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1. Introduction

This note is a survey of our recent results [3, 4, 7]. We here focus on concrete problems
and we refer the reader for proofs of results and for an abstract setting of problems
to the above mentioned papers.

P. Holmes and J. Marsden in [10] studied a forced partial differential equation of
a beam of the form

wtt +wxxxx +Γwxx − κ
³R 1
0
w2x(s, t) ds

´
wxx = � (q cosωt− δwt)

w(0, ·) = w(1, ·) = wxx(0, ·) = wxx(1, ·) = 0 ,
(1.1)

where Γ = external load, κ = stiffness due to “membrane” effect, δ = damping, and � is
small. They shown the existence of a Smale horseshoe. Consequently, (1.1) possesses
an infinite number of subharmonic weak solutions. The new way in this direction is
established in a series of papers by D.W. McLaughlin, J. Shatah, E.A. Overman II, S.
Wiggins, C. Xiong and Y. Li [14—16]. They studied perturbed nonlinear Schrödinger
equations and perturbed sine—Gordon equations.

We study in [3] a forced sine—beam partial differential equation given by

utt + αuxxxx + sinu+ τ(x) = � sin t

u(x+ 1, t) = u(x, t) ,
(1.2)

where α > 0 is a constant, τ is continuous, 1—periodic satisfying
R 1
0
τ(x) dx = 0 and

� ∈ R is a small parameter.
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A modified version of (1.1) is investigated in [4] of the form

utt + uxxxx +Γuxx + p
³R 1
0 u
2(s, t) ds,

R 1
0 u
2
x(s, t) ds

´
Dξ
xxu = �q(x) cos 2πtT

u(0, ·) = u(1, ·) = uxx(0, ·) = uxx(1, ·) = 0 ,
(1.3)

where Dxxu = −uxx, Dξ
xx is the ξ—power of Dxx in L2(0, 1), 0 ≤ ξ ≤ 1, Γ ∈ R,

p ∈ C2(R ×R,R), p(0, 0) = 0, q ∈ H2(0, 1) ∩H10 (0, 1), T > 0 and � ∈ R is a small
parameter.

We assume that α is sufficiently large and also consider a limit ordinary differential
equation of (1.2) as α→∞ of the form

ü+ sinu = � sin t . (1.4)

It is well—known [8, 18] that for � 6= 0 sufficiently small, (1.4) exhibits a chaotic
behaviour. In particular, it has an infinite number of subharmonic librational solutions
with periods tending to infinity.

Similarly, if we put

u(x, t) = z(t)
√
2 sinπx

in (1.3) with � = 0 [10, 11] we arrive at an ordinary differential equation

z̈ + π2(π2 − Γ)z + p(z2, π2z2)π2ξz = 0 . (1.5)

By assuming

Γ > π2, p(z, π2z) = κz ∀z ≥ 0 (1.6)

for a constant κ > 0, (1.5) becomes the Duffing equation [8]. It is well—known that
the Duffing equation possesses a one—parametric bounded family of periodic solutions
with periods tending to infinity.

We note that (1.2) and (1.3) are undamped and (1.1) is damped for � 6= 0. For
this reason, we show in [3, 4] only the existence of finitely, but arbitrarily many
subharmonic weak solutions of (1.2) or (1.3) persisting from (1.4) or (1.5) when α→∞
or � is sufficiently small and

1R
0

q(x) sinπxdx 6= 0, respectively.

A damped case of (1.1) is studied in [7] of the following form: The boundary value
problem for planar deflections of an elastic beam with a compressive axial load Γ and
pinned ends is

ü = −u0000 − Γu00 +
hR π
0
(u0(s))2 ds

i
u00 − 2µ2u̇+ µ1 cosω0t,

u(0, t) = u(π, t) = u00(0, t) = u00(π, t) = 0 ,
(1.7)

where u(x, t) is the transverse deflection at a distance x from one end at time t. In
(1.7), a superior dot denotes differentiation with respect to t and prime differentiation
with respect to x. We consider the µi terms as perturbations.
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Our first step is to consider the linearized, unperturbed problem and compute the
eigenvalues at the origin which are λn = n2(n2−Γ) and corresponding eigenfunctions
ϕn(x) = sinnx for n = 1, 2, · · · . For small Γ the origin is a center with the first
bifurcation occurring at Γ = 1, the first Euler buckling load. The corresponding
eigenfunction, ϕ1(x) = sinx, is referred to as the first buckled mode. When Γ is
sufficiently large, (1.7) can exhibit chaotic behavior. The first work on this was done
by P. Holmes [9] and extended by P. Holmes and J. Marsden [10, 11]. Some more
recent work on the full equation is by H.M. Rodrigues and M. Silveira [19], S.W. Shaw
[21] and by M. Berti and C. Carminati [2].

In (1.7) substitute u(x, t) =
P∞

k=1 uk(t) sin kx, multiply by sinnx and integrate
from 0 to π. This yields the infinite set of ordinary differential equations

ün = n2(Γ− n2)un − π
2n
2

" ∞X
k=1

k2u2k

#
un − 2µ2u̇n + 2µ1 cosω0t

n = 1, 2, · · · .

We see that the linear parts of these equations are uncoupled and the equations
divide into two types. The system of equations where 1 ≤ n2 < Γ has a hyperbolic
equilibrium at the origin whereas, for n2 ≥ Γ this equilibrium is a center. Infinite sets
of ordinary differential equations are also investigated in [20].

For simplicity let us assume 1 < Γ < 4. Then only the equation with n = 1 is
hyperbolic while the remaining equations have a center. To emphasize this let us
define p = u1 and qn = un+1, n = 1, 2, · · · . The preceding equations now take the
form

p̈ = a2p− π

2

"
p2 +

∞X
k=1

(k + 1)2q2k

#
p− 2µ2ṗ+ 4

πµ1 cosω0t ,

q̈n = −ω2nqn − π
2 (n+ 1)

2

"
p2 +

∞X
k=1

(k + 1)2q2k

#
qn

−2µ2q̇n + 2µ1
"
1− (−1)n+1
π(n+ 1)

#
cosω0t, n = 1, 2, · · · ,

(1.8)

where we have defined a2 = Γ− 1 and ω2n = (n+ 1)
2(n+ 1)2 − Γ In (1.8) we project

onto the hyperbolic subspace by setting q = 0 in the first equation of (1.8) to obtain
what we shall call the reduced equation. In our example this is

p̈ = a2p− π

2
p3 − 2µ2ṗ+ 4

π
µ1 cosω0t . (1.9)

We see that this is the forced, damped Duffing equation with negative stiffness for
which standard theory yields chaotic dynamics. The purpose of [7] is to show that
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the chaotic dynamics of (1.9) are, in some sense, shadowed in the dynamics of the full
equation (1.8).

2. The problem (1.2)

By using the results of [18, p. 253], we know that (−π, 0) and (π, 0) are hyperbolic
fixed points of the ordinary differential equation

ẋ = y, ẏ = − sinx (2.1)

joined by the upper separatrix

(γ, γ̇), γ = π − 4 tan−1(e−t) .
We consider (1.4) as an ordinary differential equation on the circle S2π = R/[0, 2π].
Then (2.1) is defined on the cylinder S2π ×R 3 (x, y) and (−π, 0), (π, 0) are glued to
a hyperbolic fixed point of (2.1) joined by the homoclinic orbit (γ, γ̇).

We note that λk = 16π4k4, k ∈ Z+ = {0} ∪N are eigenvalues of uxxxx with the
periodic boundary value condition of (1.2), andX

λk>0

µ
3√
λk
+
1

λk

¶
=
X
m≥1

µ
3

4π2m2
+

1

16π4m4

¶
=
181

1440
.

We need the following lemma.

Lemma 2.1. ([3]) Let D ∈ N. If S(d) is the set of all ω≥ 1 satisfying¯̄̄
ω − n

4π2k2

¯̄̄
≥ d

16π4k4
∀ k > 0, ∀n ∈ Z+

with 0 < d < 16π4, then

m (S(d) ∩ [D,D + 1]) ≥ 1− 181
720

d ,

where m(·) is the Lebesque measure.
Now we can state the main result of [3] concerning (1.2).

Theorem 2.2. ([3]) Let 8 > ρ > 5 and 0 < d < 720/181. There are constants
K1 > 0, K2 > 0 such that for any 1 > |�| > 0, m ∈ N, 0 < η ≤ 1 satisfying

1

|�|1/2 < m <
K1

2π|�|(ρ−4)/2 ,
m

η|�|ρ/2 ∈ S(d) ,

(1.2) has a 2πm—periodic weak solution um with α= 1
η2|�|ρ satisfying

max
−πm≤t≤πm

¯̄̄̄
¯̄
1Z
0

um(x, t) dx− γ(t− δm)

¯̄̄̄
¯̄ ≤ K2|�|
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for some δm ∈ [−K2,K2].
The above results can be modified also to the equations

utt + αuxxxx + sinu+ τ(x) = � cos t, u(x, t) = u(1− x, t)

uxx(0, t) = uxx(1, t) = uxxx(0, t) = uxxx(1, t) = 0 ,
(2.2)

and

utt + αuxxxx + 2u
3 − u+ τ(x) = � cos t

u(x+ 1, t) = u(x, t) ,
(2.3)

where α > 0 is a constant, τ is continuous satisfying
R 1
0 τ(x) dx = 0 and � ∈ R is a

small parameter. Moreover, τ is either symmetric with respect to x = 1/2 for (2.2) or
1—periodic for (2.3). We note that the limit equation of (2.3) as α→∞ is the forced
Duffing equation given by

ü+ 2u3 − u = � cos t .

We end this section with an existence result following directly from [3, Theorem 2.9].

Theorem 2.3. Let 0 < d < 720/181. The equation

utt + αuxxxx + u+ θ sinu+ τ(x) = � sin t

u(x+ 1, t) = u(x, t) ,

where τ is the same as in (1.2) and 0 < θ < 1, has a unique 2π—periodic weak solution
for any � ∈ R and α satisfying

α > (1 + )2/d2 and
√
α ∈ S(d) .

3. The problem (1.3)

In this section we recall some results of [4] concerning (1.3). We note that

λj = π2j2(π2j2 − Γ), j ∈N

are the eigenvalues of the linear part of (1.3) given by uxxxx + Γuxx with the corre-
sponding boundary value conditions.

Lemma 3.1. ([4]) Let D ≥ 0 and ρ > 1/4. If S(c) is the set of all T > 0 satisfying

λρj

¯̄̄̄
¯sin

p
λjT

2

¯̄̄̄
¯ ≥ c ∀j ∈N : j2 > Γ/π2 ,
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where c > 0 is a constant, then the Lebesque measure of the complement

(R \ S(c)) ∩ [D,D+ 1]

satisfies

m ((R \ S(c)) ∩ [D,D + 1]) ≤
X

k2>Γ/π2

Ã
2cπ√
λkλ

ρ
k

+
c

λρk
+
2c2π√
λkλ

2ρ
k

!
.

Now we can state the main result of [4] concerning (1.3).

Theorem 3.2. ([4]) Consider (1.3) with 0 ≤ ξ ≤ 1, π2 < Γ < 3π2. Let 1 ≥ c > 0

and let (1.6) hold. If
R 1
0 q(x) sinπxdx 6= 0 then for any p ∈N, T satisfying
√
2√

Γ− π2
≤ pT <

1

4ξ
p
8 + 2(4π4)1−ξ

c

Γ− π2

and pT ∈ S(c), the equation (1.3) has a pT—periodic weak solution for any � suffi-
ciently small. Moreover, if 0 ≤ ξ < 1/2, then m (S(c) ∩ [D,D+ 1]) → 1 as c → 0+
uniformly with respect to D ≥ 0.

Roughly speaking, Theorem 3.2 asserts that (1.3) with 0 ≤ ξ < 1/2 and π2 < Γ <
3π2, has many subharmonics for � sufficiently small when c and π2−Γ are sufficiently
small. On the other hand, since we do not know the structure of the set S(c), we
do not know a concrete case for pT . This result can be related to the KAM theory
[13]. Furthermore, Lemma 3.1 gives that the Lebesque measure of S(c) tends to 1
as c → 0+. We note [4] that now ρ = (1 − ξ)/2 in Lemma 3.1. Consequently, we
put c = (Γ − π2)1/4 in Theorem 3.2, and the assumptions of Theorem 3.2 take the
following form

√
2√

Γ− π2
≤ pT <

1

4ξ
p
8 + 2(4π4)1−ξ

1

(Γ− π2)3/4
, pT ∈ S

¡
(Γ− π2)

¢
.

Summarizing we obtain the following result.

Theorem 3.3. ([4]) Let 1/2 > ξ ≥ 0 and π2 < Γ < 3π2. If (1.6) holds and
1R
0

q(x) sinπxdx 6= 0, then the smaller Γ− π2 > 0, the larger number of subharmonic

weak solutions of (1.5) persists for (1.3) when � is sufficiently small.

The above results deal with the bifurcation of subharmonic weak solutions. Now
we formulate some results about the existence of periodic weak solutions for (1.3).

Theorem 3.4. ([4]) Let 1/2 > ξ ≥ 0 and Γ ∈ R\{π2j2 | j ∈N} be arbitrari. For
almost all T > 0 (in the sense of the Lebesque measure), there is a small T—periodic
weak solution of (1.3) for any � sufficiently small.

We do not know the form of T in the above result. Particular results with concrete
T and Γ are given bellow. Related results are proved in [1, 12, 17, 22, 23].
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Theorem 3.5. ([4]) Consider (1.3) with 1 ≥ ξ ≥ 0. If Tπ ∈ Q and Γ/π2 /∈ Q,
then there is a small T—periodic weak solution of (1.3) for any � sufficiently small.

Theorem 3.6. ([4]) Consider (1.3) with ξ = 0. If T = 2Ω/π, Γ = 2mπ2/Ω,
where m ∈ {−1, 0} and Ω > 0 has the infinite continuous fraction decomposition
[17] Ω = [a0, a1, a2, · · · ] such that ai ≤ M∀i ∈ Z+ for a constant M ∈ N satisfying
m2(M + 2) < 2Ω, then there is a small T—periodic weak solution of (1.3) for any �
sufficiently small.

We remark that Theorem 3.4 provides a more general result than Theorems 3.5
and 3.6, while Theorems 3.5 and 3.6 give concrete forms of T and Γ for the ex-
istence of periodic solutions of (1.3). For instance, Theorem 3.6 is valid for Ω =¡
M +

√
M2 + 4M

¢
/2, M ∈N and m ∈ {−1, 0}.

Results like above are obtained in [4] also for the equation

utt + uxxxx +Γuxx + p
³R 2
0 u
2(s, t) ds,

R 2
0 u
2
x(s, t) ds

´
Dξ
xxu

= �
¡
q1(x) cos

2πt
T + q2(x) sin

2πt
T

¢
,

u(x, ·) = u(x+ 2, ·) ∀x ∈ R ,

where ξ, Γ, p are like in (1.3), Dξ
xx is the ξ—power of Dxx in L2(R/2Z), q1,2 ∈ H2(0, 2)

and q1,2 are 2—periodic satisfyingR 2
0 q1(x) cosπxdx = 0,

R 2
0 q2(x) sinπx dx = 0 ,R 2

0 q1(x) sinπx dx 6= 0,
R 2
0 q2(x) cosπx dx 6= 0 .

4. The problem (1.7)

The reduced equations of (1.9) are

ẋ1 = x2 ,

ẋ2 = a2x1 − π
2x
3
1 − 2µ2x2 + 4

πµ1 cosω0t
(4.1)

obtained by setting q = 0 in the hyperbolic part of (1.8). When µ = 0, (4.1) has a
homoclinic solution given by γ = (r, ṙ) where r(t) = (2a/

√
π )sech at. The Melnikov

homoclinic function M for (4.1) [7, 18] becomes

M(µ, α) =

·
8ω0√
π
sinω0αsech

πω0
2a

¸
µ1 − 16a

3

3π
µ2 .

Thus, the conditionsM(µ0, α0) = 0, (∂M/∂α)(µ0, α0) 6= 0 are satisfied for all µ0 such
that ¯̄̄̄

µ
0,2

µ0,1

¯̄̄̄
<
3
√
πω0
2a3

sech
πω0
2a

.
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We now obtain the following result from [7].

Theorem 4.1. There exists a constant C ≥ 0 so that whenever µ0 satisfies
C ≤

¯̄̄
µ0,2
µ0,1

¯̄̄
< 3
√
πω0
2a3 sechπω02a there exists a corresponding ξ̄0 > 0 such that if 0 < ξ ≤ ξ̄0,

if the parameters in (1.7) are given by µ= ξµ0 and µ0,2 6= 0 then (1.7) is chaotic. In
the nonresonant case, i.e. if ω0 6= ωn for all n, then C = 0.

It is interesting to look at some history of this problem. The first work was by
P. Holmes [9] in which he started with the partial differential equation and carried
out the Galerkin expansion but restricted his analysis to the reduced equation. The
significance of that work is that it introduced the idea of Melnikov analysis. In
subsequent work [10, 11] P. Holmes and J. Marsden extended the results to infinite
dimension but abandoned the Galerkin approach in favor of nonlinear semigroup
techniques directly in infinite dimensions. In our work [7] we go back to the original,
simpler analysis of the reduced equation and then show that the results apply to the
original partial differential equation. Some advantages to this are that the Galerkin
projection is a technique familiar to many engineers and physicists and, also, we are
able to utilize general Melnikov results in Section 3 of [7] and Palmer’s important
results of [18]. This is illustrated further in [7] for the following generalizations:

— Nonplanar motion of a symmetric beam with one buckled mode.
— Nonplanar, nonsymmetric beam with one buckled mode in each plane.
— Planar motion of a symmetric beam with multiple buckled modes.

Acknowledgement: Partially supported by Grant GA-MS 1/6179/00. This paper is in
final form and no version of it will be submitted for publication elsewhere.
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