurable set E.

6. N will stand for the set of positive integers.

2. Some preliminary results

We say that a nonempty measurable set E is closely related to some sequence (ωn) ⊂ Ω
if ¯̄̄

E
\
{ωn : n ∈ N}

¯̄̄
=

½ ∞, if |E| =∞
|E| , if |E| <∞
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(that is, if E is infinite, then infinitely many members of the sequence belong to E,
otherwise all of its elements are members of the sequence).

Definition 2.1. Let E be closely related to a sequence (ωn) ⊂ Ω, and let (αn) ⊂ [0, 1]
be any fixed sequence tending decreasingly to 0. The optimal measure pE : F → [0, 1] ,
defined by pE (B) = max {αn : ωn ∈ B} , will be called 1st-type E-dependent optimal
measure.

Proposition 2.1. Let p ∈ P and f be any m.f. Then

oΩ |f | dp = sup
©oHn

|f | dp : n ∈ J
ª
,

where H (p) = {Hn : n ∈ J} is a p-generating countable system.

Moreover if f ∈ A1 (p), then oΩ |f | dp = sup {cn · p (Hn) : n ∈ J} , where cn =
f (ω) for almost all ω ∈ Hn, n ∈ J.

(The proof is straightforward.) The following remark is worth being noted.

Remark 2.1. Let p, q ∈ P, H (p) = {Hn : n ∈ J} be a p-generating countable system
and f any m.f. Suppose that q << p and q (H) ≤ p (H) for every H ∈ H (p) . Then
oΩ |f | dq ≤ oΩ |f | dp, provided that oΩ |f | dp <∞.

(This is immediate from Lemma C and Proposition 2.1.)

Remark 2.2. If (xn) is a sequence of real numbers such that lim sup
n→∞

|xn| <∞, then

for each of its subsequences (xnk) we have that lim sup
k→∞

|xnk | <∞.

NOTICE. For every fixed m.f. f, the mapping zf : P → [0, ∞] , defined by zf (p) =
oΩ |f | dp, is a function.

Lemma 2.2. Let ω ∈ Ω be fixed. Then for every m.f. f , we have that zf (pω) =
|f (ω)| .

Proof. Let 0 ≤ s =
kP
i=1

biχ (Bi) be a measurable simple function. Then it is obvi-

ous that zs (pω) = s (ω) . Let (sn) be a sequence of nonnegative measurable simple
functions tending increasingly to |f | . Then by Theorem D it ensues that

zf (pω) = lim
n→∞zsn (pω) = lim

n→∞sn (ω) = |f (ω)|

which was to be proved. q.e.d.

Theorem 2.3. Let f be any m.f. The following assertions are equivalent.

1. f is bounded.

2. lim
x→∞ o(|f |≥x) |f | dp = 0 for all p ∈ P∞.

3. There exists a constant b > 0 such that oΩ |f | dp 6= b for all p ∈ P∞.
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(The proof will be carried out in two steps. In Proposition 2.4 we shall show the
equivalence 1.←→ 2. and then the equivalence e1.←→e3. in Proposition 2.5.)

Proposition 2.4. A m.f. f is bounded if and only if lim
x→∞ o(|f|≥x) |f | dp = 0 for all

p ∈ P∞.

Proof. Suppose that f is bounded, and write b > 0 for its bound. Then for every
p ∈ P∞, we have that o(|f |≥x) |f | dp ≤ b · p (|f | ≥ x)→ 0, as x→∞.

Conversely, assume that lim
k→∞

o(|f |≥k) |f | dp = 0 for all p ∈ P∞, but for every
n ∈ N we have that (|f | ≥ n− 1) 6= ∅. It obviously ensues that

(|f | ≥ n− 1) \ (|f | ≥ n) = Hn 6= ∅

for infinitely many n ∈ N. (Suppose without loss of generality that Hn 6= ∅, n ∈ N.)
Further let (ωn) ⊂ Ω be such that ωn ∈ Hn for all n ∈ N. Define p ∈ P∞ by p (B) =
max

©
1
n : ωn ∈ B

ª
. Clearly (Hn) is a generating system for p. Then by assumption

it follows that lim
k→∞

o(|f |≥k) |f | dp = 0. Now note that (|f | ≥ k) =
∞S

i=k+1

Hi for all

k ∈ N. Hence Proposition 2.1. entails that o(|f |≥k) |f | dp = sup
i≥k+1

oHi
|f | dp. It is not

difficult to check that oHi
|f | dp ≥ 1 − 1

i , i ≥ k + 1. Consequently it results that
o(|f |≥k) |f | dp ≥ 1 − 1

k+1 (k ∈ N), leading to 0 = lim
k→∞

o(|f |≥k) |f | dp ≥ 1, which is

absurd. This contradiction concludes on the validity of the sufficiency, ending the
proof. q.e.d.

Proposition 2.5. Let f be a finite m.f. Then f is unbounded if and only if for every
constant c > 0, there exists some pc ∈ P∞ such that

(1.1) zf (pc) = c.

Proof. Necessity. Assume that f is unbounded. For every n ∈ N, write En =
(c · (n− 1) ≤ |f | < c · n) where c > 0 is an arbitrarily fixed constant. Clearly the

members of the sequence (En) are pairwise disjoint and Ω =
∞S
n=1

En. Fix a se-

quence (ωn) ⊂ Ω in the following way: ωn ∈ En, n ∈ N. Define pc ∈ P∞ by
pc (B) = max

©
1
n : ωn ∈ B

ª
. It is obvious that sequence (En) is a pc-generating

system such that zf (pc) = sup
n≥1
oEn |f | dpc, because of Proposition 2.1. But as¡

1− 1
n

¢
c ≤ oEn |f | dpc < c (for all n ∈ N), it ensues that c = sup

n≥1
oEn |f | dpc = zf (pc) .

Sufficiency. Suppose that for every constant c > 0, identity (1.1) holds with a suitable
p ∈ P∞. Assume that f is bounded (and denote by b its bound). Now let c > b be any
fixed constant with a corresponding pc ∈ P∞ satisfy (1.1). Then we trivially obtain
that zf (pc) ≤ b. Hence we must have that c ≤ b, which is in contradiction with the
choice of c. This absurdity allows us to conclude on the validity of the proposition.
q.e.d.
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Lemma 2.6. Let p ∈ P∞ and (Bn) be a sequence of measurable sets tending in-
creasingly to a measurable set B 6= ∅. Then there exists some n0 ∈ N such that
p (B) = p (Bn) whenever n ≥ n0.

(See the proof of Lemma 0.1., [1] page 134.)

We shall next give a set of measurable functions including uniformly bounded
ones.

Definition 2.2. We say that a sequence of measurable functions (fn) is uniformly
bounded starting from an index if there can be found a real number b > 0 and some
positive integer n0 such that (fn > b) = ∅ for all integers n > n0. (We shall simply
say that (fn) is i-uniformly bounded.)

The following two results are just the extensions of Theorem B/2 and Lemma
D/2. We shall omit their proofs as they can be similarly carried out.

Lemma 2.7. Let (gn) be a decreasing sequence of nonnegative m.f.’s and lim
n→∞gn = g

such that (gm ≤ b) = Ω for some m ≥ 1 and some constant b > 0. Then lim
n→∞ oΩ

gndp = oΩgdp for all p ∈ P.

Lemma 2.8. Let (fn) be an i-uniformly bounded sequence of nonnegative m.f.’s.

Then lim sup
n→∞

oΩ fndp ≤ oΩ
µ
lim sup
n→∞

fn

¶
dp for every p ∈ P.

Theorem 2.9. Let (fn) be an arbitrary sequence of m.f.’s. Then

1. (fn) is i-uniformly bounded,

if and only if the following two assertions hold simultaneously:

2. zf (p) ≤ c for some constant c > 0 and all p ∈ P∞ ;

3. lim sup
n→∞

zn (p) ≤ zf (p) , for all p ∈ P∞ (where f = lim sup
n→∞

|fn| and zn (p) =

oΩ |fn| dp with n ∈ N, p ∈ P∞).

Proof. Necessity. We just note that the implication 1. → 2. is obvious and on the
other hand the implication 1.→ 3. is no more than Lemma 2.8.

Sufficiency. Assume that 2. and 3. hold. Let us suppose further that 1. is false, i.e.
for every real number b > 0 and any positive integer n0 there is some integer m > n0
such that (|fm| > b) 6= ∅. Then we can choose by recurrence a sequence (nk) of
positive integers as follows. Write n1 = 1 and n2 = min {m > n1 : (|fm| > n1) 6= ∅ } .
If nk has been defined, then write nk+1 = min {m > nk : (|fm| > k · nk) 6= ∅ } . Clearly
the sequence (nk) tends increasingly to infinity and for all positive integers k ∈ N,¡¯̄
fnk+1

¯̄
> k · nk

¢ 6= ∅. Now set E =
∞S
k=1

Bnk , where Bnk =
¡¯̄
fnk+1

¯̄
> k · nk

¢
, k ∈ N.

Write H1 = Bn1 , and Hk =

Ã
kS

j=1

Bnj

!
\
Ã
k−1S
j=1

Bnj

!
, k > 2. It is obvious that (Hk)
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is a sequence of pairwise disjoint measurable sets with E =
∞S
k=1

Hk. Let p ∈ P∞
be a 1st-type E-dependent optimal measure defined by p (B) = max

©
1
k : ωk ∈ B

ª
,

where (ωk) ⊂ Ω is a fixed sequence so that ωk ∈ Hk (k ∈ N). It is clear that
H (p) = {Hk : k ∈ N} is a p-generating system. Then via 2. and 3. we have that

c ≥ oΩ
µ
lim sup
n→∞

|fn|
¶
dp ≥ lim sup

n→∞
oΩ |fn| dp and hence b > lim sup

k→∞
oΩ
¯̄
fnk+1

¯̄
dp for

some b > 0 (this is true because of Remark 2.2 ). Consequently, as p (Hk) =
1
k for

every k ∈ N, we must have

b > lim sup
k→∞

oΩ
¯̄
fnk+1

¯̄
dp = lim sup

k→∞
oE
¯̄
fnk+1

¯̄
dp

≥ lim sup
k→∞

oHk

¯̄
fnk+1

¯̄
dp

≥ lim sup
k→∞

k · nk · p (Hk) =∞,

which is absurd. This contradiction justifies the validity of the theorem. q.e.d.

3. The case of some well-known types of convergence

Definition 3.1. Let X be an arbitrary nonempty set. We say that a sequence of
real-valued functions (hn) converges to a real-valued function h:

(i) discretely if for every x ∈ X there exists a positive integer n0 (x) such that
hn (x) = h (x) , whenever n > n0 (x) ;

(ii) equally if there is a sequence (bn) of positive numbers tending to 0 and for
every x ∈ X there can be found an n0 (x) such that |hn (x)− h (x)| < bn whenever
n > n0 (x) .

(For more about these notions, cf. [3 - 5].)

Theorem 3.0. Let f and fn (n ∈ N) be any m.f.’s. Then (fn) tends to f uniformly
if and only if (zn) tends to 0 uniformly on P∞, where zn (p) = oΩ |fn − f | dp with n
∈ N, p ∈ P∞.

Proof. Sufficiency. Suppose that (zn) tends to 0 uniformly. To prove the sufficiency
it is enough to show that for every number b > 0, there can be found some n0 (b) ∈ N
such that (|f − fn| ≥ b) = ∅ whenever n ≥ n0 (b) + 1. In fact, let us assume that the
contrary holds. Then for some b0 > 0 and all n0 ∈ N, there is an integer m > n0 such
that (|f − fm| ≥ b0) 6= ∅. Define

n1 = min {m > n1 : (|f − fm| ≥ b0) 6= ∅}
when n0 = 1. If nk has been selected, define

nk+1 = min {m > nk : (|f − fm| ≥ b0) 6= ∅}
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when n0 = nk. It is clear that sequence (nk) tends increasingly to infinity along-
side with k, so that (|f − fnk | ≥ b0) 6= ∅, k ∈ N. Then by assumption some nm ∈
{nk : k ∈ N} exists such that znk (p) < b0, for all k ≥ m and p ∈ P∞. Now let

Em =
∞S

k=m

Bnk , (where Bnk = (|f − fnk | ≥ b0) , k ∈ N). Write Hnm = Bnm and for

k ≥ m + 1, set Hnk =

Ã
kS

j=m
Bnj

!
\
Ã

k−1S
j=m

Bnj

!
. Clearly H = {Hnk : k ≥m} is a

sequence of pairwise disjoint measurable sets with Em =
∞S

k=m

Hnk . Fix a sequence

(ωk) ∈ Ω so that ωk ∈ Hnk whenever k ≥ m. Next, let p0 ∈ P∞ be a 1st-type Em-

dependent optimal measure defined by p0 (B) = nm ·max
n
1
nk
: ωk ∈ B

o
. It is obvious

that H is a p0-generating system. Hence we have on the one hand that znm (p0) < b0.
Nevertheless on the other hand we also obtain that znm (p0) ≥ oHnm

|fnm − f | dp0 ≥
b0, since p0 (Hnm) = 1. As these last two inequalities contradict each other, the suffi-
ciency is thus proved.

Necessity. Assume that fn → f uniformly, as n → ∞. Then for every b ∈ (0, ∞) ,
there is some n0 (b) ∈ N such that

¡|fn − f | < b
2

¢
= Ω whenever n > n0 (b) . Conse-

quently, for every p ∈ P∞, it ensues that zn (p) ≤ b
2 < b, n > n0 (b) . This completes

the proof of the theorem. q.e.d.

Lemma 3.1. Let f and fn (n ∈ N) be any m.f.’s. If (fn) tends to f pointwise
(equally or discretely), then lim sup

n→∞
Bn = ∅, where Bn = (|fn − f | =∞) , n ∈ N.

Proof. It is enough to prove the lemma for the pointwise convergence, since proving
the remaining cases is similarly done. Assume that lim sup

n→∞
Bn 6= ∅. Let us pick an

arbitrary ω ∈ lim sup
n→∞

Bn. Then it is clair that lim sup
n→∞

|fn (ω)− f (ω)| =∞ and hence
∞V
n=k

∞W
j=n
|fj (ω)− f (ω)| =∞ for every k ∈ N. But since (fn) tends to f pointwise we

must have that for every constant b > 0 there is a positive integerm0 = m0 (b, ω) such

that |fn (ω)− f (ω)| < b whenever n > m0. Hence b ≥
∞V

n=m0

∞W
j=n
|fj (ω)− f (ω)| =∞,

which is absurd, completing the proof. q.e.d.

Theorem 3.2. Let (fn) be any sequence of m.f.’s. Then (fn) tends to a m.f. f
pointwise if and only if (zn) tends to 0 pointwise on P<∞, where for every n ∈ N,
zn is defined on P<∞ by zn (p) = oΩ |fn − f | dp.
Proof. Sufficiency. Assume that for all b > 0 and p ∈ P<∞ there is a positive integer
n0 = n0 (b, p) such that zn (p) < b whenever n > n0. Then since for every fixed ω ∈ Ω
the ω-concentrated measure pω depends solely upon ω ∈ Ω, index n0 (b, pω) also
depends on ω. Hence via Lemma 2.2 we have for all n ≥ n0 (b, ω) = n0 (b, pω) that
|fn (ω)− f (ω)| = zn (pω) < b.

Necessity. Suppose that for all a > 0 and ω ∈ Ω, there can be found some positive
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integer m0 = m0 (a, ω) such that |fn (ω)− f (ω)| < a, whenever n ≥ m0. Assume
further that there is some b > 0 and some p ∈ P<∞ such that for every n ∈ N, there
exists somem ≥ n with the property that zn (p) ≥ b. LetH1, . . . , Hk be a p-generating
system. Via Lemma 3.1, there is some n0 ∈ N, big enough so that fn−f is finite on Ω
whenever n ≥ n0. Then for every n ≥ n0, a measurable set A

(i)
n exists with A

(i)
n ⊂ Hi

and p
³
A
(i)
n

´
= 0 such that fn − f is constant on Hi\A(i)n , i = 1, . . . , k (because

of Remark A). Clearly p

Ã
∞S

j=n0

A
(i)
j

!
= 0, so that the identity p

Ã
Hi\

∞S
j=n0

A
(i)
j

!
=

p (Hi) holds. Hence fn − f is constant on Hi\
∞S

j=n0

A
(i)
j whenever i ∈ {1, . . . , k} and

n ≥ n0. Fix ωi ∈ Hi\
∞S

j=n0

A
(i)
j , i ∈ {1, . . . , k} . Then by assumption there must be

some positive integer k(i)0 = k0 (b, ωi) such that |fn (ωi)− f (ωi)| < b, n > k
(i)
0 . Thus

for all n ≥ k0 (where k0 =
kW
i=1

k
(i)
0 ), we have that

kW
i=1
|fn (ωi)− f (ωi)| < b. Now write

k∗ = max (k0, n0) . Then some integer m > k∗ exists such that zm (p) ≥ b. Therefore
(via Proposition 2.1 and Remark A) we obtain that

b ≤ zm (p) =
k_
i=1

ci · p (Hi) ≤
k_
i=1

ci =
k_
i=1

|fm (ωi)− f (ωi)| < b

where for i ∈ {1, . . . , k} , ci = |fm (ω)− f (ω)| if ω ∈ Hi\
∞S

j=n0

A
(i)
j . However, this is

absurd, a contradiction which ends the proof of the theorem. q.e.d.

Theorem 3.3. A sequence of m.f.’s (fn) converges to some m.f. f equally if and
only if (zn) converges to 0 equally on P<∞, where for every n ∈ N, zn is defined on
P<∞ by zn (p) = oΩ |fn − f |dp.

Proof. Necessity. Suppose that there exists a sequence (bn) ⊂ (0, ∞) tending
to 0 and for every ω ∈ Ω there can be found a positive integer n0 (ω) such that
|fn (ω)− f (ω)| < bn for all n ≥ n0 (ω) . It is enough to show that the equal conver-
gence of (zn) holds true for this sequence (bn) . In fact, assume that for this sequence
(bn) , there is some p ∈ P<∞ such that for all j ∈ N an integer m = m (p) > j
can be found with the property that zm (p) ≥ bm. Let H1, . . . , Hk be a p-generating
system. Via Lemma 3.1, there is some n0 ∈ N, big enough so that fn − f is finite
on Ω whenever n ≥ n0. Then for every n ≥ n0, a measurable set A(i)n exists with
A
(i)
n ⊂ Hi and p

³
A
(i)
n

´
= 0 such that fn − f is constant on Hi\A(i)n , i = 1, . . . , k.

But as p

Ã
∞S

j=n0

A
(i)
j

!
= 0, we can easily observe that p

Ã
Hi\

∞S
j=n0

A
(i)
j

!
= p (Hi) ,

i ∈ {1, . . . , k} . Hence fn − f is constant on Hi\
∞S

j=n0

A
(i)
j for all i ∈ {1, . . . , k} and
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n ≥ n0. Fix ωi ∈ Hi\
∞S

j=n0

A
(i)
j , i ∈ {1, . . . , k} . Then by assumption there must

be some positive integer k
(i)
0 = k0 (ωi) such that |fn (ωi)− f (ωi)| < bn, n > k

(i)
0 .

Thus for all n ≥ k0 (where k0 =
kW
i=1

k
(i)
0 ), we have that

kW
i=1
|fn (ωi)− f (ωi)| < bn.

Consequently we have on the one hand that zm (p) ≥ bm. But on the other hand,
Proposition 2.1 yields that

zm (p) =
k_
i=1

ci · p (Hi) ≤
k_
i=1

ci =
k_
i=1

|fm (ωi)− f (ωi)| < bm

(where for i ∈ {1, . . . , k} , ci = |fm (ω)− f (ω)| if ω ∈ Hi\
∞S

j=n0

A
(i)
j ), meaning that

bm < bm, which is, however, absurd. This contradiction concludes the proof of the
necessity.

Sufficiency. Assume that there is a sequence (bn) of positive numbers tend-
ing to 0 and for every p ∈ P<∞ there exists a positive integer n0 (p) such that
zn (p) < bn whenever n > n0 (p) . Then for each fixed ω ∈ Ω, Lemma 2.2. entails
that |fn (ω)− f (ω)| = zn (pω) < bn whenever n > n0 (pω) = n0 (ω) . The sufficiency
is thus proved, which completes the proof of the theorem. q.e.d.

Theorem 3.4. A sequence of m.f.’s (fn) converges to some m.f. f discretely if and
only if (zn) converges to 0 discretely on P<∞, where for every n ∈ N, zn is defined
on P<∞ by zn (p) = oΩ |fn − f | dp.

(The proof is omitted as it can be carried out ”mutatis mutandis” as in Theorems
3.3 and 3.4 )

4. Quasi-uniform convergence

Definition 4.1. A sequence of real-valued functions (gn) , defined on a nonempty set
X, is said to converge quasi-uniformly to a real-valued function g if for every given
number � ∈ (0, 1) there exists some nonempty set B� ⊂ X and some positive integer
n0 = n0 (�) such that |gn (x)− g (x)| < � whenever n > n0 and x ∈ B�.

Example 1. Every uniformly convergent sequence of m.f.’s also converges quasi-
uniformly.

Example 2. Let us endow the real line R with the Borel σ-algebra B and let (fn)
be a sequence of Borel measurable functions defined by

fn (x) =
x

n
, n ∈ N, x ∈ R.

It is not difficult to see that (fn) converges to zero pointwise but not uniformly. We
show that (fn) converges to zero quasi-uniformly. In fact, pick an arbitrary number
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ε ∈ (0, 1) and fix any number x ∈ R. Clearly with the choice n0 = n0 (ε, x) =
h
|x|
ε

i
+1,

we have that |x|n < ε for all n ≥ n0. Now define the set Bε = {t ∈ R :
h
|t|
ε

i
<
h
|x|
ε

i
}.

Obviously we have that |t|n < ε for all t ∈ Bε. Therefore (fn) converges to zero
quasi-uniformly.

Lemma 4.1. Let f be any m.f., p ∈ P∞, H some indecomposable p-atom with
p (H) = 1 and � ∈ (0, 1) any number . Then p (H

T
(|f | ≥ �)) = 0 if and only if

oH |f |dp < �.

Proof. As the necessity is obvious we shall just show the sufficiency. Suppose that
oH |f |dp < � but p (H

T
(|f | ≥ �)) > 0. Then

� > oH |f | dp
=

³
oH∩(|f |<�) |f | dp

´W³oH∩(|f |≥�) |f | dp´
≥ oH∩(|f |≥�) |f | dp
≥ � · p (HT (|f | ≥ �)) .

But since H is an indecomposable p-atom and p (H
T
(|f | ≥ �)) > 0, it ensues that

p (H
T
(|f | ≥ �)) = p (H) = 1. Consequently we must have that � > �, which is absurd,

indeed. This contradiction concludes the proof. q.e.d.

Theorem 4.2. Let f and fn (n ∈ N) be any m.f.’s. Then (fn) tends to f quasi-
uniformly if and only if (zn) tends to 0 quasi-uniformly on P∞, where zn (p) =
oΩ |fn − f | dp with n ∈ N, p ∈ P∞.
Proof. Sufficiency. Assume the quasi-uniform convergence of (fn) , i.e. for every
� ∈ (0, 1) we can find some nonempty measurable set B �

2
and some positive integer

n0 = n0 (�) such that

B �
2
⊂
³
|fn − f | < �

2

´
, n > n0.

Write P∞ (�) =
©
p ∈ P∞ : p

¡
Ω\B �

2

¢
= 0

ª
. We note that P∞ (�) 6= ∅, since each 1st-

type B �
2
-dependent optimal measure belongs to P∞ (�) . Clearly for all n > n0 and

p ∈ P∞ (�)

oΩ |fn − f | dp = oB �
2

|fn − f | dp ≤ �

2
< �.

Necessity. Assume the quasi-uniform convergence of (zn) , but (fn) fails to converge
quasi-uniformly to f. Then the latter assumption means that for some �∗ ∈ (0, 1) , all
nonempty measurable sets B and every positive integer m0 there exists an M ≥ m0
such that (|fM − f | ≥ �∗)

T
B 6= ∅. Nevertheless, because of the former assumption

there can be found some P∞ (�∗) ⊂ P∞ and some integer m∗ = m∗ (�∗) ≥ 1 such
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that zm (p) < �∗ for all m ≥ m∗ and p ∈ P∞ (�∗) . Let us fix some p ∈ P∞ (�∗) with
(Hk) its generating system so that zm (p) < �∗ whenever m ≥ m∗. Then Proposition
2.1 entails that oHk

|fm − f | dp < �∗, for all k ≥ 1 and m ≥ m∗. As the Fundamental
Theorem guarantees that lim

k→∞
p (Hk) = 0, there must exist some integer j such that

p (Hj) = 1. Next, noting that the conditions of Lemma 4.1 are met, it results that
p ((|fm − f | ≥ �∗)

T
Hj) = 0, m ≥ m∗. Write

S = Hj\
Ã ∞[
m=m∗

³
(|fm − f | ≥ �∗)

\
Hj

´!
= Hj\

Ã ∞[
m=m∗

(|fm − f | ≥ �∗)

!
.

It is not difficult to see that (|fm − f | < �∗)
T
S = S, m ≥ m∗. Consequently,

since we have rather assumed the negation of the conclusion, some integer i > m∗
must exist so that (|fi − f | ≥ �∗)

T
S 6= ∅. This, however, is in contradiction with

(|fi − f | < �∗)
T
S = S, which ends the proof of the theorem. q.e.d.

5. Concluding remarks

I would like to simply note that when preparing those two works (see [1-2]) I
was not aware of the existence of the so-called ‘maxitive measures’ proposed by N.
Shilkret. in [7]. Hereafter one can find a briefing of his work.

By a-maxitive measures, i.e. set functions m : F → [0, ∞) , satisfying the condi-

tions m (∅) = 0 and m

µS
i∈I

Ei

¶
= sup

i∈I
m (Ei) for every collection {Ei}i∈I ⊂ F, where

F is a ring of subsets of an arbitrary nonempty set Ω; it is called a maxitive measure
if I is finite or countably infinite. Shilkret realized that maxitive measures are not in
general continuous from above and he proved that: A maxitive measure m is continu-
ous from above if and only if the following assertion is false “There exist some k ∈ N
and some sequence of measurable sets {Ei} ⊂ F such that 1k < m (Ei) < k, i ∈ N.”
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