Miskolc Mathematical Notes

Componentwise perturbation bounds for the $L U, L D U$ and $L D T^{T}$ decompositions

Aurél Galántai

COMPONENTWISE PERTURBATION BOUNDS FOR THE $L U, L D U$ AND $L D L^{T}$ DECOMPOSITIONS

Aurél Galántai
Institute of Mathematics, University of Miskolc 3515 Miskolc - Egyetemváros, Hungary
matgal@gold.uni-miskolc.hu

[Received June 1, 2000]

Abstract

We improve a componentwise perturbation bound of Sun for the $L U$ factorization and derive a new perturbation bound for the $L D U$ factorization. The latter bound also improves a result of Sun given for the $L D L^{T}$ factorization.

Mathematical Subject Classification: 15A23, 15A45, 65F99.
Keywords: $L U, L D U, L D L^{T}$ factorization, perturbation.

1. Introduction

Perturbation bounds for the $L U, L D L^{T}$ factorizations are given by many authors (e.g., see [1], [9], [7], [8], [2]). Here we improve the componentwise $L U$ perturbation bound of Sun [9] and derive a new perturbation bound for the $L D U$ decomposition. These bounds are used to investigate the stability of full rank factorizations produced by Egerváry's rank reduction procedure [4], [3]. The $L D U$ perturbation bounds are then applied to positive definite symmetric matrices. The result is shown to be better than the $L D L^{T}$ perturbation result of Sun [9].

We need the following notations. Let $A=\left[a_{i j}\right]_{i, j=1}^{n}$. Then $|A|=\left[\left|a_{i j}\right|\right]_{i, j=1}^{n}$,

$$
\operatorname{diag}(A)=\operatorname{diag}\left(a_{11}, a_{22}, \ldots, a_{n n}\right)
$$

$\operatorname{tril}(A, l)=\left[\alpha_{i j}\right]_{i, j=1}^{n}$ and $\operatorname{triu}(A, l)=\left[\beta_{i j}\right]_{i, j=1}^{n}$, where $0 \leq|l|<n$ and

$$
\alpha_{i j}=\left\{\begin{array}{l}
a_{i j}, \quad i \geq j-l \\
0, \quad i<j-l
\end{array}, \quad \beta_{i j}=\left\{\begin{array}{l}
a_{i j}, \quad i \leq j-l \\
0, \quad i>j-l
\end{array}\right.\right.
$$

We also use the special notations $\operatorname{tril}(A)=\operatorname{tril}(A, 0), \operatorname{tril}^{*}(A)=\operatorname{tril}(A,-1)$, $\operatorname{triu}(A)=\operatorname{triu}(A, 0)$ and $\operatorname{triu}^{*}(A)=\operatorname{triu}(A, 1)$. The spectral radius of A will be denoted by $\rho(A)$. For two matrices $A, B \in R^{n \times n}$ the relation $A \leq B$ holds if and only if $a_{i j} \leq b_{i j}$ for all $i, j=1, \ldots, n$. Let $\widetilde{I}_{k}=\sum_{i=1}^{k} e_{i} e_{i}^{T}\left(e_{i} \in R^{n}\right.$ is the i th unit vector) for $1 \leq k \leq n, \widetilde{I}_{k}=0$ for $k \leq 0$ and $\min (A, B)=\left[\min \left(a_{i j}, b_{i j}\right)\right]_{i, j=1}^{n}$.

In Sections 2 and 3 we derive the perturbation bound for the $L U$ and $L D U$ factorizations. A numerical example is shown in Section 4.

2. The $L U$ factorization

We first prove the following
Lemma 1 Assume that $A, B, C \in R^{n \times n}$ are such that $A, B, C \geq 0$ and $\rho(B)<1$. The maximal solution of the inequality $A \leq C+\operatorname{Btriu}(A, l)(l \geq 0)$ is $A^{*}\left(A^{*} \geq C\right)$, where $A^{*} e_{k}=\left(I-B \widetilde{I}_{k-l}\right)^{-1} C e_{k}(k=1, \ldots, n)$. A^{*} is the unique solution of the fixed point problem $A=f(A)=C+\operatorname{Btriu}(A, l)$. If $A_{0}=(I-B)^{-1} C$, then $A_{i}=$ $f\left(A_{i-1}\right)$ converges to A^{*} monotonically decreasing as $i \rightarrow+\infty$ and $0 \leq A_{i}-A^{*} \leq$ $(I-B)^{-1} B^{i}\left(A_{0}-A_{1}\right)(i \geq 1)$.

Proof. It follows from $A \leq C+B \operatorname{triu}(A, l) \leq C+B A$ that $(I-B) A \leq C$. As $I-B$ is a nonsingular M-matrix by assumption we obtain the upper bound $A \leq A_{0}=$ $(I-B)^{-1} C$. As

$$
|f(A)-f(\widetilde{A})|=|B(\operatorname{triu}(A, l)-\operatorname{triu}(\widetilde{A}, l))| \leq B|A-\widetilde{A}|
$$

for any two $n \times n$ matrices A and \widetilde{A}, the map $f(A)$ is a B-contraction [6] on $R^{n \times n}$ and there is a unique fixed point $A^{*}=f\left(A^{*}\right)$. Let $X_{0} \in R^{n \times n}$ be arbitrary and $X_{k}=f\left(X_{k-1}\right)(k \geq 1)$. Then $\left|A^{*}-X_{k}\right| \leq(I-B)^{-1} B^{k}\left|X_{1}-X_{0}\right|(k \geq 1)$. As for any $0 \leq A \leq \widetilde{A}, f(A) \leq f(\widetilde{A})$ holds and

$$
A_{1}=C+B \operatorname{triu}\left((I-B)^{-1} C, l\right) \leq C+B(I-B)^{-1} C=(I-B)^{-1} C=A_{0}
$$

the sequence $A_{i}=f\left(A_{i-1}\right)$ tends to A^{*} and is monotonically decreasing. We prove that A^{*} is the maximal solution of the inequality. Assume that a solution \widetilde{A} exists such that $\widetilde{A} \geq A^{*}$. Then $\widetilde{A}=A^{*}+L+U$, where $\operatorname{triu}(U, l)=U$ and $\operatorname{tril}(L, l-1)=L$. Then

$$
\widetilde{A}=A^{*}+L+U \leq C+\operatorname{Btriu}\left(A^{*}+L+U, l\right) \leq C+\operatorname{Btriu}(A, l)+B U
$$

must hold implying that $L+U \leq B U$ and $0 \leq U \leq-(I-B)^{-1} L \leq 0$. Hence $U=L=0$. The k th column of A^{*} can be written as $A^{*} e_{k}=C e_{k}+\operatorname{Btriu}\left(A^{*}, l\right) e_{k}$, where $\operatorname{triu}\left(A^{*}, l\right) e_{k}=\widetilde{I}_{k-l} A^{*} e_{k}$. Hence we obtain $A^{*} e_{k}=\left(I-B \widetilde{I}_{k-l}\right)^{-1} C e_{k}$.

Remark 2 The sequence $\left\{A_{i}\right\}_{i \geq 0}$ gives an improving sequence of upper estimates for the maximal solution A^{*} of the inequality.

We will use the following notations: $A^{*}=\phi(B, C, l), A_{i}=\phi_{i}(B, C, l), \phi_{0}(B, C, l)=$ $(I-B)^{-1} C$ and $\phi_{i}(B, C, l)=C+\operatorname{Btriu}\left(\phi_{i-1}(B, C, l), l\right)(i \geq 1)$. Notice that for any diagonal matrix $\widetilde{D}, \phi(B, C \widetilde{D}, l)=\phi(B, C, l) \widetilde{D}$ and $\phi_{i}(B, C \widetilde{D}, l)=\phi_{i}(B, C, l) \widetilde{D}$.

Remark 3 Consider the inequality $A \leq C+\operatorname{tril}(A,-l) B(l \geq 0)$ with $0 \leq A, B, C \in$ $R^{n \times n}$ and $\rho(B)<1$. By transposition we obtain $A^{T} \leq C^{T}+B^{T} \operatorname{tril}(A,-l)^{T}=C^{T}+$ B^{T} triu $\left(A^{T}, l\right)$ the maximal solution of which is given by $\phi\left(B^{T}, C^{T}, l\right)$. The sequence $\phi_{i}\left(B^{T}, C^{T}, l\right)$ tends to $\phi\left(B^{T}, C^{T}, l\right)$ and is monotonically decreasing. Hence for the original inequality we have the maximal solution $\phi\left(B^{T}, C^{T}, l\right)^{T}$ and the monotone decreasing sequence $\phi_{i}\left(B^{T}, C^{T}, l\right)^{T}$ converging to $\phi\left(B^{T}, C^{T}, l\right)^{T}$.

The next theorem improves the componentwise estimate of Sun [9].
Theorem 4 Assume that the $n \times n$ matrix A has the $L U$ decomposition $A=L_{1} U$, where L_{1} is unit lower triangular and U is upper triangular. Also assume that the perturbed matrix $A+\delta_{A}$ has the $L U$ decomposition $A+\delta_{A}=\left(L_{1}+\delta_{L_{1}}\right)\left(U+\delta_{U}\right)$, where $L_{1}+\delta_{L_{1}}$ is unit lower triangular and $U+\delta_{U}$ is upper triangular. Finally assume that $\rho\left(\left|L_{1} \delta_{A} U^{-1}\right|\right)<1$. Then we have

$$
\begin{gather*}
\left|\delta_{L_{1}}\right| \leq\left|L_{1}\right| \operatorname{tril}^{*}\left(\phi\left(\left|L_{1}^{-1} \delta_{A} U^{-1}\right|,\left|L_{1}^{-1} \delta_{A} U^{-1}\right|, 0\right)\right) \tag{2.1}\\
\left|\delta_{U}\right| \leq \operatorname{triu}\left(\phi\left(\left|L_{1}^{-1} \delta_{A} U^{-1}\right|^{T},\left|L_{1}^{-1} \delta_{A} U^{-1}\right|^{T}, 1\right)^{T}\right)|U| \tag{2.2}
\end{gather*}
$$

Proof. Using the relation

$$
\delta_{U}\left(U+\delta_{U}\right)^{-1}+L_{1}^{-1} \delta_{L_{1}}=L_{1}^{-1} \delta_{A}\left(U+\delta_{U}\right)^{-1}
$$

where $L_{1}^{-1} \delta_{L_{1}}$ is a strict lower triangular matrix, while $\delta_{U}\left(U+\delta_{U}\right)^{-1}$ is upper triangular, we can establish the relations

$$
\begin{gather*}
\operatorname{tril}^{*}\left(L_{1}^{-1} \delta_{A}\left(U+\delta_{U}\right)^{-1}\right)=L_{1}^{-1} \delta_{L_{1}} \tag{2.3}\\
\operatorname{triu}\left(L_{1}^{-1} \delta_{A}\left(U+\delta_{U}\right)^{-1}\right)=\delta_{U}\left(U+\delta_{U}\right)^{-1} \tag{2.4}
\end{gather*}
$$

From relation

$$
\begin{equation*}
L_{1}^{-1} \delta_{A}\left(U+\delta_{U}\right)^{-1}=L_{1}^{-1} \delta_{A} U^{-1}-L_{1}^{-1} \delta_{A} U^{-1} \delta_{U}\left(U+\delta_{U}\right)^{-1} \tag{2.5}
\end{equation*}
$$

we obtain the inequality

$$
\left|L_{1}^{-1} \delta_{A}\left(U+\delta_{U}\right)^{-1}\right| \leq\left|L_{1}^{-1} \delta_{A} U^{-1}\right|+\left|L_{1}^{-1} \delta_{A} U^{-1}\right| \operatorname{triu}\left(\left|L_{1}^{-1} \delta_{A}\left(U+\delta_{U}\right)^{-1}\right|\right) .
$$

Applying Lemma 1 we obtain the bound

$$
\left|L_{1}^{-1} \delta_{A}\left(U+\delta_{U}\right)^{-1}\right| \leq A^{*}=\phi\left(\left|L_{1}^{-1} \delta_{A} U^{-1}\right|,\left|L_{1}^{-1} \delta_{A} U^{-1}\right|, 0\right) .
$$

Hence $\left|L_{1}^{-1} \delta_{L_{1}}\right| \leq \operatorname{tril}^{*}\left(A^{*}\right)$ and $\left|\delta_{L_{1}}\right| \leq\left|L_{1}\right| \operatorname{tril}^{*}\left(A^{*}\right)$.
Using the relation

$$
\delta_{U} U^{-1}+\left(L_{1}+\delta_{L_{1}}\right)^{-1} \delta_{L_{1}}=\left(L_{1}+\delta_{L_{1}}\right)^{-1} \delta_{A} U^{-1}
$$

where $\left(L_{1}+\delta_{L_{1}}\right)^{-1} \delta_{L_{1}}$ is a strict lower triangular matrix, while $\delta_{U} U^{-1}$ is upper triangular, we can also establish the relations

$$
\begin{equation*}
\operatorname{tril}^{*}\left(\left(L_{1}+\delta_{L_{1}}\right)^{-1} \delta_{A} U^{-1}\right)=\left(L_{1}+\delta_{L_{1}}\right)^{-1} \delta_{L_{1}} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{triu}\left(\left(L_{1}+\delta_{L_{1}}\right)^{-1} \delta_{A} U^{-1}\right)=\delta_{U} U^{-1} \tag{2.7}
\end{equation*}
$$

$>$ From relation

$$
\begin{equation*}
\left(L_{1}+\delta_{L_{1}}\right)^{-1} \delta_{A} U^{-1}=L_{1}^{-1} \delta_{A} U^{-1}-\left(L_{1}+\delta_{L_{1}}\right)^{-1} \delta_{L_{1}} L_{1}^{-1} \delta_{A} U^{-1} \tag{2.8}
\end{equation*}
$$

we obtain the inequality

$$
\left|\left(L_{1}+\delta_{L_{1}}\right)^{-1} \delta_{A} U^{-1}\right| \leq\left|L_{1}^{-1} \delta_{A} U^{-1}\right|+\operatorname{tril}^{*}\left(\left|\left(L_{1}+\delta_{L_{1}}\right)^{-1} \delta_{A} U^{-1}\right|\right)\left|L_{1}^{-1} \delta_{A} U^{-1}\right|
$$

the maximal solution of which is

$$
\left|\left(L_{1}+\delta_{L_{1}}\right)^{-1} \delta_{A} U^{-1}\right| \leq \widetilde{A}^{*}=\phi\left(\left|L_{1}^{-1} \delta_{A} U^{-1}\right|^{T},\left|L_{1}^{-1} \delta_{A} U^{-1}\right|^{T}, 1\right)^{T}
$$

Hence $\left|\delta_{U} U^{-1}\right| \leq \operatorname{triu}\left(\widetilde{A}^{*}\right)$ and $\left|\delta_{U}\right| \leq \operatorname{triu}\left(\widetilde{A}^{*}\right)|U|$. This completes the proof.
Remark 5 If function ϕ is replaced by ϕ_{0} in (2.1)-(2.2) we obtain the theorem of Sun [9], Thm. 5.1). Hence, our result is sharper.

Remark 6 Assume that the $L U$ factorizations $A=L U_{1}$ and

$$
A+\delta_{A}=\left(L+\delta_{L}\right)\left(U_{1}+\delta_{U_{1}}\right)
$$

are such that U_{1} and $U_{1}+\delta_{U_{1}}$ are upper unit triangular. If $A^{T}=U_{1}^{T} L^{T}$ and $A^{T}+\delta_{A}^{T}=$ $\left(U_{1}^{T}+\delta_{U_{1}}^{T}\right)\left(L^{T}+\delta_{L}\right)$ satisfy the conditions of the previous theorem we may write

$$
\begin{equation*}
\left|\delta_{L}\right| \leq|L| \operatorname{tril}\left(\phi\left(\left|L^{-1} \delta_{A} U_{1}^{-1}\right|,\left|L^{-1} \delta_{A} U_{1}^{-1}\right|, 1\right)\right), \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\delta_{U_{1}}\right| \leq \operatorname{triu}^{*}\left(\phi\left(\left|L^{-1} \delta_{A} U_{1}^{-1}\right|^{T},\left|L^{-1} \delta_{A} U_{1}^{-1}\right|^{T}, 0\right)^{T}\right)\left|U_{1}\right| \tag{2.10}
\end{equation*}
$$

Hence, Theorem 4 is also true for the case $A=L U_{1}$ with unit upper triangular U_{1}. Notice, however, that we have here tril and triu* instead of tril* and triu, respectively. This is due to the change of the unit triangular part in the $L U$ factorization.

3. The $L D U$ factorization

Consider the $L D U$ factorization $A=L_{1} D U_{1}$ with unit lower triangular L_{1}, diagonal D and unit upper triangular U_{1}. Assume that $A+\delta_{A}$ can be factorized so that

$$
A+\delta_{A}=\left(L_{1}+\delta_{L_{1}}\right)\left(D+\delta_{D}\right)\left(U_{1}+\delta_{U_{1}}\right)
$$

where $L_{1}+\delta_{L_{1}}$ is unit lower triangular and $U+\delta_{U_{1}}$ is unit upper triangular. For $\delta_{L_{1}}$ and $\delta_{U_{1}}$ we have the bounds (2.1) and (2.10), respectively. We now look for an estimate of δ_{D}. We use the relation

$$
L_{1}^{-1} \delta_{A}\left(U_{1}+\delta_{U_{1}}\right)^{-1}=D \delta_{U_{1}}\left(U+\delta_{U_{1}}\right)^{-1}+\delta_{D}+L_{1}^{-1} \delta_{L_{1}}\left(D+\delta_{D}\right)
$$

where the matrix $D \delta_{U_{1}}\left(U+\delta_{U_{1}}\right)^{-1}$ is strict upper triangular, δ_{D} is diagonal, and $L_{1}^{-1} \delta_{L_{1}}\left(D+\delta_{D}\right)$ is strict lower triangular. Hence

$$
\begin{gather*}
\operatorname{tril}^{*}\left(L_{1}^{-1} \delta_{A}\left(U_{1}+\delta_{U_{1}}\right)^{-1}\right)=L_{1}^{-1} \delta_{L_{1}}\left(D+\delta_{D}\right) \tag{3.1}\\
\operatorname{diag}\left(L_{1}^{-1} \delta_{A}\left(U_{1}+\delta_{U_{1}}\right)^{-1}\right)=\delta_{D} \tag{3.2}\\
\operatorname{triu}^{*}\left(L_{1}^{-1} \delta_{A}\left(U_{1}+\delta_{U_{1}}\right)^{-1}\right)=D \delta_{U_{1}}\left(U_{1}+\delta_{U_{1}}\right)^{-1} \tag{3.3}
\end{gather*}
$$

$>$ From relation

$$
\begin{equation*}
L_{1}^{-1} \delta_{A}\left(U_{1}+\delta_{U_{1}}\right)^{-1}=L_{1}^{-1} \delta_{A} U_{1}^{-1}-L_{1}^{-1} \delta_{A} U_{1}^{-1} \delta_{U_{1}}\left(U_{1}+\delta_{U_{1}}\right)^{-1} \tag{3.4}
\end{equation*}
$$

we obtain the inequality

$$
\begin{aligned}
\left|L_{1}^{-1} \delta_{A}\left(U_{1}+\delta_{U_{1}}\right)^{-1}\right| \leq \mid & L_{1}^{-1} \delta_{A} U_{1}^{-1} D^{-1}| | D \mid+ \\
& +\left|L_{1}^{-1} \delta_{A} U_{1}^{-1} D^{-1}\right| \text { triu }^{*}\left(\left|L_{1}^{-1} \delta_{A}\left(U_{1}+\delta_{U_{1}}\right)^{-1}\right|\right)
\end{aligned}
$$

the maximal solution of which is given by the bound

$$
\left|L_{1}^{-1} \delta_{A}\left(U_{1}+\delta_{U_{1}}\right)^{-1}\right| \leq \phi\left(\left|L_{1}^{-1} \delta_{A} U_{1}^{-1} D^{-1}\right|,\left|L_{1}^{-1} \delta_{A} U_{1}^{-1} D^{-1}\right||D|, 1\right)
$$

Hence $\left|\delta_{D}\right| \leq|D| \operatorname{diag}\left(\phi\left(\left|L_{1}^{-1} \delta_{A} U_{1}^{-1} D^{-1}\right|,\left|L_{1}^{-1} \delta_{A} U_{1}^{-1} D^{-1}\right|, 1\right)\right)$.
We may get another estimate by using the expression

$$
\left(L_{1}+\delta_{L_{1}}\right)^{-1} \delta_{A} U_{1}^{-1}=\left(D+\delta_{D}\right) \delta_{U_{1}} U_{1}^{-1}+\delta_{D}+\left(L_{1}+\delta_{L_{1}}\right)^{-1} \delta_{L_{1}} D
$$

where the matrix $\left(D+\delta_{D}\right) \delta_{U_{1}} U_{1}^{-1}$ is strict upper triangular, δ_{D} is diagonal, and $\left(L_{1}+\delta_{L_{1}}\right)^{-1} \delta_{L_{1}} D$ is strict lower triangular. Hence

$$
\begin{gather*}
\operatorname{tril}^{*}\left(\left(L_{1}+\delta_{L_{1}}\right)^{-1} \delta_{A} U_{1}^{-1}\right)=\left(L_{1}+\delta_{L_{1}}\right)^{-1} \delta_{L_{1}} D \tag{3.5}\\
\operatorname{diag}\left(\left(L_{1}+\delta_{L_{1}}\right)^{-1} \delta_{A} U_{1}^{-1}\right)=\delta_{D} \tag{3.6}\\
\text { triu }^{*}\left(\left(L_{1}+\delta_{L_{1}}\right)^{-1} \delta_{A} U_{1}^{-1}\right)=\left(D+\delta_{D}\right) \delta_{U_{1}} U_{1}^{-1} \tag{3.7}
\end{gather*}
$$

$>$ From relation

$$
\begin{equation*}
\left(L_{1}+\delta_{L_{1}}\right)^{-1} \delta_{A} U_{1}^{-1}=L_{1}^{-1} \delta_{A} U_{1}^{-1}-\left(L_{1}+\delta_{L_{1}}\right)^{-1} \delta_{L_{1}} L_{1}^{-1} \delta_{A} U_{1}^{-1} \tag{3.8}
\end{equation*}
$$

we obtain the inequality

$$
\begin{aligned}
\left|\left(L_{1}+\delta_{L_{1}}\right)^{-1} \delta_{A} U_{1}^{-1}\right| \leq \mid & D|\mid \\
& D^{-1} L_{1}^{-1} \delta_{A} U_{1}^{-1} \mid+ \\
& +\operatorname{tril}^{*}\left(\left|\left(L_{1}+\delta_{L_{1}}\right)^{-1} \delta_{A} U_{1}^{-1}\right|\right)\left|D^{-1} L_{1}^{-1} \delta_{A} U_{1}^{-1}\right| .
\end{aligned}
$$

It has the maximal solution

$$
\left|\left(L_{1}+\delta_{L_{1}}\right)^{-1} \delta_{A} U_{1}^{-1}\right| \leq \phi\left(\left|D^{-1} L_{1}^{-1} \delta_{A} U_{1}^{-1}\right|^{T},\left|D^{-1} L_{1}^{-1} \delta_{A} U_{1}^{-1}\right|^{T}|D|, 1\right)^{T}
$$

Hence $\left|\delta_{D}\right| \leq|D| \operatorname{diag}\left(\phi\left(\left|D^{-1} L_{1}^{-1} \delta_{A} U_{1}^{-1}\right|^{T},\left|D^{-1} L_{1}^{-1} \delta_{A} U_{1}^{-1}\right|^{T}, 1\right)^{T}\right)$. We now have two estimates for $\left|\delta_{D}\right|$. As in general $|A D| \neq|D A|$ these two estimates are different. We can establish
Theorem 7 Assume that the $n \times n$ matrix A has the $L D U$ decomposition $A=L_{1} D U_{1}$, where L_{1} is unit lower triangular, D is diagonal and U_{1} is unit upper triangular. Also assume that the perturbed matrix $A+\delta_{A}$ has the LDU decomposition $A+\delta_{A}=$ $\left(L_{1}+\delta_{L_{1}}\right)\left(D+\delta_{D}\right)\left(U_{1}+\delta_{U_{1}}\right)$, where $L_{1}+\delta_{L_{1}}$ is unit lower triangular and $U_{1}+\delta_{U_{1}}$ is unit upper triangular. Finally assume that $\max \left(\rho\left(\Gamma_{L_{1}}\right), \rho\left(\Gamma_{U_{1}}\right)\right)<1$ holds with $\Gamma_{L_{1}}=\left|L_{1}^{-1} \delta_{A} U_{1}^{-1} D^{-1}\right|$ and $\Gamma_{U_{1}}=\left|D^{-1} L_{1}^{-1} \delta_{A} U_{1}^{-1}\right|$. Then the following inequalities are satisfied:

$$
\begin{equation*}
\left|\delta_{L_{1}}\right| \leq\left|L_{1}\right| \operatorname{tril}^{*}\left(\phi\left(\Gamma_{L_{1}}, \Gamma_{L_{1}}, 0\right)\right), \tag{3.9}
\end{equation*}
$$

$$
\begin{gather*}
\left|\delta_{D}\right| \leq|D| \min \left\{\operatorname{diag}\left(\phi\left(\Gamma_{L_{1}}, \Gamma_{L_{1}}, 1\right)\right), \operatorname{diag}\left(\phi\left(\Gamma_{U_{1}}^{T}, \Gamma_{U_{1}}^{T}, 1\right)^{T}\right)\right\} \tag{3.10}\\
\left|\delta_{U_{1}}\right| \leq \operatorname{triu}^{*}\left(\phi\left(\Gamma_{U_{1}}^{T}, \Gamma_{U_{1}}^{T}, 0\right)^{T}\right)\left|U_{1}\right| \tag{3.11}
\end{gather*}
$$

Remark 8 If ϕ is replaced by ϕ_{0}, we obtain the following weaker estimates:

$$
\begin{gather*}
\left|\delta_{L_{1}}\right| \leq\left|L_{1}\right| \operatorname{tril}^{*}\left(\left(I-\Gamma_{L_{1}}\right)^{-1} \Gamma_{L_{1}}\right) \tag{3.12}\\
\left|\delta_{U_{1}}\right| \leq \operatorname{triu}^{*}\left(\Gamma_{U_{1}}\left(I-\Gamma_{U_{1}}\right)^{-1}\right)\left|U_{1}\right| \tag{3.13}\\
\left|\delta_{D}\right| \leq|D| \min \left(\operatorname{diag}\left(\left(I-\Gamma_{L_{1}}\right)^{-1} \Gamma_{L_{1}}\right), \operatorname{diag}\left(\Gamma_{U_{1}}\left(I-\Gamma_{U_{1}}\right)^{-1}\right)\right) \tag{3.14}
\end{gather*}
$$

Next we specialize the above result for symmetric and positive definite matrices. In such a case $\Gamma_{L_{1}}=\Gamma_{U_{1}}^{T}\left(\Gamma_{L_{1}}=\left|L_{1}^{-1} \delta_{A} L_{1}^{-T} D^{-1}\right|, \Gamma_{U_{1}}=\left|D^{-1} L_{1}^{-1} \delta_{A} L_{1}^{-T}\right|\right)$ and we have the following

Corollary 9 Assume that A is symmetric and positive definite and its perturbation δ_{A} is such that $A+\delta_{A}$ remains symmetric and positive definite. If A and $A+\delta_{A}$ are written in the forms $A=L_{1} D L_{1}^{T}(D \geq 0)$ and

$$
A+\delta_{A}=\left(L_{1}+\delta_{L_{1}}\right)\left(D+\delta_{D}\right)\left(L_{1}^{T}+\delta_{L_{1}}^{T}\right)
$$

respectively, then

$$
\begin{equation*}
\left|\delta_{L_{1}}\right| \leq\left|L_{1}\right| \operatorname{tril}^{*}\left(\phi\left(\Gamma_{L_{1}}, \Gamma_{L_{1}}, 0\right)\right) \tag{3.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\delta_{D}\right| \leq \operatorname{diag}\left(\phi\left(\Gamma_{L_{1}}, \Gamma_{L_{1}}, 1\right)\right) \tag{3.16}
\end{equation*}
$$

Replacing ϕ by the weaker estimate ϕ_{0}, we obtain the following bounds:

$$
\begin{equation*}
\left|\delta_{L_{1}}\right| \leq\left|L_{1}\right| \operatorname{tril}^{*}\left(\left(I-\Gamma_{L_{1}}\right)^{-1} \Gamma_{L_{1}}\right) \tag{3.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\delta_{D}\right| \leq D \operatorname{diag}\left(\left(I-\Gamma_{L_{1}}\right)^{-1} \Gamma_{L_{1}}\right) \tag{3.18}
\end{equation*}
$$

We recall that Sun ([9], Thm. 3.1) for symmetric positive definite matrices proved that

$$
\begin{gather*}
\left|\delta_{L_{1}}\right| \leq\left|L_{1}\right| \operatorname{tril}^{*}\left(E_{l d}\left(I-\operatorname{diag}\left(D^{-1} E_{l d}\right)\right)^{-1} D^{-1}\right) \tag{3.19}\\
\left|\delta_{D}\right| \leq \operatorname{diag}\left(E_{l d}\right) \tag{3.20}
\end{gather*}
$$

with

$$
\begin{equation*}
E_{l d}=\left(I-\left|L_{1}^{-1} \delta_{A} L_{1}^{-T}\right| D^{-1}\right)^{-1}\left|L_{1}^{-1} \delta_{A} L_{1}^{-T}\right| \tag{3.21}
\end{equation*}
$$

We compare now estimates (3.17)-(3.18) and (3.19)-(3.20), respectively. We exploit the fact that for any diagonal matrix $D,|A D|=|A||D|$ and $\operatorname{diag}(A D)=$ $\operatorname{diag}(A) D$ hold. We can write

$$
\left(I-\Gamma_{L_{1}}\right)^{-1} \Gamma_{L_{1}}=\left(I-\left|L_{1}^{-1} \delta_{A} L_{1}^{-T}\right| D^{-1}\right)^{-1}\left|L_{1}^{-1} \delta_{A} L_{1}^{-T}\right| D^{-1}=E_{l d} D^{-1}
$$

and then estimate (3.18) yield

$$
\left|\delta_{D}\right| \leq \operatorname{diag}\left(\left(I-\left|L_{1}^{-1} \delta_{A} L_{1}^{-T}\right| D^{-1}\right)^{-1}\left|L_{1}^{-1} \delta_{A} L_{1}^{-T}\right|\right)=\operatorname{diag}\left(E_{l d}\right)
$$

As $\left(I-\operatorname{diag}\left(D^{-1} E_{l d}\right)\right)^{-1} \geq I$ and $E_{l d}\left(I-\operatorname{diag}\left(D^{-1} E_{l d}\right)\right)^{-1} D^{-1} \geq E_{l d} D^{-1}$, the bound (3.19) satisfies

$$
\left|L_{1}\right| \operatorname{tril}^{*}\left(E_{l d}\left(I-\operatorname{diag}\left(D^{-1} E_{l d}\right)\right)^{-1} D^{-1}\right) \geq\left|L_{1}\right| \operatorname{tril}^{*}\left(\left(I-\Gamma_{L_{1}}\right)^{-1} \Gamma_{L_{1}}\right) .
$$

Thus it follows that Theorem 7 improves the special $L D L^{T}$ perturbation result of Sun ([9], Thm. 3.1).

4. Final remarks

Computer experiments on symmetric positive definite MATLAB test matrices indicate that estimate ϕ_{1} is often so good as ϕ itself. We could observe significant difference between the estimates if $\Gamma_{L_{1}}$ was relatively large. A typical result is shown in Figure 4.1.

Here we display the maximum difference between the components of the bound and the true error matrix for Example 6.1 of [9] to which we added 20 random symmetric matrices with elements of the magnitude 5×10^{-3}. Hence, the line marked with + denotes estimate (3.19) of Sun, the line with triangles denotes the estimate (3.17), the solid line denotes estimate ϕ_{1}, while the line with circles denotes the best estimate.

The estimates of Theorems 4 and 7 are optimal, if one accepts inequalities of the form $A \leq C+B \operatorname{triu}(A, l) \quad(A, B, C \geq 0)$ in the estimation process. We can solve, however, the equation $A=C+\operatorname{Btriu}(A, l)$ without any nonnegativity condition. Hence we can give exact expressions for the perturbation errors. For example, in case of Theorem 4 we can prove the following result.
Theorem 10 For $k=1, \ldots, n$ we have

$$
\delta_{L_{1}} e_{k}=\left[\begin{array}{c}
0 \\
-\left(L_{2}^{(k)}\left(L_{1}^{(k)}\right)^{-1} \delta_{1}^{(k)}-\delta_{2}^{(k)}\right)\left(L_{1}^{(k)} U_{1}^{(k)}+\delta_{1}^{(k)}\right)^{-1} \widetilde{e}_{k}
\end{array}\right]
$$

and

$$
e_{k}^{T} \delta_{U_{1}}=\left[0,-\widetilde{e}_{k}^{T}\left(L_{1}^{(k)} U_{1}^{(k)}+\delta_{1}^{(k)}\right)^{-1}\left(\delta_{1}^{(k)}\left(U_{1}^{(k)}\right)^{-1} U_{2}^{(k)}-\delta_{4}^{(k)}\right)\right]
$$

Figure 1. Perturbation bounds for the $L D L^{T}$ factorization
where $\widetilde{e}_{k} \in R^{k}$ is the k th unit vector,

$$
L_{1}=\left[\begin{array}{cc}
L_{1}^{(k)} & 0 \\
L_{2}^{(k)} & L_{3}^{(k)}
\end{array}\right], \quad U=\left[\begin{array}{cc}
U_{1}^{(k)} & U_{2}^{(k)} \\
0 & U_{3}^{(k)}
\end{array}\right], \quad \delta_{A}=\left[\begin{array}{cc}
\delta_{1}^{(k)} & \delta_{4}^{(k)} \\
\delta_{2}^{(k)} & \delta_{3}^{(k)}
\end{array}\right]
$$

and $L_{1}^{(k)}, U_{1}^{(k)}, \delta_{1}^{(k)} \in R^{k \times k}$.

It does not seem easy to find componentwise estimates better than those of Theorem 4. We can obtain, however, better result than those of Chang and Paige [2].

Finally we remark that either from Theorem 4 or Theorem 7 we can easily obtain normwise perturbation estimates slightly weaker than those of Barrlund [1] by simply using the relation $\||A|\|=\|A\|_{F}$ and ϕ_{0} instead of ϕ.

Acknowledgement: The author is grateful to Prof. E. Spedicato of the University of Bergamo for his helpful remarks and a supportive working environment. The author is also indebted to Prof. C. Broyden for pointing out reference [2].

REFERENCES

[1] Barrlund, A.: Perturbation bounds for the $L D L^{H}$ and $L U$ decompositions, BIT, 31, (1991), 358-363.
[2] Chang, X.-W. and Paige, C.C.: On the sensitivity of the $L U$ factorization, BIT, 38, (1998), 486-501.
[3] Galántai A.: Perturbation theory for full rank factorizations, Quaderni DMSIA, University of Bergamo, 1999.
[4] Galántai A.: Rank reduction and conjugation, Mathematical Notes, Miskolc, 1(1), (2000), 11-33.
[5] Higham, N.J.: Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, 1996
[6] Ortega, J.M. and Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970
[7] Stewart, G.W.: On the perturbation of $L U$, Cholesky and $Q R$ factorizations, SIAM J. Matrix. Anal. Appl., 14, (1993), 1141-1145.
[8] Stewart, G.W.: On the perturbation of $L U$ and Cholesky factors, IMA J. Numer. Anal., 17, (1997), 1-6.
[9] Sun, J.-G.: Componentwise perturbation bounds for some matrix decompositions, BIT, 32, (1992), 702-714.

