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1. Introduction

Perturbation bounds for the LU , LDLT factorizations are given by many authors
(e.g., see [1], [9], [7], [8], [2]). Here we improve the componentwise LU perturbation
bound of Sun [9] and derive a new perturbation bound for the LDU decomposition.
These bounds are used to investigate the stability of full rank factorizations produced
by Egerváry’s rank reduction procedure [4], [3]. The LDU perturbation bounds are
then applied to positive definite symmetric matrices. The result is shown to be better
than the LDLT perturbation result of Sun [9].

We need the following notations. Let A = [aij ]
n
i,j=1. Then |A| = [|aij |]ni,j=1,

diag (A) = diag (a11, a22, . . . , ann) ,

tril (A, l) = [αij ]
n
i,j=1 and triu (A, l) =

£
βij
¤n
i,j=1

, where 0 ≤ |l| < n and

αij =

½
aij , i ≥ j − l
0, i < j − l

, βij =

½
aij , i ≤ j − l
0, i > j − l

.

We also use the special notations tril (A) = tril (A, 0), tril∗ (A) = tril (A,−1),
triu (A) = triu (A, 0) and triu∗ (A) = triu (A, 1). The spectral radius of A will
be denoted by ρ (A). For two matrices A,B ∈ Rn×n the relation A ≤ B holds if and
only if aij ≤ bij for all i, j = 1, . . . , n. Let eIk = Pk

i=1 eie
T
i (ei ∈ Rn is the ith unit

vector) for 1 ≤ k ≤ n, eIk = 0 for k ≤ 0 and min (A,B) = [min (aij , bij)]ni,j=1.
In Sections 2 and 3 we derive the perturbation bound for the LU and LDU

factorizations. A numerical example is shown in Section 4.
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2. The LU factorization

We first prove the following

Lemma 1 Assume that A,B,C ∈ Rn×n are such that A,B,C ≥ 0 and ρ (B) < 1.
The maximal solution of the inequality A ≤ C +Btriu(A, l) (l ≥ 0) is A∗ (A∗ ≥ C),

where A∗ek =
³
I −BeIk−l´−1Cek (k = 1, . . . , n). A∗ is the unique solution of the

fixed point problem A = f (A) = C + Btriu(A, l). If A0 = (I −B)−1C, then Ai =
f (Ai−1) converges to A∗ monotonically decreasing as i → +∞ and 0 ≤ Ai − A∗ ≤
(I −B)−1Bi (A0 −A1) (i ≥ 1).

Proof. It follows from A ≤ C + Btriu(A, l) ≤ C +BA that (I −B)A ≤ C. As
I−B is a nonsingular M-matrix by assumption we obtain the upper bound A ≤ A0 =
(I −B)−1C. As¯̄̄

f (A)− f
³ eA´¯̄̄ = ¯̄̄B ³triu (A, l)− triu

³ eA, l´´¯̄̄ ≤ B
¯̄̄
A− eA¯̄̄

for any two n × n matrices A and eA, the map f (A) is a B-contraction [6] on Rn×n

and there is a unique fixed point A∗ = f (A∗). Let X0 ∈ Rn×n be arbitrary and
Xk = f (Xk−1) (k ≥ 1). Then |A∗ −Xk| ≤ (I −B)−1Bk |X1 −X0| (k ≥ 1). As for
any 0 ≤ A ≤ eA, f (A) ≤ f

³ eA´ holds and

A1 = C +Btriu
³
(I −B)−1C, l

´
≤ C +B (I −B)−1C = (I −B)−1C = A0,

the sequence Ai = f (Ai−1) tends to A∗ and is monotonically decreasing. We prove
that A∗ is the maximal solution of the inequality. Assume that a solution eA exists
such that eA ≥ A∗. Then eA = A∗+L+U , where triu (U, l) = U and tril (L, l − 1) = L.
Then

eA = A∗ + L+ U ≤ C +Btriu (A∗ + L+ U, l) ≤ C +Btriu (A, l) +BU

must hold implying that L + U ≤ BU and 0 ≤ U ≤ − (I −B)−1 L ≤ 0. Hence
U = L = 0. The kth column of A∗ can be written as A∗ek = Cek +Btriu (A∗, l) ek,

where triu (A∗, l) ek = eIk−lA∗ek. Hence we obtain A∗ek =
³
I −BeIk−l´−1Cek.

Remark 2 The sequence {Ai}i≥0 gives an improving sequence of upper estimates for
the maximal solution A∗ of the inequality.

Wewill use the following notations: A∗ = φ (B,C, l), Ai = φi (B,C, l), φ0 (B,C, l) =
(I −B)−1C and φi (B,C, l) = C + Btriu

¡
φi−1 (B,C, l) , l

¢
(i ≥ 1). Notice that for

any diagonal matrix eD, φ
³
B,C eD, l

´
= φ (B,C, l) eD and φi

³
B,C eD, l

´
= φi (B,C, l)

eD.
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Remark 3 Consider the inequality A ≤ C+tril (A,−l)B (l ≥ 0) with 0 ≤ A,B,C ∈
Rn×n and ρ (B) < 1. By transposition we obtain AT ≤ CT +BT tril (A,−l)T = CT +
BT triu

¡
AT , l

¢
the maximal solution of which is given by φ

¡
BT , CT , l

¢
. The sequence

φi
¡
BT , CT , l

¢
tends to φ

¡
BT , CT , l

¢
and is monotonically decreasing. Hence for the

original inequality we have the maximal solution φ
¡
BT , CT , l

¢T
and the monotone

decreasing sequence φi
¡
BT , CT , l

¢T
converging to φ

¡
BT , CT , l

¢T
.

The next theorem improves the componentwise estimate of Sun [9].

Theorem 4 Assume that the n × n matrix A has the LU decomposition A = L1U,
where L1 is unit lower triangular and U is upper triangular. Also assume that the
perturbed matrix A + δA has the LU decomposition A + δA = (L1 + δL1) (U + δU),
where L1+δL1 is unit lower triangular and U+δU is upper triangular. Finally assume
that ρ

¡¯̄
L1δAU

−1¯̄¢ < 1. Then we have

|δL1 | ≤ |L1| tril∗
¡
φ
¡¯̄
L−11 δAU

−1¯̄ , ¯̄L−11 δAU
−1¯̄ , 0¢¢ , (2.1)

|δU | ≤ triu

µ
φ
³¯̄
L−11 δAU

−1¯̄T , ¯̄L−11 δAU
−1¯̄T , 1´T¶ |U | . (2.2)

Proof. Using the relation

δU (U + δU )
−1 + L−11 δL1 = L−11 δA (U + δU )

−1 ,

where L−11 δL1 is a strict lower triangular matrix, while δU (U + δU)
−1 is upper trian-

gular, we can establish the relations

tril∗
³
L−11 δA (U + δU )

−1´ = L−11 δL1 , (2.3)

triu
³
L−11 δA (U + δU)

−1´ = δU (U + δU)
−1 . (2.4)

From relation

L−11 δA (U + δU)
−1 = L−11 δAU

−1 − L−11 δAU
−1δU (U + δU )

−1 (2.5)

we obtain the inequality¯̄̄
L−11 δA (U + δU)

−1
¯̄̄
≤ ¯̄L−11 δAU

−1 ¯̄+ ¯̄L−11 δAU
−1¯̄ triu³¯̄̄L−11 δA (U + δU)

−1
¯̄̄´

.

Applying Lemma 1 we obtain the bound¯̄̄
L−11 δA (U + δU )

−1
¯̄̄
≤ A∗ = φ

¡¯̄
L−11 δAU

−1¯̄ , ¯̄L−11 δAU
−1¯̄ , 0¢ .
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Hence
¯̄
L−11 δL1

¯̄ ≤ tril∗ (A∗) and |δL1 | ≤ |L1| tril∗ (A∗).
Using the relation

δUU
−1 + (L1 + δL1)

−1 δL1 = (L1 + δL1)
−1 δAU−1,

where (L1 + δL1)
−1 δL1 is a strict lower triangular matrix, while δUU

−1 is upper
triangular, we can also establish the relations

tril∗
³
(L1 + δL1)

−1 δAU−1
´
= (L1 + δL1)

−1 δL1 (2.6)

and

triu
³
(L1 + δL1)

−1 δAU−1
´
= δUU

−1. (2.7)

>From relation

(L1 + δL1)
−1 δAU−1 = L−11 δAU

−1 − (L1 + δL1)
−1 δL1L

−1
1 δAU

−1 (2.8)

we obtain the inequality¯̄̄
(L1 + δL1)

−1 δAU−1
¯̄̄
≤ ¯̄L−11 δAU

−1 ¯̄+ tril∗
³¯̄̄
(L1 + δL1)

−1 δAU−1
¯̄̄´ ¯̄

L−11 δAU
−1¯̄

the maximal solution of which is¯̄̄
(L1 + δL1)

−1 δAU−1
¯̄̄
≤ eA∗ = φ

³¯̄
L−11 δAU

−1¯̄T , ¯̄L−11 δAU
−1¯̄T , 1´T .

Hence
¯̄
δUU

−1¯̄ ≤ triu
³ eA∗´ and |δU | ≤ triu

³ eA∗´ |U |. This completes the proof.
Remark 5 If function φ is replaced by φ0 in (2.1)-(2.2) we obtain the theorem of
Sun [9], Thm. 5.1). Hence, our result is sharper.

Remark 6 Assume that the LU factorizations A = LU1 and

A+ δA = (L+ δL) (U1 + δU1)

are such that U1 and U1+δU1 are upper unit triangular. If A
T = UT

1 L
T and AT+δTA =³

UT
1 + δTU1

´¡
LT + δL

¢
satisfy the conditions of the previous theorem we may write

|δL| ≤ |L| tril
¡
φ
¡¯̄
L−1δAU−11

¯̄
,
¯̄
L−1δAU−11

¯̄
, 1
¢¢
, (2.9)

and

|δU1 | ≤ triu∗
µ
φ
³¯̄
L−1δAU−11

¯̄T
,
¯̄
L−1δAU−11

¯̄T
, 0
´T¶

|U1| . (2.10)

Hence, Theorem 4 is also true for the case A = LU1 with unit upper triangular U1.
Notice, however, that we have here tril and triu∗ instead of tril∗ and triu, respec-
tively. This is due to the change of the unit triangular part in the LU factorization.
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3. The LDU factorization

Consider the LDU factorization A = L1DU1 with unit lower triangular L1, di-
agonal D and unit upper triangular U1. Assume that A + δA can be factorized so
that

A+ δA = (L1 + δL1) (D + δD) (U1 + δU1)

where L1 + δL1 is unit lower triangular and U + δU1 is unit upper triangular. For
δL1 and δU1 we have the bounds (2.1) and (2.10), respectively. We now look for an
estimate of δD. We use the relation

L−11 δA (U1 + δU1)
−1 = DδU1 (U + δU1)

−1 + δD + L−11 δL1 (D + δD) ,

where the matrix DδU1 (U + δU1)
−1 is strict upper triangular, δD is diagonal, and

L−11 δL1 (D+ δD) is strict lower triangular. Hence

tril∗
³
L−11 δA (U1 + δU1)

−1´ = L−11 δL1 (D + δD) , (3.1)

diag
³
L−11 δA (U1 + δU1)

−1´ = δD, (3.2)

triu∗
³
L−11 δA (U1 + δU1)

−1´ = DδU1 (U1 + δU1)
−1 . (3.3)

>From relation

L−11 δA (U1 + δU1)
−1 = L−11 δAU

−1
1 − L−11 δAU

−1
1 δU1 (U1 + δU1)

−1 (3.4)

we obtain the inequality¯̄̄
L−11 δA (U1 + δU1)

−1
¯̄̄
≤ ¯̄

L−11 δAU
−1
1 D−1

¯̄ |D|+
+
¯̄
L−11 δAU

−1
1 D−1

¯̄
triu∗

³¯̄̄
L−11 δA (U1 + δU1)

−1
¯̄̄´

the maximal solution of which is given by the bound¯̄̄
L−11 δA (U1 + δU1)

−1
¯̄̄
≤ φ

¡¯̄
L−11 δAU

−1
1 D−1

¯̄
,
¯̄
L−11 δAU

−1
1 D−1

¯̄ |D| , 1¢ .
Hence |δD| ≤ |D| diag

¡
φ
¡¯̄
L−11 δAU

−1
1 D−1

¯̄
,
¯̄
L−11 δAU

−1
1 D−1

¯̄
, 1
¢¢
.

We may get another estimate by using the expression

(L1 + δL1)
−1 δAU−11 = (D+ δD) δU1U

−1
1 + δD + (L1 + δL1)

−1 δL1D,
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where the matrix (D+ δD) δU1U
−1
1 is strict upper triangular, δD is diagonal, and

(L1 + δL1)
−1 δL1D is strict lower triangular. Hence

tril∗
³
(L1 + δL1)

−1 δAU−11
´
= (L1 + δL1)

−1 δL1D, (3.5)

diag
³
(L1 + δL1)

−1 δAU−11
´
= δD, (3.6)

triu∗
³
(L1 + δL1)

−1 δAU−11
´
= (D + δD) δU1U

−1
1 . (3.7)

>From relation

(L1 + δL1)
−1 δAU−11 = L−11 δAU

−1
1 − (L1 + δL1)

−1 δL1L
−1
1 δAU

−1
1 (3.8)

we obtain the inequality¯̄̄
(L1 + δL1)

−1 δAU−11
¯̄̄
≤ |D| ¯̄D−1L−11 δAU

−1
1

¯̄
+

+tril∗
³¯̄̄
(L1 + δL1)

−1 δAU−11
¯̄̄´ ¯̄

D−1L−11 δAU
−1
1

¯̄
.

It has the maximal solution¯̄̄
(L1 + δL1)

−1 δAU−11
¯̄̄
≤ φ

³¯̄
D−1L−11 δAU

−1
1

¯̄T
,
¯̄
D−1L−11 δAU

−1
1

¯̄T |D| , 1´T .
Hence |δD| ≤ |D|diag

µ
φ
³¯̄
D−1L−11 δAU

−1
1

¯̄T
,
¯̄
D−1L−11 δAU

−1
1

¯̄T
, 1
´T¶

. We now

have two estimates for |δD|. As in general |AD| 6= |DA| these two estimates are
different. We can establish

Theorem 7 Assume that the n×n matrix A has the LDU decomposition A = L1DU1,
where L1 is unit lower triangular, D is diagonal and U1 is unit upper triangular.
Also assume that the perturbed matrix A+ δA has the LDU decomposition A+ δA =
(L1 + δL1) (D + δD) (U1 + δU1), where L1+ δL1 is unit lower triangular and U1+ δU1
is unit upper triangular. Finally assume that max (ρ (ΓL1) , ρ (ΓU1)) < 1 holds with
ΓL1 =

¯̄
L−11 δAU

−1
1 D−1

¯̄
and ΓU1 =

¯̄
D−1L−11 δAU

−1
1

¯̄
. Then the following inequalities

are satisfied:

|δL1 | ≤ |L1| tril∗ (φ (ΓL1 ,ΓL1 , 0)) , (3.9)

|δD| ≤ |D|min
n
diag (φ (ΓL1 ,ΓL1 , 1)) , diag

³
φ
¡
ΓTU1 ,Γ

T
U1 , 1

¢T´o
, (3.10)

|δU1 | ≤ triu∗
³
φ
¡
ΓTU1 ,Γ

T
U1 , 0

¢T´ |U1| . (3.11)
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Remark 8 If φ is replaced by φ0, we obtain the following weaker estimates:

|δL1 | ≤ |L1| tril∗
³
(I − ΓL1)−1 ΓL1

´
, (3.12)

|δU1 | ≤ triu∗
³
ΓU1 (I − ΓU1)−1

´
|U1| , (3.13)

|δD| ≤ |D|min
³
diag

³
(I − ΓL1)−1 ΓL1

´
, diag

³
ΓU1 (I − ΓU1)−1

´´
. (3.14)

Next we specialize the above result for symmetric and positive definite matrices.
In such a case ΓL1 = Γ

T
U1

(ΓL1 =
¯̄
L−11 δAL

−T
1 D−1

¯̄
, ΓU1 =

¯̄
D−1L−11 δAL

−T
1

¯̄
) and we

have the following

Corollary 9 Assume that A is symmetric and positive definite and its perturbation
δA is such that A+ δA remains symmetric and positive definite. If A and A+ δA are
written in the forms A = L1DLT1 (D ≥ 0) and

A+ δA = (L1 + δL1) (D + δD)
³
LT1 + δTL1

´
,

respectively, then

|δL1 | ≤ |L1| tril∗ (φ (ΓL1 ,ΓL1 , 0)) (3.15)

and

|δD| ≤ Ddiag (φ (ΓL1 ,ΓL1 , 1)) . (3.16)

Replacing φ by the weaker estimate φ0, we obtain the following bounds:

|δL1 | ≤ |L1| tril∗
³
(I − ΓL1)−1 ΓL1

´
(3.17)

and

|δD| ≤ Ddiag
³
(I − ΓL1)−1 ΓL1

´
. (3.18)

We recall that Sun ([9], Thm. 3.1) for symmetric positive definite matrices proved
that

|δL1 | ≤ |L1| tril∗
³
Eld

¡
I − diag

¡
D−1Eld

¢¢−1
D−1

´
, (3.19)

|δD| ≤ diag (Eld) (3.20)

with

Eld =
¡
I − ¯̄L−11 δAL

−T
1

¯̄
D−1

¢−1 ¯̄
L−11 δAL

−T
1

¯̄
. (3.21)
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We compare now estimates (3.17)-(3.18) and (3.19)-(3.20), respectively. We ex-
ploit the fact that for any diagonal matrix D, |AD| = |A| |D| and diag(AD) =
diag (A)D hold. We can write

(I − ΓL1)−1 ΓL1 =
¡
I − ¯̄L−11 δAL

−T
1

¯̄
D−1

¢−1 ¯̄
L−11 δAL

−T
1

¯̄
D−1 = EldD

−1

and then estimate (3.18) yield

|δD| ≤ diag
³¡
I − ¯̄L−11 δAL

−T
1

¯̄
D−1

¢−1 ¯̄
L−11 δAL

−T
1

¯̄´
= diag (Eld) .

As
¡
I − diag

¡
D−1Eld

¢¢−1 ≥ I and Eld

¡
I − diag

¡
D−1Eld

¢¢−1
D−1 ≥ EldD

−1, the
bound (3.19) satisfies

|L1| tril∗
³
Eld

¡
I − diag

¡
D−1Eld

¢¢−1
D−1

´
≥ |L1| tril∗

³
(I − ΓL1)−1 ΓL1

´
.

Thus it follows that Theorem 7 improves the special LDLT perturbation result of
Sun ([9], Thm. 3.1).

4. Final remarks

Computer experiments on symmetric positive definite MATLAB test matrices
indicate that estimate φ1 is often so good as φ itself. We could observe significant
difference between the estimates if ΓL1 was relatively large. A typical result is shown
in Figure 4.1.

Here we display the maximum difference between the components of the bound and
the true error matrix for Example 6.1 of [9] to which we added 20 random symmetric
matrices with elements of the magnitude 5 × 10−3. Hence, the line marked with +
denotes estimate (3.19) of Sun, the line with triangles denotes the estimate (3.17), the
solid line denotes estimate φ1, while the line with circles denotes the best estimate.

The estimates of Theorems 4 and 7 are optimal, if one accepts inequalities of the
form A ≤ C + Btriu (A, l) (A,B,C ≥ 0) in the estimation process. We can solve,
however, the equation A = C + Btriu (A, l) without any nonnegativity condition.
Hence we can give exact expressions for the perturbation errors. For example, in case
of Theorem 4 we can prove the following result.

Theorem 10 For k = 1, . . . , n we have

δL1ek =

 0

−
µ
L
(k)
2

³
L
(k)
1

´−1
δ
(k)
1 − δ

(k)
2

¶³
L
(k)
1 U

(k)
1 + δ

(k)
1

´−1 eek


and

eTk δU1 =

·
0,−eeTk ³L(k)1 U

(k)
1 + δ

(k)
1

´−1µ
δ
(k)
1

³
U
(k)
1

´−1
U
(k)
2 − δ

(k)
4

¶¸
,
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Figure 1. Perturbation bounds for the LDLT factorization

where eek ∈ Rk is the kth unit vector,

L1 =

"
L
(k)
1 0

L
(k)
2 L

(k)
3

#
, U =

"
U
(k)
1 U

(k)
2

0 U
(k)
3

#
, δA =

"
δ
(k)
1 δ

(k)
4

δ
(k)
2 δ

(k)
3

#

and L
(k)
1 , U

(k)
1 , δ

(k)
1 ∈ Rk×k.

It does not seem easy to find componentwise estimates better than those of The-
orem 4. We can obtain, however, better result than those of Chang and Paige [2].

Finally we remark that either from Theorem 4 or Theorem 7 we can easily obtain
normwise perturbation estimates slightly weaker than those of Barrlund [1] by simply
using the relation k|A|k = kAkF and φ0 instead of φ.
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