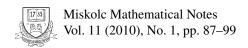
${\rm HU~e\text{-}ISSN~1787\text{-}2413}$

Local approximation behavior of modified SMK operators

M. Ali Özarslan and Oktay Duman



LOCAL APPROXIMATION BEHAVIOR OF MODIFIED SMK OPERATORS

M. ALI ÖZARSLAN AND OKTAY DUMAN

Received 16 September, 2009

Abstract. In this paper, for a general modification of the classical Szász–Mirakjan–Kantorovich operators, we obtain many local approximation results including the classical cases. In particular, we obtain a Korovkin theorem, a Voronovskaya theorem, and some local estimates for these operators.

2000 Mathematics Subject Classification: 41A25, 41A36

Keywords: Szász–Mirakjan–Kantorovich, modulus of continuity, second modulus of smoothness, Peetre's *K*-functional, Korovkin theorem, Voronovskaya theorem

1. Introduction

As usual, let $C[0, \infty)$ denote the space of all continuous functions on $[0, \infty)$. The classical Szász–Mirakjan–Kantorovich (SMK) operators [4] are given by the relation

$$K_n(f;x) := ne^{-nx} \sum_{k=0}^{\infty} \frac{(nx)^k}{k!} \int_{I_{n,k}} f(t)dt,$$
 (1.1)

where $I_{n,k} = \left[\frac{k}{n}, \frac{k+1}{n}\right]$ and f belongs to an appropriate subspace of $C[0, \infty)$ for which the above series is convergent. Among of these subspaces, we can take the space $C_B[0,\infty)$ of all bounded and continuous functions on $[0,\infty)$, or, the weighted space $C_V[0,+\infty)$, $\gamma > 0$, defined by the equality

$$C_{\nu}[0,+\infty) := \{ f \in C[0,+\infty) : |f(t)| \le M(1+t)^{\gamma} \text{ for some } M > 0 \}.$$

Assume now that (u_n) is a sequence of functions on $[0, \infty)$ such that, for a fixed $a \ge 0$,

$$0 \le u_n(x) \le x$$
 for every $x \in [a, \infty)$ and $n \in \mathbb{N}$. (1.2)

Then, we consider the following modification of SMK operators:

$$L_n(f;x) := \sum_{k=0}^{\infty} p_{k,n}(x) \int_{I_{n,k}} f(t)dt, \quad n \in \mathbb{N}, \ x \in [a,\infty),$$
 (1.3)

© 2010 Miskolc University Press

where

$$p_{k,n}(x) := ne^{-nu_n(x)} \frac{(nu_n(x))^k}{k!}, \quad k \in \mathbb{N}_0 := \mathbb{N} \cup \{0\}.$$
 (1.4)

Throughout the paper we use the following test functions

$$e_i(y) = y^i, \quad i = 0, 1, 2, 3, 4,$$

and the moment function

$$\psi_X(y) = y - x$$
.

So, using the fundamental properties of the classical SMK operators, one can get the following lemmas.

Lemma 1. For the operators L_n , we have

(i)
$$L_n(e_0; x) = 1$$
,

(ii)
$$L_n(e_1; x) = u_n(x) + \frac{1}{2n}$$
,

(iii)
$$L_n(e_2; x) = u_n^2(x) + \frac{2u_n(x)}{n} + \frac{1}{3n^2}$$

(iv)
$$L_n(e_3;x) = u_n^3(x) + \frac{9u_n^2(x)}{2n} + \frac{7u_n(x)}{2n^2} + \frac{1}{4n^3}$$

(v)
$$L_n(e_4; x) = u_n^4(x) + \frac{8u_n^3(x)}{n} + \frac{15u_n^2(x)}{n^2} + \frac{6u_n(x)}{n^3} + \frac{1}{5n^4}$$

Lemma 2. For the operators L_n , we have

(i)
$$L_n(\psi_x; x) = u_n(x) - x + \frac{1}{2n}$$
,

(ii)
$$L_n(\psi_x^2; x) = (u_n(x) - x)^2 + \frac{2u_n(x) - x}{n} + \frac{1}{3n^2}$$
,

(iii)
$$L_n(\psi_x^3; x) = (u_n(x) - x)^3 + \frac{3(3u_n(x) - x)(u_n(x) - x)}{2n} + \frac{7u_n(x) - 2x}{2n^2} + \frac{1}{4n^3}$$

(iv)
$$L_n(\psi_x^4; x) = (u_n(x) - x)^4 + \frac{2(4u_n(x) - x)(x - u_n(x))^2}{n} + \frac{15u_n^2(x) - 14xu_n(x) + 2x^2}{n^2} + \frac{6u_n(x) - x^3}{n^3} + \frac{1}{5n^4}.$$

Then, we see from Lemma 1 that, with some suitable choices of u_n , our operators L_n may preserve the linear functions or the test function e_2 . For example, taking $a=\frac{1}{2}$, if we choose $u_n(x)=x-\frac{1}{2n}$ for $x\in\left[\frac{1}{2},\infty\right)$ and $n\in\mathbb{N}$, then the corresponding operators L_n preserve the linear functions, i. e., they preserve the test functions e_0 and e_1 (see [8]). In this case, we know from [8] that the operators L_n have a better error estimation than the classical SMK operators on $\left[\frac{1}{2},\infty\right)$. Also, taking $a=\frac{1}{3}$ and

$$u_n(x) := \frac{\sqrt{3n^2x^2 + 2} - \sqrt{3}}{n\sqrt{3}}$$
 for $x \in \left[\frac{1}{\sqrt{3}}, \infty\right)$ and $n \in \mathbb{N}$,

we see that the corresponding operators L_n preserve the test functions e_0 and e_2 . Finally, for a=0 and

$$u_n(x) := \frac{-1 + \sqrt{4n^2x^2 + 1}}{2n}, \quad x \ge 0 \text{ and } n \in \mathbb{N},$$

the corresponding operators L_n becomes the Kantorovich variant of the modified Szász–Mirakjan operators (see [6, 11]).

The first study regarding the preservation of e_0 and e_2 for the linear positive operators in order to get better error estimation, was first presented by King. In [9], King introduced a modification of the classical Bernstein polynomials and had a better error estimation than the classical ones on the interval $\left[0,\frac{1}{3}\right]$. Later, similar problems were accomplished for Szász–Mirakjan operators [6], Szász–Mirakjan–Beta operators [7], Meyer–König and Zeller operators [11], Bernstein–Chlodovsky operators [1], q-Bernstein operators [10], Baskakov operators and Stancu operators [12], and some other kinds of summation-type positive linear operators [2].

However, in the present paper, for a general sequence (u_n) satisfying (1.2), we study the local approximation behavior of the operators L_n defined by (1.3) and (1.4). First of all, we get the following Korovkin-type approximation theorem for these operators.

Theorem 1. Let (u_n) be a sequence of functions on $[0, \infty)$ satisfying (1.2) for a fixed $a \ge 0$. If

$$\lim_{n \to \infty} u_n(x) = x \tag{1.5}$$

uniformly with respect to $x \in [a,b]$ with b > a, then, for all $f \in C_{\gamma}[0,+\infty)$ with $\gamma \geq 2$, we have

$$\lim_{n\to\infty} L_n(f;x) = f(x)$$

uniformly with respect to $x \in [a,b]$.

Proof. For a fixed b > 0, consider the lattice homomorphism $H_b: C[0, +\infty) \to C[a,b]$ defined by $H_b(f) := f|_{[a,b]}$ for every $f \in C[0, +\infty)$. In this case, from (1.5), we see that, for each i = 0, 1, 2,

$$\lim_{n\to\infty} H_b\left(T_n(e_i)\right) = H_b(e_i)$$

uniformly on [a,b]. Hence, using the universal Korovkin-type property with respect to monotone operators (see Theorem 4.1.4(vi) of [3, p. 199]), we obtain that, for all $f \in C_{\gamma}[0,+\infty)$, $\gamma \geq 2$,

$$\lim_{n \to \infty} L_n(f; x) = f(x)$$

uniformly with respect to $x \in [a, b]$.

Finally, using Proposition 4.2.5(2) of [3], we can state the following approximation result in the space L_p :

Corollary 1. Let $1 \le p < \infty$. Then for all $f \in L_p$, we have

$$\lim_{n\to\infty} L_n(f;x) = f(x)$$

uniformly with respect to $x \in [a, \infty)$ with $a \ge 0$.

2. A VORONOVSKAYA-TYPE THEOREM

In order to get a Voronovskaya-type theorem for the operators L_n given by (1.3) and (1.4), we need the following lemma.

Lemma 3. Let (u_n) be a sequence of functions on $[0, \infty)$ satisfying (1.2) for a fixed $a \ge 0$. If

$$\lim_{n \to \infty} \sqrt{n} \left(x - u_n(x) \right) = 0 \tag{2.1}$$

 $\lim_{n\to\infty} \sqrt{n} (x - u_n(x)) = 0$ uniformly with respect to $x \in [a,b]$, b > a, then we have

$$\lim_{n \to \infty} n^2 L_n(\psi_x^4; x) = 3x^2 \tag{2.2}$$

uniformly with respect to $x \in [a,b]$

Proof. Let $x \in [a,b]$, b > a, be fixed. Then, by (1.2), since

$$0 \le x - u_n(x) \le \sqrt{n}(x - u_n(x))$$
 for every $n \in \mathbb{N}$,

it follows from (2.1) that

$$\lim_{n \to \infty} u_n(x) = x \tag{2.3}$$

uniformly with respect to $x \in [a, b]$. Also, since

$$0 \le \frac{u_n(x)}{n} = \frac{u_n(x) - x}{n} + \frac{x}{n} \le x - u_n(x) + \frac{x}{n},$$

we obtain from (2.1) that

$$\lim_{n \to \infty} \frac{u_n(x)}{n} = 0 \tag{2.4}$$

uniformly with respect to $x \in [a, b]$. Observe now that, by Lemma 2(iv),

$$n^{2}L_{n}(\psi_{x}^{4};x) = \left\{\sqrt{n}(x - u_{n}(x))\right\}^{4}$$

$$+ 2\left\{\sqrt{n}(x - u_{n}(x))\right\}^{2} (4u_{n}(x) - x)$$

$$+ \left\{15u_{n}^{2}(x) - 14xu_{n}(x) + 2x^{2}\right\} + \frac{6}{n}u_{n}(x) - \frac{x}{n} + \frac{1}{5n^{2}}.$$

Taking limit as $n \to \infty$ in the both sides of the last equality and also using (2.1), (2.3), (2.4), we immediately see that

$$\lim_{n \to \infty} n^2 L_n(\psi_x^4; x) = 3x^2$$

uniformly with respect to $x \in [a,b]$. The proof is complete.

We now get the following result.

Theorem 2. Let (u_n) be a sequence of functions on $[0,\infty)$ satisfying (1.2) and (2.1) for a fixed $a \ge 0$. Assume further that there exists a function ξ defined on $[a,\infty)$ such that

$$\lim_{n \to \infty} n(x - u_n(x)) = \xi(x) \tag{2.5}$$

uniformly with respect to $x \in [a,b]$, b > a. Then, for every $f \in C_{\gamma}[0,+\infty)$, $\gamma \ge 4$, such that $f', f'' \in C_{\gamma}[0,+\infty)$, we have

$$\lim_{n \to \infty} n \{ L_n(f; x) - f(x) \} = \frac{1}{2} x f''(x) + \left(\frac{1}{2} - \xi(x) \right) f'(x)$$

uniformly with respect to $x \in [a,b]$.

Proof. Let $f, f', f'' \in C_{\gamma}[0, +\infty)$ with $\gamma \geq 4$. Define

$$\Psi(y,x) = \begin{cases} \frac{f(y) - f(x) - (y - x)f'(x) - \frac{1}{2}(y - x)^2 f''(x)}{(y - x)^2} & \text{for } y \neq x, \\ 0 & \text{for } y = x. \end{cases}$$

Then, it is clear that $\Psi(x,x) = 0$ and that the function $\Psi(\cdot,x)$ belongs to $C_{\gamma}[0,+\infty)$. Hence, it follows from the Taylor theorem that

$$f(y) - f(x) = \psi_x(y)f'(x) + \frac{1}{2}\psi_x^2(y)f''(x) + \psi_x^2(y)\Psi(y, x).$$

Now, by Lemma 2(ii) and (iii), we get

$$n\{L_n(f;x) - f(x)\} = nf'(x)L_n(\psi_x;x) + \frac{n}{2}f''(x)L_n(\psi_x^2;x) + nL_n(\psi_x^2(y)\Psi(y,x);x),$$

which gives

$$n\{L_n(f;x) - f(x)\} = f'(x) \left\{ n \left(u_n(x) - x \right) + \frac{1}{2} \right\}$$

$$+ \frac{f''(x)}{2} \left\{ \left(\sqrt{n} \left(u_n(x) - x \right) \right)^2 + 2u_n(x) - x \right\}$$

$$+ nL_n(\psi_x^2(y)\Psi(y,x);x).$$
(2.6)

If we apply the Cauchy–Schwarz inequality for the last term on the right-hand side of (2.6), then we conclude that

$$n \left| L_n \left(\psi_x^2(y) \Psi(y, x); x \right) \right| \le \left(n^2 L_n \left(\psi_x^4(y); x \right) \right)^{1/2} \left(L_n \left(\Psi^2(y, x); x \right) \right)^{1/2}.$$
 (2.7)

Let $\eta(y,x) := \Psi^2(y,x)$. In this case, observe that $\eta(x,x) = 0$ and $\eta(\cdot,x) \in C_{\gamma}[0,+\infty)$. Then it follows from Theorem 1 that

$$\lim_{n \to \infty} L_n\left(\Psi^2(y, x); x\right) = \lim_{n \to \infty} L_n\left(\eta(y, x); x\right) = \eta(x, x) = 0 \tag{2.8}$$

uniformly with respect to $x \in [a,b]$, b > a. So, considering (2.5), (2.7) and (2.8), and also using Lemma 3, we immediately see that

$$\lim_{n \to \infty} n L_n \left(\psi_x^2(y) \Psi(y, x); x \right) = 0 \tag{2.9}$$

uniformly with respect to $x \in [a, b]$. Taking limit as $n \to \infty$ in (2.6) and also using (2.1), (2.3), (2.5), (2.9) we have

$$\lim_{n \to \infty} n \{ L_n(f; x) - f(x) \} = \frac{1}{2} x f''(x) + \left(\frac{1}{2} - \xi(x) \right) f'(x)$$

uniformly with respect to $x \in [a,b]$. The proof is complete.

We should note that one can find a sequence (u_n) satisfying all assumptions (1.2), (2.1) and (2.5) in Theorem 2. For example, if we take a = 0 and $u_n(x) = x$, then our operators in (1.3) turn out to be the classical SMK operators K_n defined by (1.1). In this case, we have $\xi(x) = 0$. Hence, we obtain the following result.

Corollary 2. For the operators (1.1), if $f \in C_{\gamma}[0, +\infty)$, $\gamma \geq 4$, such that $f', f'' \in C_{\gamma}[0, +\infty)$, then we have

$$\lim_{n \to \infty} n \{ K_n(f; x) - f(x) \} = \frac{1}{2} x f''(x) + \frac{1}{2} f'(x)$$

uniformly with respect to $x \in [0, b], b > 0$.

Now, if take a = 0 and

$$u_n(x) := u_n^{[1]}(x) = \frac{-1 + \sqrt{4n^2x^2 + 1}}{2n}, \quad x \in [0, \infty), \ n \in \mathbb{N},$$
 (2.10)

then our operators L_n in (1.3) turn out to be

$$L_n^{[1]}(f;x) := ne^{-\left(-1 + \sqrt{4n^2x^2 + 1}\right)/2} \sum_{k=0}^{\infty} \frac{\left(-1 + \sqrt{4n^2x^2 + 1}\right)^k}{2^k k!} \int_{I_{n,k}} f(t)dt.$$
(2.11)

In this case, observe that

$$\xi(x) = \lim_{n \to \infty} n \left(x - u_n^{[1]}(x) \right) = \begin{cases} 0 & \text{if } x = 0, \\ \frac{1}{2} & \text{if } x > 0. \end{cases}$$

So, the next result immediately follows from Theorem 2.

Corollary 3. For the operators (2.11), if $f \in C_{\gamma}[0, +\infty)$, $\gamma \geq 4$, such that $f', f'' \in C_{\gamma}[0, +\infty)$, then we have

$$\lim_{n \to \infty} n \left\{ L_n^{[1]}(f; x) - f(x) \right\} = \begin{cases} f'(0)/2 & \text{if } x = 0, \\ xf''(x)/2 & \text{if } x > 0. \end{cases}$$

Furthermore, if we choose $a = \frac{1}{2}$ and

$$u_n(x) := u_n^{[2]}(x) = x - \frac{1}{2n}, \quad x \in \left[\frac{1}{2}, \infty\right), \ n \in \mathbb{N},$$

then the operators in (1.3) reduce to the following operators (see [8]):

$$L_n^{[2]}(f;x) := ne^{\frac{1-2nx}{2}} \sum_{k=0}^{\infty} \frac{(2nx-1)^k}{2^k k!} \int_{I_{n,k}} f(t)dt.$$
 (2.12)

Then, we observe that

$$\xi(x) = \lim_{n \to \infty} n\left(x - u_n^{[2]}(x)\right) = \frac{1}{2}.$$

Therefore, we get the next result at once.

Corollary 4 ([8]). For the operators (2.12), if $f \in C_{\gamma}[0, +\infty)$, $\gamma \geq 4$, such that $f', f'' \in C_{\gamma}[0, +\infty)$, then we have

$$\lim_{n \to \infty} n \left\{ L_n^{[2]}(f; x) - f(x) \right\} = \frac{1}{2} x f''(x)$$

uniformly with respect to $x \in [1/2, b], b > 1/2$.

Finally, taking $a = \frac{1}{\sqrt{3}}$ and

$$u_n(x) := u_n^{[3]}(x) = \frac{\sqrt{3n^2x^2 + 2} - \sqrt{3}}{n\sqrt{3}}, \quad x \in \left[\frac{1}{\sqrt{3}}, \infty\right), \ n \in \mathbb{N},$$
 (2.13)

we get the following positive linear operators:

$$L_n^{[3]}(f;x) := ne^{\frac{\sqrt{3} - \sqrt{3n^2x^2 + 2}}{\sqrt{3}}} \sum_{k=0}^{\infty} \frac{\left(\sqrt{3n^2x^2 + 2} - \sqrt{3}\right)^k}{3^{k/2}k!} \int_{I_{n,k}} f(t)dt. \quad (2.14)$$

In this case, we find that

$$\xi(x) = \lim_{n \to \infty} n\left(x - u_n^{[3]}(x)\right) = 1.$$

Then, for the corresponding operators, we have the following

Corollary 5. For the operators (2.14), if $f \in C_{\gamma}[0, +\infty)$, $\gamma \geq 4$, such that $f', f'' \in C_{\gamma}[0, +\infty)$, then we have

$$\lim_{n \to \infty} n \left\{ L_n^{[3]}(f; x) - f(x) \right\} = \frac{1}{2} x f''(x) - \frac{1}{2} f'(x)$$

uniformly with respect to $x \in \left[\frac{1}{\sqrt{3}}, b\right], b > \frac{1}{\sqrt{3}}.$

3. Local approximation results for the operators L_n

In order to study various local approximation properties of the operators L_n we mainly use the (usual) modulus of continuity, the second modulus of smoothness, and Peetre's K-functional.

By $C_B^2[0,\infty)$ we denote the space of all functions $f \in C_B[0,\infty)$ such that $f', f'' \in C_B[0,\infty)$. Let ||f|| denote the usual supremum norm of a bounded function f. Then, the classical Peetre's K-functional and the second modulus of smoothness of a function $f \in C_B[0,\infty)$ are defined respectively by

$$K(f,\delta) := \inf_{g \in C_B^2[0,\infty)} \{ \|f - g\| + \delta \|g''\| \}$$

and

$$\omega_2(f,\delta) := \sup_{0 < h \le \delta, \ x \in [0,\infty)} |f(x+2h) - 2f(x+h) + f(x)|,$$

where $\delta > 0$. Then, by Theorem 2.4 of [5, p. 177], there exists a constant C > 0 such that

$$K(f,\delta) \le C\omega_2(f,\sqrt{\delta}).$$
 (3.1)

Also, as usual, by $\omega(f,\delta)$, $\delta > 0$, we denote the usual modulus of continuity of f. Then, we first get the following local approximation result.

Theorem 3. Let (u_n) be a sequence of functions on $[0,\infty)$ satisfying (1.2) for a fixed $a \ge 0$. For any $f \in C_B[0,\infty)$ and for every $x \in [a,\infty)$, $n \in \mathbb{N}$, we have

$$|L_n(f;x) - f(x)| \le C\omega_2\left(f, \sqrt{\delta_n(x)}\right) + \omega\left(f, \left|u_n(x) - x + \frac{1}{2n}\right|\right)$$

for some constant C > 0, where

$$\delta_n(x) := (u_n(x) - x)^2 + \frac{2u_n(x) - x}{n} + \frac{1}{3n^2}.$$
(3.2)

Proof. Define an operator $\Omega_n: C_B[0,\infty) \to C_B[0,\infty)$ by

$$\Omega_n(f;x) := L_n(f;x) - f\left(u_n(x) + \frac{1}{2n}\right) + f(x). \tag{3.3}$$

So, by Lemma 2(ii), we get

$$\Omega_n(\psi_x; x) = L_n(\psi_x; x) - u_n(x) - \frac{1}{2n} + x = 0.$$
 (3.4)

Let $g \in C_B^2[0,\infty)$, the space of all functions having the second continuous derivative on $[0,\infty)$, and let $x \in [0,\infty)$. Then, it follows from the well-known Taylor formula that

$$g(y) - g(x) = \psi_x(y)g'(x) + \int_x^y \psi_t(y)g''(t)dt, \quad y \in [0, \infty).$$

By (3.4), we get

$$\begin{aligned} |\Omega_n(g;x) - g(x)| &= |\Omega_n(g(y) - g(x);x)| \\ &= \left| \Omega_n \left(\int_x^y \psi_t(y) g''(t) dt; x \right) \right| \\ &= \left| L_n \left(\int_x^y \psi_t(y) g''(t) dt; x \right) \right| \\ &- \int_x^{u_n(x) + \frac{1}{2n}} \psi_t \left(u_n(x) + \frac{1}{2n} \right) g''(t) dt \right|. \end{aligned}$$

Using (3.3) and Lemma 2(ii), we obtain that

$$\begin{aligned} |\Omega_n(g;x) - g(x)| &\leq \frac{\|g''\|}{2} L_n\left(\psi_x^2; x\right) + \frac{\|g''\|}{2} \psi_x^2 \left(u_n(x) + \frac{1}{2n}\right) \\ &= \frac{\|g''\|}{2} \left\{ \left((u_n(x) - x)^2 + \frac{2u_n(x) - x}{n} + \frac{1}{3n^2}\right) + \left(u_n(x) - x + \frac{1}{2n}\right)^2 \right\}, \end{aligned}$$

which implies that

$$|\Omega_n(g;x) - g(x)| \le ||g''||\delta_n(x),$$
 (3.5)

where $\delta_n(x)$ is given by (3.2). Then, for any $f \in C_B[0,\infty)$, it follows from (3.5) that

$$\begin{split} |L_n(f;x) - f(x)| &\leq |\Omega_n(f - g;x) - (f - g)(x)| \\ &+ |\Omega_n(g;x) - g(x)| + \left| f\left(u_n(x) + \frac{1}{2n}\right) - f(x) \right| \\ &\leq 2 \|f - g\| + \delta_n(x) \|g''\| + \left| f\left(u_n(x) + \frac{1}{2n}\right) - f(x) \right| \\ &\leq 2 \left\{ \|f - g\| + \delta_n(x) \|g''\| \right\} + \left| f\left(u_n(x) + \frac{1}{2n}\right) - f(x) \right|. \end{split}$$

Hence, by (3.1), we deduce that

$$|L_{n}(f;x) - f(x)| \leq 2\{\|f - g\| + \delta_{n}(x)\|g''\|\} + \omega\left(f, \left|u_{n}(x) - x + \frac{1}{2n}\right|\right)$$

$$\leq 2K(f, \delta_{n}(x)) + \omega\left(f, \left|u_{n}(x) - x + \frac{1}{2n}\right|\right)$$

$$\leq C\omega_{2}\left(f, \sqrt{\delta_{n}(x)}\right) + \omega\left(f, \left|u_{n}(x) - x + \frac{1}{2n}\right|\right)$$

which completes the proof.

Using Theorem 3, one can get the following special cases.

Corollary 6. For the classical SMK operators (1.1), we have, for any $x \ge 0$, $n \in \mathbb{N}$ and $f \in C_B[0,\infty)$,

$$|K_n(f;x)-f(x)| \le C\omega_2\left(f,\sqrt{\frac{x}{n}+\frac{1}{3n^2}}\right)+\omega\left(f,\frac{1}{2n}\right).$$

Corollary 7. For the operators (2.11), we have, for any $f \in C_B[0,\infty)$, $x \ge 0$ and $n \in \mathbb{N}$,

$$\left|L_n^{[1]}(f;x) - f(x)\right| \le C\omega_2\left(f, \sqrt{\delta_n^{[1]}(x)}\right) + \omega\left(f, \frac{\sqrt{4n^2x^2 + 1} - 2nx}{2n}\right),$$

where

$$\delta_n^{[1]}(x) := 2x^2 - \frac{1}{6n^2} + \frac{(1 - 2nx)\sqrt{4n^2x^2 + 1}}{2n^2}.$$

Corollary 8. For the operators (2.12), we have, for any $f \in C_B[0,\infty)$, $x \ge \frac{1}{2}$ and $n \in \mathbb{N}$,

$$\left| L_n^{[2]}(f;x) - f(x) \right| \le C\omega_2 \left(f, \sqrt{\delta_n^{[2]}(x)} \right),$$

where

$$\delta_n^{[2]}(x) := \frac{x}{n} - \frac{5}{12n^2}.$$

Corollary 9. For the operators (2.14) we have, for any $f \in C_B[0,\infty)$, $x \ge \frac{1}{\sqrt{3}}$ and $n \in \mathbb{N}$,

$$\begin{split} \left| L_n^{[3]}(f;x) - f(x) \right| &\leq C\omega_2 \left(f, \sqrt{\delta_n^{[3]}(x)} \right) \\ &+ \omega \left(f, \frac{2\sqrt{3}\sqrt{3n^2x^2 + 2} - 6(nx + 1) + 3}{6n} \right), \end{split}$$

where

$$\delta_n^{[3]}(x) := 2x^2 + \frac{x\left(3 - 2\sqrt{3}\sqrt{3n^2x^2 + 2}\right)}{3n}.$$

4. ESTIMATES FOR LIPSCHITZ-TYPE FUNCTIONS

In this section, for a fixed $a \ge 0$, we consider the following Lipschitz-type space

$$\operatorname{Lip}_{\boldsymbol{M}}^{*}(r) := \left\{ f \in C_{\boldsymbol{B}}[0, \infty) : |f(t) - f(x)| \le M \frac{|t - x|^{r}}{(t + x)^{r/2}}; \ x, t \in (a, \infty) \right\},\,$$

where M is any positive constant and $0 < r \le 1$.

In order to give an estimation in approximating the functions in $\mathrm{Lip}_M^*(r)$ we need the next lemma.

Lemma 4. Let (u_n) be a sequence of functions on $[0, \infty)$ satisfying (1.2) for a fixed $a \ge 0$. For every x > a and $n \in \mathbb{N}$, we have

$$\sum_{k=0}^{\infty} p_{n,k}(x) \int_{\frac{k}{n}}^{\frac{k+1}{n}} |t - x| \, dt \le \sqrt{\frac{\delta_n(x)}{n}},\tag{4.1}$$

where $p_{n,k}(x)$ and $\delta_n(x)$ are given by (1.4) and (3.2), respectively.

Proof. Applying the Cauchy–Schwarz inequality to the series in the left hand side of (4.1), we get

$$\sum_{k=0}^{\infty} p_{n,k}(x) \int_{\frac{k}{n}}^{\frac{k+1}{n}} |t-x| \, dt \le \left\{ \sum_{k=0}^{\infty} p_{n,k}(x) \left(\int_{\frac{k}{n}}^{\frac{k+1}{n}} |t-x| \, dt \right)^2 \right\}^{1/2}.$$

If we again apply the Cauchy–Schwarz inequality to the integral in the right-hand side of the last inequality and also use Lemma 2(ii), then we see that

$$\sum_{k=0}^{\infty} p_{n,k}(x) \int_{\frac{k}{n}}^{\frac{k+1}{n}} |t - x| \, dt \le \frac{1}{\sqrt{n}} \left\{ \sum_{k=0}^{\infty} p_{n,k}(x) \int_{\frac{k}{n}}^{\frac{k+1}{n}} (t - x)^2 \, dt \right\}^{1/2}$$

$$= \frac{1}{\sqrt{n}} \sqrt{L_n \left(\psi_x^2; x \right)}$$

$$= \sqrt{\frac{\delta_n(x)}{n}},$$

whence the result follows.

Now we are in position to give our result.

Theorem 4. Let (u_n) be a sequence of functions on $[0, \infty)$ satisfying (1.2) for a fixed $a \ge 0$. Then, for any $f \in \operatorname{Lip}_M^*(r)$, $r \in (0,1]$, and for every $n \in \mathbb{N}$ and $x \in (a, \infty)$, we have

$$|L_n(f;x) - f(x)| \le \frac{M\delta_n^{r/2}(x)}{n^{1-r+r/2}x^{r/2}},$$
 (4.2)

where $\delta_n(x)$ is given by (3.2).

Proof. We first assume that r = 1. So, let $f \in \operatorname{Lip}_{M}^{*}(1)$ and $x \in (a, \infty)$. Then, we get

$$|L_n(f;x) - f(x)| \le \sum_{k=0}^{\infty} p_{n,k}(x) \int_{\frac{k}{n}}^{\frac{k+1}{n}} |f(t) - f(x)| dt$$

$$\le M \sum_{k=0}^{\infty} p_{n,k}(x) \int_{\frac{k}{n}}^{\frac{k+1}{n}} \frac{|t - x|}{\sqrt{t+x}} dt.$$

Since $\frac{1}{\sqrt{t+x}} \le \frac{1}{\sqrt{x}}$, we may write that

$$|L_n(f;x)-f(x)| \le \frac{M}{\sqrt{x}} \sum_{k=0}^{\infty} p_{n,k}(x) \int_{\frac{k}{n}}^{\frac{k+1}{n}} |t-x| dt.$$

Now, by Lemma 4, we conclude that

$$|L_n(f;x) - f(x)| \le M\sqrt{\frac{\delta_n(x)}{nx}},\tag{4.3}$$

which gives the desired result for r=1. Assume now that $r\in (0,1)$. Then, taking $p=\frac{1}{r}$ and $q=\frac{1}{1-r}$, for any $f\in \mathrm{Lip}_{M}^{a}(r)$, if we apply the Hölder inequality two times, then we obtain that

$$|L_{n}(f;x) - f(x)| \leq \sum_{k=0}^{\infty} p_{n,k}(x) \int_{\frac{k}{n}}^{\frac{k+1}{n}} |f(t) - f(x)| dt$$

$$\leq \left\{ \sum_{k=0}^{\infty} p_{n,k}(x) \left(\int_{\frac{k}{n}}^{\frac{k+1}{n}} |f(t) - f(x)| dt \right)^{1/r} \right\}^{r}$$

$$\leq \frac{1}{n^{1-r}} \left\{ \sum_{k=0}^{\infty} p_{n,k}(x) \int_{\frac{k}{n}}^{\frac{k+1}{n}} |f(t) - f(x)|^{1/r} dt \right\}^{r}.$$

Using the definition of the space $Lip_M^*(r)$ and also considering Lemma 4, we get

$$|L_{n}(f;x) - f(x)| \leq \frac{M}{n^{1-r}} \left\{ \sum_{k=0}^{\infty} p_{n,k}(x) \int_{\frac{k}{n}}^{\frac{k+1}{n}} \frac{|t-x|}{\sqrt{t+x}} dt \right\}^{r}$$

$$\leq \frac{M}{n^{1-r} x^{r/2}} \left\{ \sum_{k=0}^{\infty} p_{n,k}(x) \int_{\frac{k}{n}}^{\frac{k+1}{n}} |t-x| dt \right\}^{r}$$

$$\leq \frac{M \delta_{n}^{r/2}(x)}{n^{1-r+r/2} x^{r/2}}.$$

Thus, the proof is complete.

Finally, it should be noted that our Theorem 4 includes many special cases as in the previous sections. However, we omit the details.

REFERENCES

- [1] O. Agratini, "Linear operators that preserve some test functions," *Int. J. Math. Math. Sci.*, pp. 1–11, Art. ID 94 136, 2006.
- [2] O. Agratini, "On the iterates of a class of summation-type linear positive operators," *Comput. Math. Appl.*, vol. 55, no. 6, pp. 1178–1180, 2008. [Online]. Available: http://dx.doi.org/10.1016/j.camwa.2007.04.044

- [3] F. Altomare and M. Campiti, *Korovkin-type approximation theory and its applications*, ser. de Gruyter Studies in Mathematics. Berlin: Walter de Gruyter & Co., 1994, vol. 17, appendix A by Michael Pannenberg and Appendix B by Ferdinand Beckhoff.
- [4] V. A. Baskakov, "An instance of a sequence of linear positive operators in the space of continuous functions," *Dokl. Akad. Nauk SSSR (N.S.)*, vol. 113, pp. 249–251, 1957.
- [5] R. A. DeVore and G. G. Lorentz, Constructive approximation, ser. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Berlin: Springer-Verlag, 1993, vol. 303.
- [6] O. Duman and M. A. Özarslan, "Szász–Mirakjan type operators providing a better error estimation," *Appl. Math. Lett.*, vol. 20, no. 12, pp. 1184–1188, 2007. [Online]. Available: http://dx.doi.org/10.1016/j.aml.2006.10.007
- [7] O. Duman, M. A. Özarslan, and H. Aktuğlu, "Better error estimation for Szász-Mirakjan-beta operators," *J. Comput. Anal. Appl.*, vol. 10, no. 1, pp. 53–59, 2008.
- [8] O. Duman, M. A. Özarslan, and B. D. Vecchia, "Modified Szász–Mirakjan–Kantorovich operators preserving linear functions," *Turkish J. Math.*, vol. 33, no. 2, pp. 151–158, 2009.
- [9] J. P. King, "Positive linear operators which preserve x^2 ," *Acta Math. Hungar*, vol. 99, no. 3, pp. 203–208, 2003. [Online]. Available: http://dx.doi.org/10.1023/A:1024571126455
- [10] N. I. Mahmudov, "Korovkin-type theorems and applications," Cent. Eur. J. Math., vol. 7, no. 2, pp. 348–356, 2009. [Online]. Available: http://dx.doi.org/10.2478/s11533-009-0006-7
- [11] M. A. Özarslan and O. Duman, "MKZ type operators providing a better estimation on [1/2,1)," *Canad. Math. Bull.*, vol. 50, no. 3, pp. 434–439, 2007. [Online]. Available: http://journals.cms.math.ca/ams/ams-redirect.php?Journal=CMB&Volume=50&FirstPage=434
- [12] L. Rempulska and K. Tomczak, "Approximation by certain linear operators preserving x²," *Turkish J. Math.*, vol. 33, no. 3, pp. 273–281, 2009.

Authors' addresses

M. Ali Özarslan

Eastern Mediterranean University, Faculty of Arts and Sciences, Department of Mathematics, Gazimagusa, Mersin 10, Turkey

E-mail address: mehmetali.ozarslan@emu.edu.tr

Oktay Duman

Tobb Economics and Technology University, Faculty of Arts and Sciences, Department of Mathematics, Söğütözü 06530, Ankara, Turkey

E-mail address: oduman@etu.edu.tr