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Received 2 December, 2009

Abstract. To illustrate a recent uniqueness result on Hahn-Banach extensions, we show that if p
is a sublinear functional of a vector space X , ' is a linear functional of a subspace V of X such
that '.v/� p.v/ for all v 2 V , and

q.x/D inf
v2V

�
p .x�v/C'.v/

�
for all x 2X , then the domain

W D
˚
x 2X W q.�x/D�q.x/

	
of the oddness of the infimal convolution q of p and ' is a subspace of X such that any of the
three possible cases V D W , V ¤ W ¤ X and W D X can naturally occur even if X is an
Euclidean space and p is a norm on X .
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1. INTRODUCTION

Suppose that X is a vector space over R and p is a sublinear (positively homogen-
eous and subadditive) function on X to R.

Moreover, assume that V is a subspace of X and ' is a linear function on V to R
such that ' is dominated by p on V in the sense that '.v/� p.v/ for all v 2 V .

Now, because of the classical Hahn-Banach theorem [1, 4], a linear function f on
X to R, that extends ' and is dominated by p on X , may be called a Hahn-Banach
extension of ' to X .

Moreover, in accordance with the more general definitions of Moreau [1, 3], and
Strömberg [5], the function q D p �', defined by

q.x/D inf
v2V

�
p .x�v/C'.v/

�
for all x 2X , can be called the infimal convolution of p and '.

Under the above notations, the following theorem has been proved in [2] on the
uniqueness of Hahn-Banach extension of ' to X .
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Theorem 1. The following assertions are equivalent :

(1.) q is odd on X ;
(2.) q is a Hahn-Banach extension of ' to X ;
(3.) there exists a unique Hahn-Banach extension f of ' to X ;
(4.) there exists at most one Hahn-Banach extension f of ' to X .

This theorem has motivated us to investigate the domain

W D
˚
x 2X W q.�x/D�q.x/

	
of oddness of the function q.

By using some basic properties of q, we shall show that W is always a subspace
of X containing V . Moreover, by using a particular infimal value theorem, we shall
show that any of the three possible cases V D W , V ¤ W ¤ X , and W D X can
naturally occur even if X is an Euclidean space and p is a norm on X .

2. LINEARITY PROPERTIES OF q AND W

The following two basic theorems have also been established in [2].

Theorem 2. q is a real-valued, sublinear function of X .

Corollary 1. q.0/D 0 and �q.x/� q.�x/ for all � 2 R and x 2X .

Remark 1. Hence, one can easily derive that q.�x/ D �q.x/ for all � � 0 and
x 2X .

Theorem 3. q.xCv/D q.x/C'.v/ for all x 2X and v 2 V .

Corollary 2. q is an extension of ' and q.xC v/ D q.x/C q.v/ for all x 2 X
and v 2 V .

Now, by using the above results, we can easily prove the following

Theorem 4. W is a subspace of X containing V .

Proof. Since ' is odd and q is an extension of ', it is clear that V �W . Therefore,
we only need to show that W is closed under the linear operations in X .

For this, note first that if x 2W , then q.�x/D�q.x/. Hence, it is clear that

q
�
�.�x/

�
D q.x/D�

�
�q.x/

�
D�q.�x/:

Therefore, �x 2W also holds.
Moreover, if �� 0 and x 2W , then by Remark 2.3 and since q.�x/D�q.x/, we

have

q.��x/D q
�
�.�x/

�
D �q.�x/D �

�
�q.x/

�
D��q.x/D�q.�x/:

Therefore, �x 2W also holds.
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While, if � < 0 and x 2 W , then �� > 0 and �x 2 W . Therefore, by the above
observation, we also have

�x D .��/.�x/ 2W:

Finally, we note that if x;y 2W , then the subadditivity of q, the equalities q.�x/D
�q.x/ and q.�y/ D �q.y/, and the � D �1 particular case of Corollary 2.2 alto-
gether imply

q
�
�.xCy/

�
D q

�
�xC .�y/

�
� q.�x/Cq.�y/

D�q.x/C
�
�q.y/

�
D�

�
q.x/Cq.y/

�
� �q.xCy/� q

�
�.xCy/

�
Therefore,

q
�
�.xCy/

�
D�q.xCy/;

and thus xCy 2W also holds. �

Remark 2. To appreciate the importance of W , note that by definition W is the
largest subset of X such that q is odd on W .

Hence, by Theorems 2.6 and 1.1, we can see that W is the largest subspace of X
such that ' has a unique Hahn-Banach extension  to W . Moreover, we necessarily
have  .w/D q.w/ for all w 2W .

3. A PARTICULAR INFIMAL VALUE THEOREM

In the proof of our subsequent infimal value theorem, we shall use the following
minimal value result.

Lemma 1. If f is a continuous function of R to itself such that

lim
t!�1

f .t/DC1 and lim
t!C1

f .t/DC1;

then there exists � 2 R such that

f .�/Dmin
t2R

f .t/:

Proof. By using the above limit conditions, we can see that there exists r > 0 such
that

f .0/� f .t/

whenever either t < �r or r < t . Now, by a basic theorem on continuous functions,
we can state that there exists � 2 Œ�r; r� such that

f .�/� f .t/

for all t 2 Œ�r; r� . Now, since f .�/ � f .0/, it is clear that the above inequality also
holds for all t 2 Rn Œ�r; r� . �
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Our colleague, Mihály Bessenyei has observed that the following infimal value
theorem can also be proved in a more elementary way, without using the standard
methods of analysis for finding local and global minima. However, our subsequent
proof can be used to illustrate these methods in classrooms.

Theorem 5. For any ˛; ˇ 2 R, with ˛ � 0 and jˇ j � 1, we have

inf
t2R

�p
t 2C˛ Cˇ t

�
D

q
˛ .1�ˇ2/ :

Proof. Define
f˛ˇ .t/D

p
t 2C˛ Cˇ t

for all t 2 R. Then, in particular

f0ˇ .t/D
p

t 2 Cˇ t D j t j Cˇ t D

(
.ˇC1/ t for t � 0;

.ˇ�1/ t for t < 0:

Hence, since ˇC1� 0 and ˇ�1� 0, we can see that f0ˇ .t/� 0 for all t 2 R. Now,
since f0ˇ .0/D 0, it is clear that

min
t2R

f0ˇ .t/D 0D

q
0.1�ˇ2/ :

This shows that the required equality is true in the particular case ˛ D 0. Therefore,
in the sequel, we may assume that ˛ ¤ 0, and thus ˛ > 0.

Now, we can also note that

f0ˇ .t/D
p

t 2 Cˇ t <
p
t 2C˛ Cˇ t D f˛ˇ .t/

for all t 2 R . Hence, by the nonnegativity of the function f0ˇ , we can see that
f˛ˇ .t/ > 0 for all t 2 R. Moreover, we can note that

lim
t!�1

f˛1.t/D lim
t!�1

�p
t 2C˛ C t

�
D lim
t!�1

�p
t 2C˛

�2
� t 2

p
t 2C˛ � t

D lim
t!�1

˛
p
t 2C˛ � t

D 0

and

lim
t!C1

f˛.�1/.t/D lim
t!C1

�p
t 2C˛ � t

�

D lim
t!C1

�p
t 2C˛

�2
� t 2

p
t 2C˛ C t

D lim
t!C1

˛
p
t 2C˛ C t

D 0:

Hence it is clear that

inf
t2R

f˛1.t/D 0D

q
˛ .1�12/ and inf

t2R
f˛.�1/.t/D 0D

q
˛ .1� .�1/2/ :
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This shows that the required equality is true in the particular case jˇ j D 1. Therefore,
in the sequel, we may assume that jˇ j ¤ 1, and thus jˇ j < 1.

Now, since ˇ�1 < 0 and ˇC1 > 0, we can also note that

lim
t!�1

f0ˇ .t/DC1 and lim
t!C1

f0ˇ .t/DC1:

Hence, by using that f0ˇ � f˛ˇ , we can infer that

lim
t!�1

f˛ˇ .t/DC1 and lim
t!C1

f˛ˇ .t/DC1

also hold. Moreover, we can note that f˛ˇ is continuous. Thus, by Lemma 3.1, there
exists � 2 R such that

f˛ˇ .�/Dmin
t2R

f˛ˇ .t/ :

Moreover, since f˛ˇ is differentiable, we can also state that f
0

˛ˇ
.�/D 0. Hence, by

using that

f
0

˛ˇ .�/D
1

2
p
� 2C˛

2� C ˇ D
� C ˇ

p
� 2C˛

p
� 2C˛

;

we can infer that �Cˇ
p
� 2C˛ D 0, and thus

� D�ˇ
p
� 2C˛ :

This implies that sgn.�/ D �sgn.ˇ/. Moreover, we can also easily see that
� 2 D ˇ2 .� 2C˛/, whence

� 2 D
˛ˇ2

1�ˇ2
; and thus j� j D

p
˛ jˇ jp
1�ˇ2

:

Hence, by using that

j� j D sgn.�/� and jˇ j D sgn.ˇ/ˇ D�sgn.�/ˇ;

we can infer that

sgn.�/� D�sgn.�/
p
˛ ˇp
1�ˇ2

; and thus � D�

p
˛ ˇp
1�ˇ2

:

Namely, if sgn.�/D 0, then because of sgn.�/D�sgn.ˇ/ we also have sgn.ˇ/D 0.
Therefore, not only � D 0, but also ˇ D 0. Now, to complete the proof, it remains
only to note that

f˛ˇ .�/D
p
� 2C˛ C ˇ� D

s
˛ˇ2

1�ˇ2
C˛ �

p
˛ˇ2p
1�ˇ2

D

p
˛ˇ2C˛�˛ˇ2p

1�ˇ2
�

p
˛ˇ2p
1�ˇ2

D
p
˛
1�ˇ2p
1�ˇ2

D

q
˛ .1�ˇ2/ :

�
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Remark 3. Note that if in particular jˇ j ¤ 1, then we can write minimum instead
of infimum in the above theorem.

4. THE FIRST ILLUSTRATING EXAMPLE

The following example is a little more difficult than that given in [2].

Example 1. Take

X D R2 and V D R.1; 1/:

Moreover, define

'.r; r/D r and p.r; s/D
p
r 2C s2

for all r; s 2 R. Then, it is clear that V is a subspace of X , ' is a linear function of
V , and p is a norm on X such that

j'.r; r/ j D jr j �
p
2 jr j D

p
r 2C r 2 D p.r; r/

for all r 2 R. Thus, in particular, ' is dominated by p on V .
Moreover, by using Theorem 3.2, we can see that

q.r; s/D inf
u2R

�
p
�
.r; s/� .u; u/

�
C'.u;u/

�
D inf
u2R

�
p.r �u; s�u/C'.u; u/

�
D inf
u2R

�q
.r �u/2C .s�u/2Cu

�

D inf
u2R

p
2

0@s .r �u/2C .s�u/2

2
C

u
p
2

1A
D
p
2 inf
u2R

0@s.r �u/2C .s�u/2

2
C

u
p
2

1A
D
p
2 inf
u2R

0@s�
u�

rC s

2

�2
C
.r � s/2

4
C

1
p
2

�
u�

rC s

2

�
C
rC s

2
p
2

1A
D
p
2

0@ inf
u2R

0@s�u� rC s
2

�2
C
.r � s /2

4
C

1
p
2

�
u�

rC s

2

�1AC rC s
2
p
2

1A
D
p
2 inf
t2R

0@s t2C
.r � s/2

4
C

1
p
2
t

1AC rC s
2

D
p
2

s
.r � s/2

4

�
1�

1

2

�
C
rC s

2
D
jr � s j

2
C
rC s

2
Dmaxfr ; s g
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for all r; s 2 R.
Hence, it is clear that, for any r; s 2 R, we have

.r ; s / 2W ” q
�
�.r; s/

�
D�q.r; s/ ” q.�r; �s/D�q.r; s/

” maxf�r; �sg D �maxfr; sg ” �maxf�r; �sg Dmaxfr; sg

” minfr; sg Dmaxfr; sg ” r D s ” .r; s/ 2 V:

Therefore, in the present particular case, W D V holds.

Remark 4. Note that now we have

.r; s/D
s� r

2
.�1; 1/C

rC s

2
.1; 1/

for all r; s 2 R.
Therefore, if f is a Hahn-Banach extension of ' to X , then

f .r; s/D
s� r

2
f .�1; 1/C

rC s

2
f .1;1/

D
s� r

2
f .�1; 1/C

rC s

2
'.1; 1/D

s� r

2
f .�1; 1/C

rC s

2

D
1�f .�1; 1/

2
rC

1Cf .�1; 1/

2
s

for all r; s 2 R. Moreover, by Theorem 1.7 of [2] , we have

�1D�q.1;�1/� f .�1; 1/� q .�1; 1/D 1:

Hence, by taking

�D
1�f .�1; 1/

2
;

we can see that � 2 Œ0; 1 � is such that

f .r; s/D �rC .1��/s

for all r; s 2 R. Thus, we can obtain all Hahn-Banach extensions f of ' to X .

5. THE SECOND AND THIRD ILLUSTRATING EXAMPLES

Example 2. Let X , V and ' be as in Example 4.1. Moreover, define

p.r; s/D

s
r 2C s2

2

for all r;s 2 R. Then, it is clear that p is a norm on X such that

j'.r; r/j D jr j D

s
r 2C r2

2
D p .r; r/

for all r 2 R. Thus, in particular, ' is dominated by p on V .
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Moreover, quite similarly as in Example 4.1, we can see that

q.r; s/D inf
u2R

�
p.r �u; s�u/C'.u; u/

�
D

D inf
u2R

0@s .r �u/2C .s�u/2

2
Cu

1A
D inf
u2R

0@s�
u�

rC s

2

�2
C
.r � s /2

4
C

�
u�

rC s

2

�1AC rC s

2

D inf
t2R

0@s t 2C
.r � s /2

4
C t

1AC rC s

2

D

s
.r � s /2

4
.1�1/ C

rC s

2
D
rC s

2

for all r; s 2 R.
Hence, it is clear that

q
�
�.r; s/

�
D q.�r; �s/D

�r � s

2
D�

rC s

2
D�q.r; s/

for all r; s 2R, and thus q is an odd function ofX . Therefore, in the present particular
case, W DX holds.

Remark 5. Now, by Theorem 1.1, we can state that q is the unique Hahn-Banach
extension of ' to X .

Example 3. Take

X D R3 and V D R .1; 1; 0/:

Moreover, define

'.r; r; 0/D r and p.r; s; t/D

s
r 2C s2

2
C j t j

for all r; s; t 2 R. Then, it is clear that V is a subspace of X , ' is a linear function
of V , and p is a norm on X such that

j'.r; r; 0/ j D jr j D

s
r 2C r2

2
C j0 j D p.r; r; 0/

for all r 2 R. Thus, in particular, ' is dominated by p on V .
Moreover, by making use of the computation given in Example 5.1, we can see

that
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q.r; s; t/D inf
u2R

�
p
�
.r; s; t/� .u; u; 0/

�
C'.u; u; 0/

�
D inf
u2R

�
p.r �u; s�u; t/C'.u; u; 0/

�
D inf
u2R

0@s .r �u/2C .s�u/2

2
C j t jC u

1A
D inf
u2R

0@s .r �u/2C .s�u/2

2
C u

1AC j t j D rC s

2
C j t j

for all r; s; t 2 R.
Hence, it is clear that, for any r; s; t 2 R, we have

.r; s; t/ 2W ” q
�
�.r; s; t/

�
D�q.r; s; t/

” q
�
�r; �s; �t

�
D�q.r; s; t/

”
�r � s

2
C j � t j D �

�
rC s

2
C j t j

�
” j� t j D �j t j ” 2 j t j D 0 ” j t j D 0 ” t D 0:

Therefore, in the present particular case, W D R � R � f0g, and thus
V ¤W ¤X holds.

Remark 6. Note that now we have

.r; s; t/D t .0; 0; 1/C .r; s; 0/

for all r; s; t 2 R.
Therefore, if f is a Hahn-Banach extension of ' to X , then by Theorem 1.1 we

have

f .r; s; t/D t f .0; 0; 1/Cf .r; s; 0/D t f .0; 0; 1/Cq.r; s; 0/

D t f .0; 0; 1/C
rC s

2
D
1

2
rC

1

2
sCf .0; 0; 1/ t

for all r; s; t 2 R. Moreover, by Theorem 1.7 of [2], we have

�1D�q.0; 0;�1/� f .0; 0; 1/� q.0; 0; 1/D 1:

Hence, by taking
�D f .0; 0; 1/;

we can see that � 2 Œ0; 1 � such that

f .r; s; t/D
1

2
rC

1

2
sC�t

for all r; s; t 2 R. Thus, we can obtain all Hahn-Banach extensions f of ' to X .
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