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Abstract. We obtain some results concerning the investigation of the solutions of three-point
Cauchy–Nicoletti type boundary value problems for a certain class of linear functional differ-
ential equations. We show that it is useful to reduce the given problem to the parametrized
two-point boundary value problem for a suitably perturbed system containing some artificially
introduced parameters both in the constructed inhomogeneous two-point boundary conditions
and in the modified functional differential equations.

To study the transformed parametrized two-point problem, we use a method which is based
upon special type of successive approximations constructed in an analytic form. We prove the
uniform convergence of these approximations to the parametrized limit function. Our technique
leads to a certain system of algebraic equations with respect to the introduced parameters whose
solutions provide those numerical values of the parameters that correspond to the solutions of the
given three-point boundary value problem.
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1. INTRODUCTION

In studies of solutions of various boundary value problems for ordinary and func-
tional differential equations, it is often useful to possess appropriate techniques based
upon some types of successive approximations constructed in an analytic form. To
this class of methods belongs, in particular, the approach suggested originally in [22–
24] for the investigation of the periodic boundary value problems for non-autonomous
systems of ordinary differential equations of the form

x0.t/D f .t;x.t// ; t 2 Œ0;T �;

x .0/D x.T /:
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Appropriate versions of the method have been obtained by various authors and can
be applied in many situations for handling boundary value problems for non-linear
systems of first or second order ordinary differential equations, integro-differential
equations, equations with retarded argument and more general functional differen-
tial equations, as well as boundary value problems containing parameters. The given
equation can be considered together with various types of boundary conditions such
as the two-point conditions (both linear and non-linear), the Cauchy–Nicoletti condi-
tions of the form

xi .ti /D di ; i D 1;2; : : : ;n;

where 0� t1 � t2 � � � � � tn D T , the boundary conditions of the interpolation type

xj .ti /D di ; i D 1;2; : : : ;n;

with j 2 f1;2; : : : ;ng and 0 � t1 < t2 < � � � < tn D T , as well as with other kinds of
multipoint conditions or more general functional boundary conditions.

It is clear that both the form and complexity of the given equations and boundary
conditions have essential influence both on the possibility of efficient construction
of approximate solutions and the solvability analysis of the given boundary value
problem. We refer, e. g., to the books [14, 25, 26], the papers [6, 7, 9–12], and the
survey [15–21] for some related references.

According to the basic idea of the method under consideration, the given boundary
value problem is replaced by some “perturbed” boundary value problem containing
an unknown vector-parameter ´ 2 Rn, whose value is to be determined later and
which usually has the meaning of an initial value of the solution at a certain point.
The solution of the modified problem is sought for in an analytic form by a suitable
iteration process. The presence of a “perturbation term,” which, of course, depends
on the original equations and the boundary conditions, yields a system of algebraic
or transcendental “determining equations,” whose solutions give the numerical val-
ues of the parameter ´ 2 Rn that correspond to the solutions of the given boundary
value problem. By studying the solvability of these determining equations, one can
establish existence results for the original problem.

Some modifications of the numerical-analytic approach based upon successive ap-
proximations were obtained, in particular, in [1,3–5] for the two-point boundary value
problem for the system of non-linear neutral type functional differential equations

x0.t/D f
�
t;x .˛.t// ;x0 .ˇ.t//

�
;

Ax .0/CBx.T /D d;

where ˛;ˇ W Œ0;T �! Œ0;T � are given continuous functions, A and B are .n� n/-
matrices, detB ¤ 0, d 2 Rn, and the right-hand side function f defined on Œ0;T ��
Rn�Rn is continuous and satisfies the Lipschitz condition

jf .t;u1;v1/�f .t;u2;v2/j �K ju1�u2jCL jv1�v2j
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with some non-negative constant matrices K and L. In [8], we refined certain estim-
ates related to the convergence analysis of successive approximations in the case of
two-point linear boundary value problems for functional differential equations where
the argument deviations possess certain special properties.

In this paper, our aim is to extend the techniques used in [8] to investigate solu-
tions of a system of linear functional differential equation with the Cauchy–Nicoletti
three-point boundary conditions. The difficulties related to this type of boundary con-
ditions are due to the singularity of the matrices that determine them. To avoid deal-
ing with singular matrices in the boundary conditions and simplify the construction
of the solution in an analytic form, we use some parametrization technique on two
levels. The first level allows one to replace the three-point boundary conditions by
a family of parametrized two-point inhomogeneous conditions. The second level of
parametrization is used for the construction and investigation of the above-mentioned
perturbed system. Finally, the study of certain algebraic or transcendental determin-
ing equations gives one a possibility to obtain the numerical values of the parameters
which correspond to the solutions of the given three-point boundary value problem.

2. NOTATION

The following notation is used in the sequel:
C.Œ0;T � ;Rn/ is the Banach space of the continuous functions Œ0;T �! Rn with

the standard uniform norm;
L1.Œ0;T � ;Rn/ is the usual Banach space of the vector functions Œ0;T �! Rn with

Lebesgue integrable components;
ˇ.Rn/ is the algebra of all the square matrices of dimension n with real elements;
r.Q/ is the maximal in module eigenvalue of the matrix Q 2ˇ.Rn/I
1m is the unit matrix of dimension m� n;
0m;k is the zero matrix of dimension m�k;
0m D 0m;m.

3. PROBLEM SETTING

We consider the system of n linear functional differential equations of the form

x0.t/D P0.t/x.t/CP1.t/x.ˇ.t//Cf .t/; t 2 Œ0;T � ; (3.1)

subjected to the inhomogeneous three-point Cauchy–Nicoletti boundary conditions

x1.0/D x10; : : : ; xp.0/D xp0;

xpC1.�/D dpC1; : : : ; xpCq.�/D dpCq;

xpCqC1.T /D dpCqC1; : : : ; xn.T /D dn:

(3.2)

For the sake of simplicity, we restrict ourselves to the case where only one argu-
ment deviation is present. Here, we suppose that T 2 .0;C1/, the elements of the
matrix-valued functions Pj W Œ0;T �!ˇ.Rn/; j D 0;1 are Lebesgue integrable, f 2
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L1.Œ0;T � ;Rn/, and ˇ W Œ0;T �! Œ0;T � is a Lebesgue measurable function, x10 2 R,
: : : , xp0 2 R, di 2 R, i D pC1;pC2; : : : ;n:

Thus, in (3.2), one has p conditions prescribed at the point 0, q conditions at a
point �; 0 < � < T; and n� .pC q/ conditions at the point T: Using the diagonal
matrices A, B , and C of the form

A WD

0@ 1p 0p;q 0n�.pCq/;p
0q;p 0q 0n�.pCq/;q

0n�.pCq/;p 0n�.pCq/;q 0n�.pCq/

1A ; (3.3)

B WD

0@ 0p 0p;q 0n�.pCq/;p
0q;p 1q 0n�.pCq/;q

0n�.pCq/;p 0n�.pCq/;q 0n�.pCq/

1A ; (3.4)

C WD

0@ 0p 0p;q 0n�.pCq/;p
0q;p 0q 0n�.pCq/;q

0n�.pCq/;p 0n�.pCq/;q 1n�.pCq/

1A ; (3.5)

one can rewrite the boundary conditions (3.2) in the usual matrix-vector form

Ax.0/CBx.�/CCx.T /D Nd; (3.6)

where
Nd D col.x10;x20; : : : ;xp0;dpC1;dpC2; : : : ;dpCq;dpCqC1; : : : ;dn/: (3.7)

It is obvious that each of the matrices (3.3), (3.4), and (3.5) appearing in condi-
tion (3.6) is singular, which causes some difficulties for the construction of suitable
successive approximations.

4. PARAMETRIZATION OF THE THREE-POINT BOUNDARY CONDITIONS

Besides the three-point boundary condition (3.6), we introduce into consideration
the auxiliary two-point condition

Ax.0/CCx.T /D NNd; (4.1)

where NNd D col.x10;x20; : : : ;xp0;0;0; : : : ;0;dpCqC1; : : : ;dn/:Compared to (3.6), con-
dition (4.1) may be regarded as a result of “freezeing” of the value of the function at
the point � .

To avoid dealing with the singular matrix C in (4.1), we carry out the following
parametrization:

x1.T /D �1; x2.T /D �2; : : : ; xp.T /D �p;

xpC1.T /D �pC1; xpC2.T /D �pC2; : : : ; xpCq.T /D �pCq
(4.2)

and, instead of (4.1), we use the two-point boundary conditions

Ax.0/Cx.T /D d.�/; (4.3)
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where �D col.�1; : : : ;�p;�pC1; : : : ;�pCq/ 2 RpCq and

d.�/ WD col.x10C�1;x20C�2; : : : ;xp0C�p;�pC1;�pC2; : : : ;

�pCq;dpCqC1; : : : ;dn/: (4.4)

Instead of the three-point boundary value problem (3.1), (3.6), we first consider
the two-point boundary value problem (3.1), (4.3).

5. SUBSIDIARY STATEMENTS

In the sequel, we need several auxuliary statements, many of which are related
to properties of the sequence of functions f˛mg1mD0 � C.Œ0;T � ;R/ defined by the
recurrence relation

˛mC1.t/D

�
1�

t

T

�Z t

0

˛m .s/dsC
t

T

Z T

t

˛m .s/ds; mD 0;1;2; : : : ; (5.1)

where ˛0.t/ WD 1, t 2 Œ0;T � : In particular, we have

˛1.t/D 2t

�
1�

t

T

�
; t 2 Œ0;T � : (5.2)

Lemma 1. Let the sequence of functions f˛mg1mD0 � C.Œ0;T � ;R/ be given by
formula (5.1). Then:

(1) The function ˛m is symmetric with respect to the point T
2

for all m� 0, i. e.,

˛m.t/D ˛m .T � t / ; t 2 Œ0;T � ; (5.3)

˛m

�
T

2
� t

�
D ˛m

�
T

2
C t

�
; t 2 Œ0;T=2� : (5.4)

(2) Sequence (5.1) can be represented alternatively as

˛mC1.t/D

Z t

0

˛m .s/dsC
t

T

Z T�t

t

˛m .s/ds

D
t

T

Z T�t

t

˛m .s/dsC

�
1�

t

T

�Z t

T�t

˛m .s/ds

D

Z T�t

0

˛m .s/dsC

�
1�

t

T

�Z t

T�t

˛m .s/ds; t 2 Œ0;T �:

(5.5)

(3) For any m� 1, ˛m .0/D ˛m .T /D 0 and ˛m.t/ > 0 for all t 2 .0;T /.
(4) The maximal value of every ˛m.t/, m � 0, is achieved at the point T=2,

namely,

max
t2Œ0;T �

˛m.t/D ˛m

�
T

2

�
: (5.6)



178 A. RONTÓ AND M. RONTÓ

(5) For every m� 1,

˛0m.t/ � sign
�
t �

T

2

�
� 0; t 2 Œ0;T � ; (5.7)

that is, the function ˛m is increasing on .0;T=2/ and decreasing on .T=2;T / :

Proof. For the proof, see [6, Lemma 1] and [8, Lemma 1]. �

Lemma 2. For an arbitrary essentially bounded function u W Œ0;T �! R; the es-
timateˇ̌̌̌

ˇ
Z t

0

 
u.�/�

1

T

Z T

0

u.s/ds

!
d�

ˇ̌̌̌
ˇ� ˛1.t/2

 
ess sup
s2Œ0;T �

u.s/� ess inf
s2Œ0;T �

u.s/

!
(5.8)

is true for a. e. t 2 Œ0;T �, where ˛1 is the function defined by equality (5.2).

Proof. Inequality (5.8) is established similarly to [13, Lemma 3] (see also [14,
Lemma 2.3]). �

Lemma 3. The sequence of functions ˛m, m � 1, given by relation (5.1) satisfies
the inequalities

˛mC1.t/�
3T

10
˛m.t/; m� 2I

˛mC1.t/�
10

9

�
3T

10

�m
˛1.t/; m� 0:

(5.9)

Proof. Inequalities (5.9) are established by analogy to [13, Lemma 4] (see also
[14, Lemma 2.4]). �

Lemma 4 ([8, Lemma 3]). Let ˇ W Œ0;T �! Œ0;T � be a measurable function satis-
fying the condition

ess inf
t2Œ0;T �

.ˇ.t/� t /sign
�
t �

T

2

�
� 0: (5.10)

Then the members of the function sequence (5.1) satisfy the pointwise estimates

˛m .ˇ.t//� ˛m.t/; t 2 Œ0;T � ; mD 1;2; : : : : (5.11)

Remark 1. If ˇ W Œ0;T � ! Œ0;T � is a continuous function satisfying condition
(5.10) then necessarily ˇ .0/D 0, ˇ .T=2/D T=2, and ˇ.T /D T:

Lemma 5 ([8, Lemma 4]). If a measurable function ˇ W Œ0;T �! Œ0;T � satisfies
the condition

kˇ WD ess sup
t2Œ0;T �

ˇ.t/.T �ˇ.t//

t .T � t /
<C1; (5.12)

then
˛1.ˇ.t//� kˇ˛1.t/; t 2 Œ0;T � : (5.13)
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For example, the function ˇ.t/ D t2, t 2 Œ0;1�, satisfies condition (5.12) on the
interval Œ0;1�, whereas the functions ˇ.t/D 1

2
t2, ˇ.t/D 1

2
t , ˇ.t/D sin t , t 2 Œ0;1�,

do not satisfy it.

6. CONVERGENCE OF SUCCESSIVE APPROXIMATIONS FOR THE CASE OF A
GENERAL TYPE OF ARGUMENT DEVIATION

To study the solution of the auxiliary two-point boundary value problem (3.1),
(4.3) let us introduce the sequence of functions

xmC1.t;´;�/ WD ´C

Z t

0

.P0 .s/xm .s;´;�/CP1 .s/xm .ˇ .s/ ;´;�/Cf .s//ds

�
t

T

Z T

0

.P0 .s/xm .s;´;�/CP1 .s/xm .ˇ .s/ ;´;�/Cf .s//ds

C
t

T
.d .�/� .AC1n/´/ ; (6.1)

where m� 0, x0 .t;´/D ´, t 2 Œ0;T �,

´D col.x10;x20; : : : ;xp0; ṕC1; : : : ;´n/ 2 Rn; (6.2)

�D col.�1; : : : ;�p;�pC1; : : : ;�pCq/2RpCq is a vector parameter, and d .�/ is given
by (4.4).

Remark 2. We emphasize that the first p components of the vector ´ are fixed and
coincide with the initial values appearing in the boundary conditions (3.2), while the
other its components ´k , p < k � n, are considered as free parameters. Thus, the
expression “for all ´,” which is often used in what follows, actually means “for all
ṕC1, : : : , ´n.” We hope that no confusion will arise.

Let us establish the convergence of the sequence (6.1) for arbitrary deviation func-
tion ˇ W Œ0;T �! Œ0;T � :

Theorem 1. Let the elements of matrix-valued functions Pi W Œ0;T �! ˇ.Rn/,
i D 0;1, be Lebesgue integrable, f 2 L1 .Œ0;T � ;Rn/ and ˇ W Œ0;T �! Œ0;T � be a
Lebesgue measurable function. Moreover, assume that

r .K0CK1/ <
2

T
; (6.3)

where
Ki WD ess sup

s2Œ0;T �

jPi .s/j ; i D 0;1: (6.4)

Then:
(1) All the members of sequence (6.1) are absolutely continuous functions satis-

fying the two-point boundary conditions

Axm.0;´;�/Cxm.T;´;�/D d.�/; mD 1;2; : : : ; (6.5)

for all � 2 RpCq and ´ of form (6.2).
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(2) The sequence of functions (6.1) converges to a limit function x� .�;´;�/,

x�.t;´;�/D lim
m!1

xm.t;´;�/ (6.6)

uniformly in t 2 Œ0;T � for all fixed ´ of form (6.2) and � 2 RpCq .
(3) The limit function (6.6) satisfies the initial condition

x� .0;´;�/D ´ (6.7)

and the boundary condition (4.3)

Ax�.0;´;�/Cx�.T;´;�/D d.�/ (6.8)

for all ´ of form (6.2) and � 2 RpCq .
(4) For all fixed ´ of form (6.2) and � 2RpCq , the limit function (6.6) is a unique

absolutely continuous solution of the integro-functional equation

x.t/D ´C

Z t

0

ŒP0 .s/x .s/CP1 .s/x .ˇ .s//Cf .s/�ds

�
t

T

Z T

0

ŒP0 .s/x .s/CP1 .s/x .ˇ .s//Cf .s/�ds

C
t

T
Œd .�/� .AC1n/´� ; t 2 Œ0;T � :

(6.9)

(5) The following estimate holds for all fixed ´ of form (6.2) and � 2 RpCq:ˇ̌
x�.t;´;�/�xm .t;´;�/

ˇ̌
�

�

�
T

2

�m�1
.K0CK1/

m

�
2

T
1n�K0�K1

��1

 .´;�/ ; (6.10)

where


.´;�/ WD
T

2
ı .´/Cjd .�/� .AC1n/´j (6.11)

and

ı .´/ WD
1

2

�
ess sup
s2Œ0;T �

.P0 .s/´CP1 .s/´Cf .s//

� ess inf
s2Œ0;T �

.P0 .s/CP1 .s/Cf .s//

�
: (6.12)

In (6.10) and similar relations, below the signs j�j, �, �, ess sup, and ess inf are
understood componentwise.

Proof. The validity of assertion 1 is verified by direct computation. To obtain the
other required properties, let us show that, under the conditions assumed, sequence
(6.1) is a Cauchy sequence in the Banach space C .Œ0;T � ;Rn/ equipped with the
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standard uniform norm. Indeed, due to estimate (5.8) of Lemma 2, it follows from
(6.1) that, for mD 0 and arbitrary fixed ṕC1, : : : , ´n and � 2 RpCq ,

jx1.t;´;�/�´j D

ˇ̌̌̌Z t

0

�
.P0 .s/´CP1 .s/´Cf .s//

�
1

T

Z T

0

.P0 .�/´CP1 .�/´Cf .�//d�

�
ds

C
t

T
Œd .�/� .AC1n/´�

ˇ̌̌̌
� ˛1.t/ı .´/C Qı.´;�/;

(6.13)

where the vector ´ has form (6.2), Qı is defined by the formula
Qı.´;�/ WD jd .�/� .AC1n/´j ; (6.14)

and ˛1 is the function given by (5.2):
Let us put

rmC1.t;´;�/ WD xmC1.t;´;�/�xm.t;´;�/: (6.15)
Then, by virtue of formulae (6.1), for all t 2 Œ0;T �, n� 1, � 2 RpCq , and ´, we have

rmC1.t;´;�/D

Z t

0

ŒP0 .s/rm .s;´;�/CP1 .s/rm .ˇ .s/ ;´;�/�ds

�
t

T

Z T

0

ŒP0 .s/rm .s;´;�/CP1 .s/rm .ˇ .s/ ;´;�/�ds

D

�
1�

t

T

�Z t

0

ŒP0 .s/rm .s;´;�/CP1 .s/rm .ˇ .s/ ;´;�/�ds

�
t

T

Z T

t

ŒP0 .s/rm .s;´;�/CP1 .s/rm .ˇ .s/ ;´;�/�ds: (6.16)

Equalities (6.16) imply that, for all t 2 Œ0;T � ; mD 1;2; ::, �, and ´,

jrmC1.t;´;�/j �K0

 �
1�

t

T

�Z t

0

jrm .s;´;�/jdsC
t

T

Z T

t

jrm .s;´;�/jds

!

CK1

 �
1�

t

T

�Z t

0

jrm .ˇ .s/ ;´;�/jdsC
t

T

Z T

t

rm .ˇ .s/ ;´;�/ds

!
; (6.17)

where K0 and K1 are the non-negative matrices given by formula (6.4). Relation
(6.13) yields

jr1.t;´;�/j � ˛1.t/ı .´/C Qı.´;�/; t 2 Œ0;T � ; (6.18)

where ı and Qı are given by (6.12) and (6.14). In view of property (5.6) of Lemma 1,
estimate (6.18) gives

jr1.t;´;�/j �
T

2
ı .´/C Qı.´;�/D 
 .´;�/ ; t 2 Œ0;T � : (6.19)
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Let us now estimate jr2.t;´;�/j using (6.17) and (6.19). We obtain

jr2.t;´;�/j �K0

 �
1�

t

T

�Z t

0

jr1 .s;´;�/jdsC
t

T

Z T

t

jr1 .s;´;�/jds

!

CK1

 �
1�

t

T

�Z t

0

jr1 .ˇ .s/ ;´;�/jdsC
t

T

Z T

t

jr1 .ˇ .s/ ;´;�/jds

!

�K0

 �
1�

t

T

�Z t

0


.´;�/dsC
t

T

Z T

t


.´;�/ds

!

CK1

 �
1�

t

T

�Z t

0


.´;�/dsC
t

T

Z T

t


.´;�/ds

!
(6.20)

for all t 2 Œ0;T �. Taking relations (5.1), (5.2) into account and using property (5.6),
from (6.20) we get

max
t2Œ0;T �

jr2.t;´;�/j � .K0CK1/
.´;�/ max
t2Œ0;T �

˛1.t/D
T

2
.K0CK1/
 .´;�/ :

Arguing by induction, we then obtain that, for all t 2 Œ0;T � and mD 1;2; : : : ;

jrm.t;´;�/j �

�
T

2

�m�1
.K0CK1/

m�1 
 .´;�/DGm�1
.´;�/; (6.21)

where

G WD
T

2
.K0CK1/ : (6.22)

Due to equality (6.15), estimate (6.21), assumption (6.3), and notation (6.22) give

ˇ̌
xmCj .t;´;�/�xm .t;´;�/

ˇ̌
�

jX
iD1

jrmCi .t;´;�/j �G
m

j�1X
iD0

Gi
.´;�/

�Gm
1X
iD0

Gi
.´;�/

DGm .1n�G/
�1 
.´;�/ (6.23)

for all t 2 Œ0;T � ;mD 1;2; : : : .
Since, due to (6.3), limm!1GmD 0n, it is clear from (6.23) that (6.1) is a Cauchy

sequence in the Banach space C.Œ0;T � ;Rn/ and, consequently, it converges uni-
formly in t 2 Œ0;T � for all fixed ´ of form (6.2) and � 2 RpC1, i. e., assertion 2
holds. Assertions 2–5 are obtained by passing to the limit.

Passing to the limit as m!1 in (6.1) and (6.5), we show that function (6.6) is a
solution of equation (6.9) and possesses property (6.8). Passing to the limit as j !1
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in (6.23), we obtain the estimate

jx�.t;´;�/�xm .t;´;�/ j �G
m .1n�G/

�1 
 .´;�/

for all t 2 Œ0;T �, mD 1;2; : : : , � 2 RpCq , and ´ of form (6.2), i. e., assertion 5 holds.
This completes the proof of Theorem 1. �

Remark 3. A similar scheme can be obtained if the recurrence formula (6.1) is
replaced (cf. [9]) by the relation

xmC1.t;´;�/ WD ´C

Z t

0

ŒP0 .s/xm .s;´;�/CP1 .s/xm .ˇ .s/ ;´;�/Cf .s/�ds

�
!.t/

T

Z T

0

ŒP0 .s/xm .s;´;�/CP1 .s/xm .ˇ .s/ ;´;�/Cf .s/�ds

C
!.t/

T
Œd .�/� .AC1n/´� ;

where ! W Œ0;T � ! Œ0;T � is an arbitrary continuous function with the properties
! .0/D 0 and !.T /D T:

Proposition 1. If, under assumptions of Theorem 1, the function x�.�;´;�/ satis-
fies the condition

d .�/� .AC1n/´D

Z T

0

�
P0 .s/x

�.s;´;�/CP1 .s/x
�.ˇ .s/ ;´;�/

�
ds

C

Z T

0

f .s/ds (6.24)

for certain values of ´ and �, then, for these ´ and �, it is also a solution of the
boundary value problem (3.1), (4.3).

The proof of the last statement is a straightforward application of the above the-
orem.

7. PROPERTIES OF THE LIMIT FUNCTION

Let us first establish a relation between the limit function of sequence (6.1) and the
solution of the auxiliary two-point parametrized boundary value problem (3.1), (4.3).
Along with system (3.1), we also consider the system with the additive perturbation
of the right-hand side

x0.t/D P0.t/x.t/CP1.t/x .ˇ.t//Cf .t/C�; t 2 Œ0;T �; (7.1)

with the initial condition
x.0/D ´; (7.2)

where �D col.�1; : : : ;�n/ is a control parameter. We shall see that, for any ´, the
vector-parameter � can always be chosen so that the solution x .�;´;�/ of the initial
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value problem (7.1), (7.2) is, at the same time, a solution of the two-point boundary
value problem (7.1), (4.3).

Proposition 2. Assume that the system of differential equations (3.1) satisfies the
conditions of Theorem 1. Then, for arbitrary ´ of form (6.2) and any �,

�D
1

T
Œd .�/� .AC1n/´�

�
1

T

Z T

0

�
P0 .s/x

� .s;´;�/CP1 .s/x
�.ˇ.s/;´;�/Cf .s/

�
ds (7.3)

is the unique value of the vector parameter � for which the solution x .�;´;�/ of
the initial value problem (7.1), (7.2) with � given by (7.3) is also a solution of the
boundary value problem (7.1), (4.3). Moreover, with this values of �

x .t;´;�/D x�.t;´;�/D lim
m!1

xm.t;´;�/; (7.4)

where fxm.�;´;�/g1mD1 is the sequence of functions defined according to (6.1).

Proof. The assertion of Proposition 2 is obtained by analogy to the proof of [11,
Theorem 4.2] �

Definition 1. For any k D 1;2; : : : ;n, let us define the n-dimensional row vector
ek by putting

ek WD .0;0; : : : ;0;0š
k�1

;1;0; : : : ;0/: (7.5)

Let us consider the function � W Rn�p �RpCq! Rn given by the formula

�.´;�/ WD
1

T
Œd .�/� .AC1n/´��

�
1

T

Z T

0

�
P0 .s/x

� .s;´;�/CP1 .s/x
� .ˇ .s/ ;´;�/Cf .s/

�
ds (7.6)

for ´ of form (6.2) with arbitrary ṕC1, : : : , ´n and � 2 RpCq . Formula (7.6) makes
sense provided that the limit function x� .�;´;�/ of sequence (6.1) exists.

Proposition 3. Assume the conditions of Theorem 1. Then the function x�.�;´;�/
is a solution of the three-point Cauchy–Nicoletti boundary value problem (3.1), (3.6)
if and only if the pair .´;�/ satisfies the system of nCq algebraic equations�

�.´;�/D 0; (7.7)

epC1x
�.�;´;�/D dpC1; : : : ; epCqx

� .�;´;�/D dpCq: (7.8)

�Recall that the first p components of ´ are known, see Remark 2.
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Proof. It is sufficient to apply Proposition 2 and notice that the differential equa-
tion obtained by the differentition of equation (6.9) coincides with (3.1) if and only
if the pair .´;�/ satisfies (7.7). On the other hand, equations (7.8) bring us from the
auxiliary boundary conditions (4.1) back to the three-point Cauchy–Nicoletti condi-
tions (3.6). �

Proposition 4. Let us define the matrix R by putting

R WD sup
t2Œ0;T �

j1n� tT
�1.1nCA/j: (7.9)

Under the conditions of Theorem 1, the estimate

jx�.t;´0;�/�x�.t;´1;�/j �
2

T

�
2

T
1n�K0�K1

��1
R j´0�´1j; (7.10)

where

´j D col.x10;x20; : : : ;xp0;´
j
pC1;´

j
pC2; : : : ;´

j
n/; j D 0;1; (7.11)

holds for arbitrary ´j
k

, k D pC1;pC2; : : : ;n, j D 0;1, t 2 Œ0;T �, and � 2 RpCq .

Proof. Consider the sequence of vectors cm, m � 1, defined by the recurrence
formula

cm WDRj´
0
�´1jC

T

2
.K0CK1/cm�1; m� 1;

with c0 WD j´0�´1j and the matrix R of form (7.9). Let us show that the functions

um.t/ WD xm.t;´
0;�/�xm.t;´

1;�/; t 2 Œ0;T �; m� 1; (7.12)

satisfy the estimate

jum.t/j � cm; t 2 Œ0;T �; m� 1: (7.13)

Indeed, for mD 0 relation (7.13) is satisfied in the form of an equality. Assume that
(7.13) is satisfied for a given m� 1. It follows immediately from (6.1) that

umC1.t/D ´
0
�´1�

t

T
.1nCA/.´

0
�´1/

C

Z t

0

.P0 .s/um.s/CP1 .s/um.ˇ.s///ds

�
t

T

Z T

0

.P0 .s/um.s/CP1 .s/um.ˇ.s///ds

D ´0�´1�
t

T
.1nCA/.´

0
�´1/

C

�
1�

t

T

�Z t

0

.P0 .s/um.s/CP1 .s/um.ˇ.s///ds
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�
t

T

Z T

t

.P0 .s/um.s/CP1 .s/um.ˇ.s///ds; (7.14)

whence, in view of (7.9),

jumC1.t/j �Rj´
0
�´1j

C

�
1�

t

T

�Z t

0

.jP0 .s/ jjum.s/jC jP1 .s/ jjum.ˇ.s//j/ds

C
t

T

Z T

t

.jP0 .s/ jjum.s/jC jP1 .s/ jjum.ˇ.s//j/ds (7.15)

for all t 2 Œ0;T � and m � 1. Recalling formulae (6.4), (5.1) and using assumption
(7.13) and equality (5.6), we obtain

jumC1.t/j �Rj´
0
�´1jC

�
1�

t

T

�Z t

0

.K0jum.s/jCK1jum.ˇ.s//j/ds

C
t

T

Z T

t

.K0jum.s/jCK1jum.ˇ.s//j/ds

�Rj´0�´1jC

 �
1�

t

T

�Z t

0

dtC

Z T

t

dt

!
.K0CK1/cm

�Rj´0�´1jC˛1

�
T

2

�
.K0CK1/cm

DRj´0�´1jC
T

2
.K0CK1/cm D cmC1; (7.16)

that is, estimate (7.13) holds at the stepmC1, and, hence, it is satisfied on every step
of iteration. Considering now inequality (7.13) and iterating backwards, we obtain

jum.t/j �Rj´
0
�´1jC

T

2
.K0CK1/cm�1

DRj´0�´1jC
T

2
.K0CK1/

�
Rj´0�´1jC

T

2
.K0CK1/cm�2

�
D

�
1nC

T

2
.K0CK1/

�
Rj´0�´1jC

�
T

2

�2
.K0CK1/

2 cm�2

and so on, which leads us the inequality

jum.t/j �

m�1X
iD0

�
T

2

�i
.K0CK1/

i Rj´0�´1jC

�
T

2

�m
.K0CK1/

m
j´0�´1j
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valid for all m D 1;2; : : : and t 2 Œ0;T �. Passing to the limit as m!1, using as-
sumption (6.3), and recalling notation (7.12), we obtain the inequality

jx�.t;´0;�/�x�.t;´1;�/j �

1X
iD0

�
T

2

�i
.K0CK1/

i Rj´0�´1j; t 2 Œ0;T �;

whence the required estimate (7.10) follows. �

Let us put
�� WD .K0CK1/.�1n�K0�K1/

�1 (7.17)
for all those � for which the inverse matrix exists.

Proposition 5. Under the conditions of Theorem 1, formula (7.6) determines a
well-defined function � W Rn�p �RpCq! Rn, which satisfies the estimateˇ̌

�.´0;�/��.´1;�/
ˇ̌
�

�
1

T
jAC1njC

2

T
� 2
T
R

�
j´0�´1j; (7.18)

where the matrices �2T�1 and R are given by (7.17) and (7.9).

For the proof of the last statement, it is sufficient to recall formula (7.6) and use
Proposition 3.

8. AN EXISTENCE THEOREM FOR THE CAUCHY–NICOLETTI PROBLEM

Theorem 1 and Proposition 3 give the following numerical-analytic algorithm for
the construction of a solution of the three-point Cauchy–Nicoletti boundary value
problem (3.1), (3.6).

(1) For any vector ´ of form (6.2), according to (6.1), we analytically con-
struct the sequence of functions xm.�;´;�/; depending on the parameters
. ṕC1; : : : ;´n/2Rn�p and �D col.�1; : : : ;�p;�pC1; : : : ;�pCq/2RpCq and
satisfying the auxiliary two-point boundary conditions (4.3).

(2) We find the limit x�.�;´;�/ of the sequence xm.�;´;�/ satisfying to (4.3).
(3) We construct the algebraic determining system of the form (7.7), (7.8) with

respect to the nC q scalar parameters � D col.�1; : : : ;�p;�pC1; : : : ;�pCq/
and . ṕC1; : : : ;´n/ 2 Rn�p.

(4) Using a suitable method for the numerical solution of system (7.7), (7.8), we
(approximately) find the solution

col.´�pC1; : : : ;´
�
n/ 2 Rn�p;

�� D col.��1; : : : ;�
�
p;�
�
pC1; : : : ;�

�
pCq/ 2 RpCq

(8.1)

of the determining system (7.7), (7.8).
(5) Substituting values (8.1) into x�.�;´;�/;we get the solution of the three-point

Cauchy–Nicoletti boundary value problem (3.1), (3.6) in the form

x D x�.�;´�;��/; (8.2)
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where ´� D col.x10;x20; : : : ;xp0;´�pC1; : : : ;´
�
n/: The solution (8.2) can also

be obtained by solving the Cauchy problem

x .0/D ´� (8.3)

for equation (3.1).
A fundamental difficulty in the realization of this approach is related to the analytic

construction of the limit function x� .�;´;�/ : However, in a number of cases, this
problem can be avoided because, as can be shown, it is possible to prove the existence
of a solution of the three-point Cauchy–Nicoletti boundary value problem (3.1), (3.6)
based on properties of a certain approximation xm.�;´;�/ known in the analytic form.

Given some m � 1, define the function �m W Rn �RpCq ! Rn according to the
formula

�m.´;�/ WD
1

T
Œd .�/� .AC1n/´�

�
1

T

Z T

0

ŒP0 .s/xm .s;´;�/CP1 .s/xm .ˇ .s/ ;´;�/Cf .s/�ds (8.4)

for ´ of form (6.2) with arbitrary ṕC1, : : : , ´n, and � 2 RpCq . To investigate the
solvability of the three-point Cauchy–Nicoletti boundary value problem (3.1), (3.6),
in addition to determining system (7.7), (7.8), we introduce the mth approximate
determining system

�m.´;�/D 0;

epC1xm.t;´;�/.�/D dpC1; : : : ; epCqxm .t;´;�/.�/D dpCq;
(8.5)

where ei , i D 1;2; : : : ;n, are the vectors given by (7.5) and the vector function
xm.�;´;�/ is defined by formula (6.1). It is natural to expect that, under suitable
conditions, systems (7.7) and (8.5) are “close enough” to one another for m suffi-
ciently large.

Lemma 6. Assume the conditions of Theorem 1. Then, for arbitrary m � 1, � 2
RpCq , and all ´ of form (6.2), the estimate

j�.´;�/��m .´;�/j �

�
T

2

�m�1
.K0CK1/

m� 2
T

.´;�/; (8.6)

holds, where 
 .´;�/ is given by (6.11).

Proof. Indeed, let us fix arbitrary ´ and � and put

 m.t/ WD x
�.t;´;�/�xm .t;´;�/ ; t 2 Œ0;T �; m� 1:

By virtue of estimate (6.10) and notation (7.17), we have

j m.t/j �

�
T

2

�m�1
.K0CK1/

m

�
2

T
1n�K0�K1

��1

.´;�/
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D

�
T

2

�m�1
.K0CK1/

m�1� 2
T

.´;�/ (8.7)

Therefore, according to (7.6) and (8.4),

j�.´;�/��m .´;�/j D
1

T

ˇ̌̌̌
ˇ
Z T

0

ŒP0 .s/ m.s/CP1 .s/ m.ˇ.s//�ds

ˇ̌̌̌
ˇ

�
1

T

Z T

0

.jP0 .s/ jj m.s/jC jP1 .s/ jj m.ˇ.s//j/ds

� .K0CK1/

�
T

2

�m�1
.K0CK1/

m�1� 2
T

.´;�/

D

�
T

2

�m�1
.K0CK1/

m� 2
T

.´;�/;

which leads us to (8.6). �

Let us formulate a statement that gives sufficient conditions for the solvability of
the three-point Cauchy–Nicoletti boundary value problem (3.1), (3.6).

Definition 2. For any indices i1 and i2 between 1 and n, i2 � i1, define the .i2�
i1/�n matrix Ji1; i2 by putting

Ji1; i2 WD
�
0i2�i1C1;i1�1 1i2�i1C1 0i2�i1C1;n�i2

�
; (8.8)

so that the left multiplication of a vector by the matrix Ji1; i2 is equivalent to the
selection of its components with numbers from i1 to i2.

Introduce the mapping ˚m W Rn�p �RpCq! RnCq by setting

˚m.´;�/ WD

�
�m.´;�/

JpC1;pCq xm.�;´;�/�JpC1;pCq Nd

�
(8.9)

for all ´ of form (6.2), � 2 RpCq , andm� 0, where Nd is the vector given by equality
(3.7). Recall that the first p components of the vector ´ are fixed and, thus, the actual
number of variables on which ˚m depends is nCq (see Remark 2).

Definition 3. Let H � RnCq be a an arbitrary non-empty set. For any pair of
functions fj D .fj;i /

nCq
iD1 WH ! RnCq , j D 1;2, we write f1 BH f2 if and only if

there exists a function k WH ! f1;2; : : : ;nCqg such that

f1;k.x/.x/ > f2;k.x/.x/

for all x 2H .

Remark 4. The relation “BH ” has properties similar to those of the usual inequal-
ity. In particular, if f1 � f2 onH pointwise and componentwise and f2 BH f3, then
f1 and f3 satisfy the relation f1 BH f3.
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Let D � Rn�p, �� RpCq , and ˝ �D�� be the closure of a bounded domain.
The following theorem holds.

Theorem 2. Let us suppose that, in addition to the assumptions of Theorem 1, the
set˝ and a numberm 2N can be chosen so that the approximate determining func-
tion �m constructed according to equation (8.5) satisfies the following conditions:

(1) The relation

j˚mjB@˝

�
T

2

�m�1 .K0CK1/
m� 2

T



JpC1;pCq .K0CK1/
m�1� 2

T



!
(8.10)

holds, where 
 is the function defined by formula (6.11).�

(2) The Brouwer degree of ˚m over ˝ with respect to 0 satisfies the inequality

deg.˚m;˝;0/¤ 0: (8.11)

Then the three-point Cauchy–Nicoletti boundary value problem (3.1), (3.6) has a
solution x with .xpC1.0/;xpC2.0/; : : : ;xn.0// belonging to D:

Proof. Let us define the mapping ˚ W Rn�p �RpCq! Rn by setting

˚.´;�/ WD

�
�.´;�/

JpC1;pCq x
�.�;´;�/�JpC1;pCq Nd

�
(8.12)

for all ´ of form (6.2) and � 2 RpCq , where x� is the limit function (6.6) of sequence
(6.1) and Nd is the vector (3.7). It is clear from from Proposition 5 that the mappings
˚ and ˚m are continuous.

Let us prove that the fields˚ and˚m are homotopic. For this purpose, we consider
the linear deformation

Q� .�/ WD ˚m.´;�/C� Œ˚.´;�/�˚m .´;�/� ; .´;�/ 2 @˝; (8.13)

where � 2 Œ0;1� : Obviously, Q� is continuous mapping on @˝ for every � 2 Œ0;1�
and, furthermore,

Q0 .´;�/D ˚m.´;�/; Q1 .´;�/D ˚.´;�/ (8.14)

for all .´;�/ 2 @˝:
For arbitrary .´;�/ 2 @˝ and � 2 Œ0;1�, in view of (8.10), (8.14), and (6.10), we

have

jQ� .´;�/j D j˚m.´;�/C� Œ˚.´;�/�˚m.´;�/�j

� j˚m.´;�/j� j˚.´;�/�˚m.´;�/j : (8.15)

�Recall that �2T�1 is the matrix (7.17), the vector function 
 is defined by (6.11), and the matrices
in (8.10) are constructed according to (8.8).
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On the other hand, recalling equalities (7.6), (8.4), (7.17), (8.9), and using estimates
(6.10) of Theorem 1 and (8.6) of Lemma 6, we otain the componentwise inequalities

j˚.´;�/�˚m.´;�/j �

0B@
�
T
2

�m�1
.K0CK1/

m�1� 2
T

.´;�/�

T
2

�m�1
JpC1;pCq.K0CK1/

m� 2
T

.´;�/

1CA
whence, in view of (8.15), it follows that

jQ� jB@˝ 0; � 2 Œ0;1�:

The last relation implies, in particular, thatQ� does not vanish on @˝ for any value of
� 2 Œ0;1�, i. e., deformation (8.13) is non-degenerate and, thus,˚m is homotopic to˚ .
Using assumption (8.11) and the property of invariance of degree under homotopy,
we conclude that

deg.˚;˝;0/D deg.˚m;˝;0/¤ 0: (8.16)
The classical topological result (see, e. g., [2, Theorem A2.5]) then guarantees the ex-
istence of vectors .´�;��/ 2˝ such that ˚ .´�;��/D 0, which, according to (8.12),
means that

�.´�;��/D 0

and, moreover, q components of the vector x�.�;´�;��/, starting from the .pC1/th,
coincide with the corresponding components of Nd . Thus, the pair .´�;��/ satisfies
the system of equations (7.7), (7.8). Applying now Proposition 3, we find that func-
tion (8.2) is a solution of the three-point Cauchy–Nicoletti boundary value problem
(3.1), (3.6). �

9. CONVERGENCE OF SUCCESSIVE APPROXIMATIONS FOR THE SPECIAL
DEVIATION FUNCTIONS

If the deviation function ˇ W Œ0;T �! Œ0;T � satisfies the condition (5.10), then the
convergence condition (5.11) can be improved.

Theorem 3. Assume that the condition

r .K0CK1/ <
10

3T
: (9.1)

is satisfied and, moreover, the deviation function ˇ W Œ0;T �! Œ0;T � has property
(5.10). Then assertions 1–4 of Theorem 1 hold. Moreover, the estimateˇ̌
x�.t;´;�/�xm .t;´;�/

ˇ̌
�

�
20

9

�
3T

10

�m�2
t

�
1�

t

T

�
.K0CK1/

m�1� 10
3T

.´;�/

holds for anym� 1, � 2RpCq , t 2 Œ0;T �, and all fixed ´ of form (6.2), where 
.´;�/
and � 10

3T
are given by (6.11) and (7.17).
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Proof. By virtue of Lemma 4, it follows from assumption (5.10) that inequalities
(5.11) are true and, in particular,

˛1.ˇ.t//� ˛1.t/; t 2 Œ0;T � : (9.2)

Estimating jr2.t;´;�/j by using (6.13), (5.1), (9.2), and (5.9), we get

jr2.t;´;�/j �K0

 �
1�

t

T

�Z t

0

�
T

2
ı .´/C Qı .´;�/

�
ds

C
t

T

Z T

t

�
T

2
ı .´/C Qı .´;�/

�
ds

�
CK1

��
1�

t

T

�Z t

0

�
T

2
ı .´/C Qı .´;�/

�
ds

C
t

T

Z T

t

�
T

2
ı .´/C Qı .´;�/

�
ds

!
� .K0CK1/
.´;�/˛1.t/; t 2 Œ0;T � ; (9.3)

where Qı.´;�/, ı.´/, and 
.´;�/ are given by (6.14), (6.12), and (6.11), respectively.
Relation (9.3), due to (9.2), yields

jr2 .ˇ.t/;´;�/j � .K0CK1/
.´;�/˛1 .ˇ.t//

� .K0CK1/
.´;�/˛1.t/; t 2 Œ0;T � : (9.4)

Arguing by induction, we find that all the functions (6.15) admit the estimates

jrmC1.t;´;�/j � .K0CK1/
m 
.´;�/˛m.t/; (9.5)

jrmC1 .ˇ.t/;´;�/j � .K0CK1/
m 
.´;�/˛m.t/; (9.6)

for all t 2 Œ0;T � and m� 1, where the function ˛m is given by (5.1).
Due to estimate (5.9) of Lemma 3, relations (9.5), (9.6) yield

jrmC1.t;´;�/j �
10

9

�
3T

10

�m�1
.K0CK1/

m 
.´;�/˛1.t/;

jrmC1 .ˇ.t/;´;�/j �
10

9

�
3T

10

�m�1
.K0CK1/

m 
.´;�/˛1.t/;

and it remains to repeat, with obvious modifications, the reasoning shown at the end
of the proof of Theorem 1. �

A similar improvement of the convergence condition is possible in the case where
ˇ satisfies condition (5.12).
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Theorem 4. Assume that the deviation function ˇ W Œ0;T �! Œ0;T � has property
(5.12) and, moreover,

r.K0CK1/ <
3

T �
; (9.7)

where
� WDmaxfkˇ ;1g (9.8)

and kˇ is the constant appearing in (5.12). Then assertions 1–4 of Theorem 1 are
true. Moreover, the estimateˇ̌
x�.t;´;�/�xm .t;´;�/

ˇ̌
�

�
6

T
t

�
1�

t

T

��
T �

3

�m�1
.K0CK1/

m�1� 3
T�

.´;�/

holds for any m� 1, � 2 RpCq , t 2 Œ0;T �, and all fixed ´ of form (6.2).

Proof. It is clear from (9.8) that �� 1 and, hence, according to (9.3),

jr2.t;´;�/j � .K0CK1/
.´;�/˛1.t/

� �.K0CK1/
.´;�/˛1.t/; t 2 Œ0;T � : (9.9)

Due to (5.13), we have

jr2 .ˇ.t/;´;�/j � .K0CK1/
.´;�/˛1.ˇ.t//

� kˇ .K0CK1/
.´;�/˛1.t/

� �.K0CK1/
.´;�/˛1.t/; t 2 Œ0;T � : (9.10)

Using (6.17), (9.9), (9.10) and (5.9) and carrying out calculations, we obtain

jr3.t;´;�/j � �K0 .K0CK1/
.´;�/˛2.t/C�K1 .K0CK1/
 .´;�/˛2.t/

� �.K0CK1/
2 
.´;�/˛2.t/

� �
T �

3
.K0CK1/

2 
.´;�/˛1.t/: (9.11)

Therefore, in view of (9.11), (5.12), (5.13),

jr3 .ˇ.t/;´;�/j � �.K0CK1/
2 
.´;�/˛2.ˇ.t//

� �.K0CK1/
2 
.´;�/

T

3
˛1.ˇ.t//

� �

�
T �

3

�
.K0CK1/

2 
.´;�/˛1.t/: (9.12)

Further on, according to (6.17), (9.11), and (9.12), we find

jr4.t;´;�/j �K0�

�
T �

3

�
.K0CK1/

2 
 .´;�/˛2.t/
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CK1�

�
T �

3

�
.K0CK1/

2 
 .´;�/˛2.t/

D �

�
T �

3

�
.K0CK1/

3 
.´;�/˛2.t/

�

�
T �

3

�2
.K0CK1/

3 
.´;�/˛1.t/ (9.13)

� �

�
T �

3

�2
.K0CK1/

3 
.´;�/˛1.t/:

According to (9.13) and (5.13),

jr4 .ˇ.t/;´;�/j �

�
T �

3

�2
.K0CK1/

3 
.´;�/˛1.ˇ.t//

� �

�
T �

3

�2
.K0CK1/

3 
.´;�/˛1.t/ (9.14)

for a. e. t 2 Œ0;T � : Arguing by induction, for any t 2 Œ0;T �, we arrive at the estimates

jrm.t;´;�/j �

�
T �

3

�m�2
.K0CK1/

m�1 
 .´;�/˛1.t/

D .K0CK1/
xxGm�2
.´;�/˛1.t/ (9.15)

� �.K0CK1/
xxGm�2
.´;�/˛1.t/;

where
xxG WD

�T

3
.K0CK1/ : (9.16)

Using (9.15), we also get

jrm .ˇ.t/;´;�/j � kˇ

�
T �

3

�m�2
.K0CK1/

m�1 
.´;�/˛1.t/

� �.K0CK1/
xxGm�2
.´;�/˛1.t/ (9.17)

for a. e. t 2 Œ0;T �. This yields

ˇ̌
xmCj .t;´;�/�xm .t;´;�/

ˇ̌
�

jX
iD1

jrmCi .t;´;�/j

� �.K0CK1/
xxGm�1

j�1X
iD0

xxGi
 .´;�/˛1.t/

� �.K0CK1/
xxGm�1.1n�

xxG/�1
 .´;�/˛1.t/
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D
3

T
xxGm.1n�

xxG/�1
 .´;�/˛1.t/ (9.18)

for any m� 1, j � 1, t 2 Œ0;T �, and arbitrary � and ´. The required assertion is now
obtained from (9.18) again by analogy to the proof of Theorem 1. �

Remark 5. It is obvious that if � < 3=2, then the convergence condition (9.7) is
sharper than inequality (6.3) used in the general case.

Remark 6. Estimates of Theorems 3 and 4 allow one to state analogues of the
existence Theorem 2. The formulations are straightforward, and we omit them.

10. A NUMERICAL EXAMPLE

We apply techniques based on the statements of the preceding sections to the fol-
lowing Cauchy–Nicoletti boundary value problem

x1 .0/D�
1

16
; x2

�
1

2

�
D
1

8
; x3 .1/D

1

4
(10.1)

for the system of three equations

x01.t/D x2.t
2/C

t

4
�
t2

4
;

x02.t/D tx3.t/C
1

4
�
t

4
;

x03.t/D tx1.t/�
t2

2
x2.t/C

t

16
;

	

(10.2)

considered in the closed domain determined by the inequalities

jx1j �
1

2
; jx2j �

1

2
; jx3j �

1

3
: (10.3)

System (10.2), of course, is a particular case of (3.1) with T D 1, f1.t/ D t .1�
t /=4; f2.t/D .1� t /=4, f3.t/D t=16 for t 2 Œ0;1�,

P0.t/D

0@0 0 0

0 0 t

t � t
2

2
0

1A P1.t/D

0@0 1 0

0 0 0

0 0 t
4

1A ; (10.4)

and the argument transformation

ˇ.t/D t2; t 2 Œ0;1� ; (10.5)

whereas (10.1) has form (3.6) with

AD

0@1 0 0

0 0 0

0 0 0

1A ; B D

0@0 0 0

0 1 0

0 0 0

1A ; C D

0@0 0 0

0 0 0

0 0 1

1A ; d D

0@�1=161=8

1=4

1A :
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The two-point parametrized boundary conditions (4.3) have the form0@1 0 0

0 0 0

0 0 0

1Ax .0/C
0@1 0 0

0 1 0

0 0 1

1Ax .1/D
0@� 1

16
C�1
�2
1
4

1A : (10.6)

The deviation function (10.5) satisfies condition (5.13) because, as one can verify,
kˇ is equal to 2 in this case and, according to (9.8), we have �D 2. Furthermore, as
follows immediately from (10.4), matrices (6.4) are determined by the equalities

K0 D

0@0 0 0

0 0 1

1 1
2

0

1A ; K1 D

0@0 1 0

0 0 0

0 0 1
4

1A : (10.7)

Therefore, r.K0CK1/� 1:267< 5
3

and, hence, condition (9.7) is satisfied. By virtue
of Theorem 4, the method of successive approximations is applicable to the two-point
parametrized problem (10.2), (10.6).

One can verify directly that the triplet of functions

x�1 .t/D
t2

8
�
1

16
;

x�2 .t/D
t

4
;

x�3 .t/D
1

4

(10.8)

is a solution of the boundary value problem (10.2), (10.1). Let us see how the ap-
proximation scheme based on Theorem 4 works in this case.

We take the starting approximation x0 D .xi0/3iD1 of the form

x0.t/D

0@� 1
16
´2
´3

1A
with ´1 D �1=16, and construct the corresponding functions of the recurrence se-
quence (6.1). We obtain:

xmC1.t;´;�/D

0@� 1
16
´2
´3

1A

C

� R t
0

�
x2m.s

2/C s
4
�
s2

4

�
ds� t

R 1
0

�
x2m.s

2/C s
4
�
s2

4

�
dsR t

0

�
sx3m .s/C

1
4
�
s
4

�
ds� t

T

R 1
0

�
sx3m .s/C

1
4
�
s
4

�
dsR t

0

�
sx1m .s/�

s2

2
x2m .s/C

s
16

�
ds� t

R 1
0

�
sx1m .s/�

s2

2
x2m .s/C

s
16

�
ds

˘
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C t

0@0@� 1
16
C�1
�2
1
4

1A�
0@2 0 0

0 1 0

0 0 1

1A0@� 1
16
´2
´3

1A1A ; mD 0;1;2; : : : : (10.9)

For mD 0, formula (10.9) gives

x11.t;´;�/D�
1

16
C
t2

8
�
t3

12
C
t

48
C t�1;

x12.t;´;�/D ´2C
1

8
tC

1

2
t2´3�

1

8
t2�

1

2
t´3C t�2�´2t;

x13.t;´;�/D ´3�
1

6
´2t

3
C
1

6
´2tC

1

4
t � t´3;

(10.10)

and the first approximate determining system

�1.´;�/D 0;

x12

�
1

2

�
D
1

8

has the roots
�1 ��0:020833333; �2 � 0:2500000001;

´2 � 0:13 �10
�9; ´3 � 0:25:

(10.11)

Substituting (10.11) into (10.10), we obtain the first approximation of the solution
of the given three-point Cauchy–Nicoletti boundary value problem

x11.t;´;�/D�0:0625C
t2

8
�
t3

12
C0:13 �10�9t;

x12.t;´;�/D 0:13 �10
�9
C0:25t;

x13.t;´;�/D 0:25�0:2166666667 �10
�10t3:

(10.12)

The result of computation of the second iteration is

x21.t;´;�/D�
1

16
C
1

10
t5´3�

1

40
t5�

1

24
t3

�
1

3
t3´2�

1

6
t3´3C

1

3
t3�2C

1

8
t2C

1

3
´2tC

1

15
t´3C

1

240
t �

1

3
t�2C t�1;

x22.t;´;�/D ´2C
1

24
t �

1

30
´2t

5
C
1

18
t3´2C

1

12
t3�

1

3
t3´3C

1

2
t2´3�

1

8
t2

�
46

45
´2t �

1

6
t´3C t�2;

and

x23.t;´;�/D ´3�
1

20
t5´3�

1

240
t5C

1

64
t4C

1

8
t4´2C

1

16
t4´3�

1

8
t4�2C

1

144
t3
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(A) First component (B) Second component

(C) Third component

FIGURE 1. The the exact solution (solid line) and its first approxim-
ation (dots).

C
1

3
t3�1�

1

16
t3´2�

81

80
t´3C

667

2880
tC

1

24
´2C

1

8
t�2�

1

3
t�1:

The approximate solution of the second approximate determining equation has the
form

�1 � 0:06357861637; �2 � 0:2490649542;

´2 � 0:94488842 �10
�3; ´3 � 0:2385944095:

(10.13)
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Inserting values (10.13) into the expressions above, we obtain the components of the
second approximation which have the form

x21.t/D�0:0625�0:001140559t
5
C0:001274287t3C

1

8
t2C0:94488842 �10�3t;

x22.t/D 0:94488842 �10
�3
C0:2500000001t �0:3149628067 �10�4t5

C0:0038543573t3�0:57027952 �10�2t2;

x23.t/D 0:2385944095�0:01609638715t
5
�0:4778576375 �10�3t4

C0:02797983516t3C0:2 �10�9t:

Proceeding analogously, we find that the components of the fourth iteration have
the form

x41.t;´;�/D�
1

63
t7�1�

2167

6552
t�2C

1

624
t13´2�

1

16
�

1

624
t13�2C

1031

327600
t´3

C
360259

1081080
´2tC

10343

10395
t�1C

1

1248
t13´3C

1

165
t11�1�

1

330
t11´2

�
27

560
t7´3C

1

504
t7´2C

1

168
t7�2C

1

10
t5´3�

721

2160
t3´2

C
2

135
t3�1�

557

10080
t3´3�

24869

362880
t3C

1

8
t2�

1

2100
t15´3

C
2557873

129729600
tC

47

144
t3�2�

1

25200
t15C

1

4992
t13C

1

7920
t11

C
667

60480
t7�

1

40
t5;

x42.t;´;�/D
14773

15120
t�2C´2�

1

1728
t8´2�

1

48
t6�2C

23

1080
t6´2C

1

288
t6´3

�
1

45
t5�2�

1

90
t5´2C

1

15
t5�1C

1

2
t2´3�

117

700
t´3�

453277

453600
´2t

�
1

2520
t9�

1

1152
t8C

5

1152
t6C

1

4800
´2t

10
C
2

45
t�1�

1

84
t7´3

�
1

105
t7´2C

1

105
t7�2C

1

225
t5´3�

13

12960
t3´2�

1

9
t3�1�

187

560
t3´3

C
923

12096
t3�

1

8
t2C

1933

43200
tC

61

1080
t3�2C

1

1680
t7C

1

3600
t5

C
1

288
t8´3C

1

630
t9´3

and

x43.t;´;�/D
2923

17280
t�2�

1

4290
t13´2�

1

240
t8�1C

721

5760
t4´2�

1

180
t4�1
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(A) First component (B) Second component

(C) Third component

FIGURE 2. The exact solution (solid line) and its second approxim-
ation (dots).

C
557

26880
t4´3C

1

864
t9�2C´3C

1

480
t8´2�

1

288
t6�2�

1

864
t6´2

C
9

320
t6´3C

1

15
t5�2�

46

675
t5´2�

5

18144
t9´2�

47

384
t4�2

�
44691

44800
t´3�

705961

259459200
´2tC

1

2800
t10´3C

1

108
t6�1
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C
1

33600
t10C

19

16128
t9�

1

11520
t8�

667

103680
t6�

719

2160
t�1

C
1

70
t7´3�

11

180
t5´3�

3413

62370
t3´2C

1

3
t3�1C

1

945
t3´3

C
101

15120
t3C

472559

2073600
t �

1

9
t3�2�

1

280
t7�

1

72
t5C

24869

967680
t4

�
71

12096
t9´3:

The fourth approximate determining equation has the solution

�1 � 0:06249396077; �2 � 0:2499991352;

´2 � 0:9764 �10
�6; ´3 � 0:2499875012:

(10.14)

Inserting (10.14) into the formulae above, we obtain the first, second, and third com-
ponents of the fourth approximation:

x41.t/D�
1

16
C0:17635985 �10�3t3C

1

8
t2C0:9763918464 �10�6t

�0:1587242069 �10�3t15�0:7064456410 �10�8t13

C0:5050109449 �10�3t11�0:5284052627 �10�3t7

�0:124988 �10�5t5;

x42.t/D 0:9764 �10
�6
C0:2034166667 �10�9t10�0:198393 �10�7t9

�0:439637 �10�7t8�0:45884 �10�8t6C0:479491 �10�5t3

�0:62494 �10�5t2C0:2500000001tC0:13126 �10�6t7

�0:449797 �10�6t5;

x43.t/D 0:2499875012C0:1190431552 �10
�3t10C0:72095 �10�7t9

�0:3471950246 �10�3t8C

C0:3082364001 �10�3t6�0:198364 �10�3t3�0:7 �10�10t

�0:2275990676 �10�9t13�0:178554 �10�6t7C0:639621 �10�6t5

�0:6613494 �10�4t4:

As is seen from Figures 1–3, the graph of the exact solution almost coincides with
those of its approximations (especially with the graph of the fourth approximation).
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(A) First component (B) Second component

(C) Third component

FIGURE 3. The the exact solution (solid line) and its fourth approx-
imation (dots).

For example, the error of the first approximation (i. e., the uniform deviation of the
first approximation from the exact solution) admits the estimates

jx�1 .t/�x11.t/j � 0:8 �10
�1;

jx�2 .t/�x12.t/j � 0:14 �10
�9;

jx�3 .t/�x13.t/j � 0:25 �10
�10;
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(A) First component (B) Second component

(C) Third component

FIGURE 4. The error of the fourth approximation.

and the errors of the second and fourth approximation are

jx�1 .t/�x21.t/j � 0:12 �10
�2;

jx�2 .t/�x22.t/j � 0:8 �10
�3;

jx�3 .t/�x23.t/j � 0:12 �10
�1



204 A. RONTÓ AND M. RONTÓ

and

jx�1 .t/�x41.t/j � 0:25 �10
�4;

jx�2 .t/�x42.t/j � 0:1 �10
�5;

jx�3 .t/�x43.t/j � 0:12 �10
�4:
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