

Some results on symmetric bi- $(\sigma,\tau)\text{-}\text{derivations}$ in near-rings

Mehmet Ali Öztürk and Hasret Yazarli

Miskolc Mathematical Notes Vol. 11 (2010), No. 2, pp. 169–173

SOME RESULTS ON SYMMETRIC BI- (σ, τ) -DERIVATIONS IN NEAR-RINGS

MEHMET ALI ÖZTÜRK AND HASRET YAZARLI

Received 1 December, 2009

Abstract. The aim of this paper is to investigate certain results on 3-prime near-rings and generalize these results on near-rings to semi-group ideals of 3-prime near-rings.

2000 Mathematics Subject Classification: 16A12, 16D30, 16S99, 16Y99, 16W25

Keywords: near-ring, prime near-ring, semigroup ideal, derivation, symmetric bi-derivation, symmetric bi- (σ, τ) -derivation

1. INTRODUCTION

For preliminary definitions and results related to near-rings, we refer for Pilz [5]. The concept of a symmetric bi-derivation has been introduced by Maksa [3]. In recent years, many mathematicians studied the commutativity of prime and semiprime rings admitting suitably-constrained symmetric bi-derivations. In [4], Öztürk (together with Jun) introduced the notion of a symmetric bi-derivations in near-rings and proved some results. Moreover the concept of symmetric bi- (σ, τ) -derivation of near-ring has been introduced by Çeven (together with Öztürk) [2]. The aim of this paper is to investigate some results on 3-prime near-rings and generalize the results on near-rings to semi-group ideals of 3-prime near-rings.

2. PRELIMINARIES

Throughout this paper N will be a zero-symmetric left near-ring, and usually N will be 3-prime, that is, it will have the property that $xNy = \{0\}$ implies x = 0 or y = 0. The symbol Z will denote the multiplicative center of N. A nonempty subset U of N will be called semigroup right ideal (resp. semigroup left ideal) if $UN \subset U$ (resp. $NU \subset U$) and U is both a semigroup right ideal and a semigroup left ideal, it is called a semigroup ideal. For $x, y \in N$, the symbol [x, y] will denote the commutator xy - yx, while the symbol (x, y) will denote the additive-group commutator x + y - x - y. A mapping $D : N \times N \to N$ is said to be symmetric if D(x, y) = D(y, x) for all $x, y \in N$. A mapping $d : N \to N$ defined by d(x) = D(x, x) is called the trace of D where $D : N \times N \to N$ is a symmetric mapping. It

© 2010 Miskolc University Press

is obvious that, if $D: N \times N \to N$ is a symmetric mapping which is also bi-additive (i.e., additive in both arguments), then the trace of D satisfies the relation d(x + y) = d(x) + 2D(x, y) + d(y) for all $x, y \in N$. A symmetric bi-additive mapping $D: N \times N \to N$ is called a symmetric bi-derivation if D(xy,z) = D(x,z)y + xD(y,z) is fulfilled for all $x, y, z \in N$. Then, for any $y \in N$, a mapping $x \mapsto D(x, y)$ is a derivation. A symmetric bi-additive mapping $D: N \times N \to N$ is called symmetric bi-additive mapping $D: N \times N \to N$ is called symmetric bi- (σ, τ) -derivation if there exist automorphisms $\sigma, \tau: N \to N$ such that $D(xy, z) = D(x, z)\sigma(y) + \tau(x)D(y, z)$ for all $x, y, z \in N$. Note that if $\sigma = 1$ and $\tau = 1$ then D is a symmetric bi-derivation.

3. Results

The following lemmas and theorems are necessary for the paper.

Lemma 1 ([3, Lemma 3]). Let N be a 3-prime near-ring.

- (i) If $z \in Z \{0\}$, then z is not a zero divisor.
- (ii) If $Z \{0\}$ contains an element z for which $z + z \in Z$, then (N, +) is abelian.

Lemma 2 ([1, Lemma 1.3]). *Let N be 3-prime, and let d be a nonzero derivation on N.*

- (i) If U is a nonzero semi-group right ideal (resp. semi-group left ideal) and x is an element of N such that $Ux = \{0\}$ (resp. $xU = \{0\}$), then x = 0.
- (ii) If U is nonzero semi-group right ideal or semi-group left ideal, then $d(U) \neq \{0\}$.
- (iii) If U is a nonzero semi-group right ideal and x is an element of N which centralizes U, then $x \in Z$.

Lemma 3 ([1, Lemma 1.4]). Let N be 3-prime, and U a nonzero semi-group ideal of N. Let d be a nonzero derivation on N.

(i) If $x, y \in N$ and $xUy = \{0\}$, then x = 0 or y = 0.

(ii) If $x \in N$ and $d(U)x = \{0\}$, then x = 0.

(iii) If $x \in N$ and $xd(U) = \{0\}$, then x = 0.

Lemma 4 ([1, Lemma 1.5]). *If N is 3-prime and Z contains a nonzero semigroup left ideal or semigroup right ideal, N is a commutative ring.*

Lemma 5 ([2, Lemma 3]). Let N be a 2-torsion free 3-prime near-ring, D a symmetric bi- (σ, τ) -derivation of N and d the trace of D. If $xd(N) = \{0\}$ for all $x \in N$, then x = 0 or D = 0.

Lemma 6 ([2, Lemma 4]). Let N be a near-ring. D is a symmetric $bi-(\sigma, \tau)$ -derivation of N if and only if $D(xy,z) = \tau(x) D(y,z) + D(x,z)\sigma(y)$ for all $x, y, z \in N$.

Lemma 7 ([2, Lemma 5]). Let N be a near-ring, D a symmetric bi- (σ, τ) -derivation of N. Then, for all $x, y, z, w \in N$,

- (i) $[D(x,z)\sigma(y) + \tau(x)D(y,z)]w = D(x,z)\sigma(y)w + \tau(x)D(y,z)w$,
- (ii) $[\tau(x) D(y,z) + D(x,z)\sigma(y)]w = \tau(x) D(y,z)w + D(x,z)\sigma(y)w.$

Theorem 1 ([2, Theorem 1]). Let N be a 3-prime near-ring, D a nonzero symmetric $bi-(\sigma, \tau)$ -derivation of N. If N is 2-torsion free and $D(N, N) \subset Z$, then N is commutative ring.

Lemma 8. Let N be a 2-torsion free 3-prime near-ring, U a nonzero semigroup ideal of N and D symmetric $bi-(\sigma, \tau)$ -derivation of N. If $D(U,U) = \{0\}$, then D = 0.

Proof. Suppose D(x, y) = 0 for all $x, y \in U$. Then taking $xz, z \in N$ instead of x, we have

$$0 = D(xz, y) = D(x, y)\sigma(z) + \tau(x)D(z, y)$$
$$= \tau(x)D(y, z)$$

Replacing yw by $y, w \in N$ in last relation, we get

$$0 = \tau (x) D (y, z) \sigma (w) + \tau (x) \tau (y) D (w, z)$$
$$= \tau (x) \tau (y) D (w, z)$$

for all $x, y \in U$, $w, z \in N$. Since τ is an automorphism of N and, $U \neq \{0\}$, we get $D(N, N) = \{0\}$ by Lemma 3. That is, D = 0.

Lemma 9. Let N be a 2-torsion free 3-prime near-ring, U a nonzero semigroup ideal of N, D a nonzero symmetric $bi-(\sigma, \tau)$ -derivation of N and $a \in N$. If $D(U,U)a = \{0\}$, then a = 0. (Similarly, if D(U,U)a = 0, then a = 0.)

Proof. Suppose D(x, y)a = 0 for all $x, y \in U$. Taking $wy, w \in N$ instead of y and using Lemma 7(i), we get

$$0 = D(x, wy)a = [D(w, x)\sigma(y) + \tau(w)D(y, x)]a$$
$$= D(w, x)\sigma(y)a + \tau(w)D(y, x)a$$
$$= D(x, w)\sigma(y)a$$

Since σ is an automorphism of N and $U \neq \{0\}$, we get $D(N,U) = \{0\}$ or a = 0 by Lemma 3(i). Assume $D(N,U) = \{0\}$. Hence $D(U,U) = \{0\}$, and so D = 0 by Lemma 8. This completes the proof.

The other case $(aD(U, U) = \{0\})$ can be treated similarly.

Theorem 2. Let N be a 3-prime near-ring, U a nonzero semigroup ideal of N and D a nonzero symmetric $bi-(\sigma,\tau)$ -derivation of N. If N is 2-torsion free and $D(U,U) \subset Z$, then N is commutative ring.

Proof. Since $D(x, y) \in Z$ for all $x, y \in U$, we have D(x, y)z = zD(x, y), for all $x, y \in U$ and $z \in N$. Relacing xw by $w, w \in U$, we get

$$D(xw, y)z = zD(xw, y)$$

$$D(x, y)\sigma(w)z + \tau(x)D(w, y)z$$

$$= zD(x, y)\sigma(w) + z\tau(x)D(w, y)$$
(3.1)

Taking $z = \sigma(w)$ and using $D(U, U) \subset Z$, we obtain that

$$D(x, y)\sigma(w)\sigma(w) + \tau(x) D(w, y)\sigma(w)$$

= $\sigma(w) D(x, y)\sigma(w) + \sigma(w)\tau(x) D(w, y)$

and so

$$D(w, y)[\sigma(w), \tau(x)] = 0$$
, for all $x, y, w \in U$

Since Z contains no nonzero divisors of zero, we see that for each $w \in U$, either D(w, y) = 0 for all $y \in U$ or $[\tau(x), \sigma(w)] = 0$, for all $x \in U$. In the first case, equation (3.1) yields

$$D(x, y)[\sigma(w), z] = 0,$$
 for all $x, y, w \in U, z \in N.$

By the same argument as above, we have, we have $[\sigma(w), z] = 0$, for all $z \in N$. In particular, we obtain for all $x \in U$, $[\tau(x), \sigma(w)] = 0$, in each case. That is, $U \subset Z$ by Lemma 2(iii). Hence N is a commutative ring by Lemma 4. This completes the proof.

Theorem 3. Let N be a 2-torsion free 3-prime near-ring. Let D_1 and D_2 be nonzero symmetric bi- (σ, τ) -derivations of N and d_1 and let d_2 be nonzero trace of D_1 and D_2 , respectively. If $d_2(y)$, $d_2(y) + d_2(y) \in C$ $(D_1(x,z))$ for all $x, y, z \in N$, then (N, +) is abelian and $d_2(N) \subseteq Z$.

Proof. Since $d_2(y)$, $d_2(y) + d_2(y) \in C$ $(D_1(x, z))$ for all $x, y, z \in N$, if both w and w + w commute elementwise with $D_1(x, z)$ for all $s \in N$, then

 $[D_1(x,z) + D_1(s,z)](w+w) = [D_1(x,z) + D_1(x,z) + D_1(s,z) + D_1(s,z)]w$

On the other hand,

$$[D_1(x,z) + D_1(s,z)](w+w) = [D_1(x,z) + D_1(s,z) + D_1(x,z) + D_1(s,z)]w$$

Comparing these expressions we get, for all $x, s \in N$,

$$D_1((x,s),z)w = 0 (3.2)$$

Thus, let $w = d_2(y)$ in (3.2), we get $D_1((x,s), z) d_2(y) = 0$ for all $x, z, s, y \in N$, so $D_1((x,s), z) = 0$. Since (x, s) is also an additive commutator for any $z \in N$, we have

$$0 = D_1((x,s)z,z) = D_1((x,s),z)\sigma(z) + \tau((x,s))d_1(z)$$

= $\tau((x,s))d_1(z)$

172

Since τ is an automorphism, we get (x, s) = 0. That is, (N, +) is abelian. Now, replacing xw by x in $D_1(x, z) d_2(y) = d_2(y) D_1(x, z)$, we get

$$0 = D_1(xw,z) d_2(y) - d_2(y) D_1(xw,z)$$

= $D_1(x,z) \sigma(w) d_2(y) + \tau(x) D_1(w,z) d_2(y)$
 $- d_2(y) \tau(x) D_1(w,z) - d_2(y) D_1(x,z) \sigma(w)$

Taking $d_1(t)$ for $\sigma(w)$ in the last relation, we get

$$\tau(x) D_1(w, z) d_2(y) = d_2(y) \tau(x) D_1(w, z)$$
(3.3)

Replacing wu by w in (3.3) and using (3.3), we have

$$\tau(x) D_1(w, z) \sigma(u) d_2(y) = d_2(y) \tau(x) D_1(w, z) \sigma(u)$$

= $\tau(x) D_1(w, z) d_2(y) \sigma(u)$

$$\tau(x) D_1(w, z) [\sigma(u), d_2(y)] = 0$$

Since U is a nonzero semi-group ideal and D_1 is nonzero, we get $[\sigma(u), d_2(y)] = 0$. Since σ is an automorphism, we have $d_2(N) \subseteq Z$.

Acknowledgement: The authors are deeply grateful to the referee for the valuable suggestions.

REFERENCES

- [1] H. E. Bell, *On derivations in near-rings. II.*, ser. Mathematics and its Applications. Dordrecht: Kluwer Acad. Publ., 1997, vol. 426.
- [2] Y. Çeven and M. A. Öztürk, "Some properties of symmetric bi-(σ, τ)-derivations in near-rings," *Commun. Korean Math. Soc.*, vol. 22, no. 4, pp. 487–491, 2007.
- [3] G. Maksa, "On the trace of symmetric bi-derivations," C. R. Math. Rep. Acad. Sci. Canada, vol. 9, no. 6, pp. 303–307, 1987.
- [4] M. A. Öztürk and Y. B. Jun, "On the trace of symmetric bi-derivations in near-rings," *Inter. J. Pure and Appl. Math.*, vol. 17, no. 1, pp. 9–102, 2004.
- [5] G. Pilz, *Near-rings*, ser. North-Holland Mathematics Studies. Amsterdam: North-Holland Publishing Co., 1983, vol. 23.

Authors' addresses

Mehmet Ali Öztürk

Adıyaman University, Faculty of Arts and Sciences, Department of Mathematics, 02040 Adıyaman, TURKEY

E-mail address: maozturk@adiyaman.edu.tr

Hasret Yazarlı

Cumhuriyet University, Faculty of Arts and Sciences, Department of Mathematics, 58140 Sivas, TURKEY

E-mail address: hyazarli@cumhuriyet.edu.tr

173