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1. INTRODUCTION

Recently fractional differential equations have aquired many important applica-
tions in science and engineering involving different types of differential operators
(see [1–3,5,6,13]). In [4], the author studied the controllability of the control system

x.t/D �I˛f .t;x.t/;u.t//; 0 < ˛ � 1;

u.t/ 2 �G.t;x.t/;u.t//; t 2 J WD Œ0;T �;

where �2 Œ0;1�; G.t;x.t/;u.t// denotes a set-valued function which has a nonempty
closed convex set of values in Rn and I˛f .t/ is the fractional integral operator
defined as follows.

Definition 1 ([7,9,11,12]). The fractional order integral of the function f of order
0 < ˛ � 1 is defined by

I˛a f .t/D

Z t

a

.t � �/˛�1

� .˛/
f .�/d�; 0 < ˛ � 1;

and I˛0 f .t/ D I
˛f .t/ D f .t/� ˛.t/, where .�/ denotes the convolution product

(see [9, 11]),  ˛.t/D t˛�1

� .˛/
for t > 0 and  ˛.t/D 0 for t � 0 and  ˛.t/! ı.t/ (the

delta function) as ˛! 0:

Definition 2 ([7, 9, 11, 12]). The fractional order derivative of the function f of
order ˛ > 1 in the Riemann-Liouville sense is defined by

D˛af .t/D
d

dt

Z t

a

.t � �/�˛

� .1�˛/
f .�/d� D

d

dt
I 1�˛a f .t/:
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Remark 1. [9,11] The fractional order derivative and integral of a continuous func-
tion f satisfies the relation:

I˛.D˛f .t//DD˛.I˛f .t//D f .t/:

Also we have

I˛t� D
� .�C1/

� .�C˛C1/
t�C˛; .� > �1/:

In this work, we consider the control set of fractional differential equations (SCFDE)
as follows: Let Kc.Rn/ be the collection of all nonempty compact convex subsets of
Rn

D˛X.t/D F.t;X.t/;U.t//; 0 < ˛ � 1; (1.1)
where

.X.0/D 0; X.t/ 2Kc.R
n/; U.t/ 2Kc.R

m/; t 2 J WD Œ0;T �/;

F .t;X.t/;U.t// W J �Kc.R
n/�Kc.R

m/ �!Kc.R
n/

and let D˛ be the fractional derivative of order ˛ 2 .0;1�: Thus (1.1) reduces to the
system 0B@ D˛x1.t/

:::

D˛xn.t/

1CAD
0B@f1.t;x1.t/; :::;xn.t/;u1.t/; :::;um.t//:::

fn.t;x1.t/; :::;xn.t/;u1.t/; :::;um.t//

1CA :
This paper is organized as follows: in Section 2, we recall certain basic concepts and
notations which are useful in next sections. In Section 3, we present the problem of
global controllability (GC) for (SCFDE), and some examples of globally controllable
(GC) and non - controllable SCFDE will be given. In Section 4, we present the
conclusion of this paper.

2. PRELIMINARIES

We recall some notations and concepts presented in detail in a recent series of
works of V. Lakshmikantham et al. (see [8]).

Given A;B 2Kc.Rn/; the Hausdorff distance between A and B is defined by

DŒA;B� WDmaxfsup
a2A

inf
b2B
ka�bkRn ; sup

b2B

inf
a2A
kb�akRng

where k:kRn denotes the Euclidean norm in Rn:We define the magnitude of a nonempty
subset of A as

DŒA;�n�D kAk D supfkakRn ;a 2 Ag (2.1)
where �n is the zero element of Rn which is regarded as a one point set. The kAk D
DŒA;�n� norm in Kc.Rn/ is finite when the supremum in (2.1) is attained with A 2
Kc.Rn/: The Hausdorff metric satisfies the following properties.

DŒACC;BCC �DDŒA;B� andDŒA;B�DDŒB;A�;
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DŒ�A;�B�D �DŒA;B�;DŒA;B��DŒA;C �CDŒC;B�;

DŒACA0;BCB 0��DŒA;B�CDŒA0;B 0�

for all A;B;C 2Kc.Rn/ and � 2 RC: If r;s 2 R and A;B 2Kc.Rn/; then

r.ACB/D rAC rB; r.sA/D .rs/A; 1:AD A:

Finally, let A;B 2Kc.Rn/: The set C 2Kc.Rn/ satisfying AD BCC is called the
Hausdorff difference (the geometric difference) of the sets A and B and is denoted
by the symbol A�B:

3. MAIN RESULTS

In this section we consider different cases of the system

D˛X.t/D F.t;X.t/;U.t//; 0 < ˛ � 1; (3.1)

where F.t;X.t/;U.t// 2 C ŒJ;Kc.Rn/;Kc.Rm/� whose solution set is of the form

X.t/DX.X0; t;U.t// 2Kc.R
n/; .X.0/DX0 D 0/

DX.0; t;U.t//

WDX.t;U.t//:

(3.2)

Definition 3. A state pair of the solution set .X0;X1/ 2Kc.Rn/ is controllable if
after time t1 we can find a control set U.t/ 2Kc.Rm/ such that

X.t1/DX.X0; t1;U.t1//DX1 2Kc.R
n/: (3.3)

Definition 4. The system (3.1) is called
- (GC): Globally controllable if every state pair of solution set .X0;X1/ 2Kc.Rn/ is
controllable;
- (GR): Globally achievable if for everyX1 2Kc.Rn/ we have a state pair of solution
set .�n;X1/ 2Kc.Rn/ that is controllable;
- (GNC): Globally achievable to �n 2 Kc.Rn/ if for every X1 2 Kc.Rn/ we have
state pair of solution set .X1;�n/ 2Kc.Rn/ that is controllable.
- (SGR): Globally achievable set after time t :

Rt .X0/ WD fX.t/ 2Kc.R
n/j9U.t/ 2Kc.R

m/ WX.X0; t;U.t//DX.t/g

and
R.X0/ WD

[
t>0

Rt .X0/:

Definition 5. A control system (3.1) is called completely controllable (CC) if
8X0;X1 2Kc.Rn/ there exists a continuous control U.t/ 2Kc.Rm/; t 2 J D Œ0;T �
such that X.0/DX0 and X.T /DX1:

In virtue of Definition 4, we have the following result:
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Theorem 1. System (3.1) is
(i) (GC) if for every X0 2Kc.Rn/ we have R.X0/DKc.Rn/I
(ii) (GR) if we have R.�n/DKc.Rn/I
(iii) (GNC) if for every X0 2Kc.Rn/ we have �n 2R.X0/:

Remark 2. From Definition 5, every (CC) is controllable.

In the following we study several kinds of systems (3.1) :

3.1. Stationary linear control set of a fractional differential equation

Let us define the fractional system

D˛X.t/D AX.t/CBU.t/; 0 < ˛ � 1; (3.4)

where X.0/ D X0 D 0 2 Kc.Rn/; A W Kc.Rn/! Kc.Rn/; B W Kc.Rm/! Kc.Rn/
are operators, whose solution set is of the form

X.t/DX.t;U.t// 2Kc.R
n/

D
B

� .˛/

Z t

0

Œ.t � �/˛�1�A�U.�/d�:
(3.5)

Theorem 2. System (3.4) is (GC) if and only if B is invertible.

Proof. Sufficient condition: For t1 > 0; we consider

L.t1/ WD

Z t1

0

Œ.t � �/˛�1�A�d�:

Then for all t 2 J; the control U.t/ 2Kc.Rm/ has the form

U.�/D B�1� .˛/L�1.t1/X1:

In virtue of Remark 1, we have

X.t/D I˛ŒAX.t/CBU.t/�D AI˛X.t/CBI˛U.t/:

Then by using Laplace transform and its inverse for the fractional integral operator
(see [11], p. 104), we obtain

ŁfX.t/g D ŁfAI˛X.t/CBI˛U.t/g D AŁfI˛X.t/gCBŁfI˛U.t/g

)X.s/D AŁfI˛X.t/gCBŁfI˛U.t/g)X.s/D As�˛X.s/CBs�˛U.s/

)X.s/Œ1�As�˛�D Bs�˛U.s/

)X.s/D
Bs�˛

1�As�˛
U.s/D

B

s˛�A
U.s/;

where X.s/ and U.s/ are the Laplace transform of X and U respectively. Hence, by
the inverse Laplace transform, we have

X.t/D
B

� .˛/

Z t

0

Œ.t � �/˛�1�A�U.�/d�:
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Now for t1 > 0; we state that

X.t1/D
B

� .˛/

Z t1

0

Œ.t1� �/
˛�1
�A�U.�/d�

D
B

� .˛/

Z t1

0

Œ.t1� �/
˛�1
�A�ŒB�1� .˛/L�1.t1/X1�d�

D BB�1
�Z t1

0

Œ.t1� �/
˛�1
�A�d�

�
L�1.t1/X1 DX1:

This implies that the system (3.4) is (GC).
Necessary condition: Assume that system (3.4) is (GC). If B is not invertible then
the existence of the feedback control U.t/ implies that system (3.4) is not (GC) and
this is a contradiction. �

3.2. Non stationary linear control set of fractional differential equations

Let us define the linear system

D˛X.t/D A.t/X.t/CB.t/U.t/; 0 < ˛ � 1; (3.6)

where X.0/D X0 2Kc.Rn/; A.t/ WKc.Rn/!Kc.Rn/; B.t/ WKc.Rm/!Kc.Rn/
are operators, whose solution set is of the form X.t/DX.0;X0; t;U.t// 2Kc.Rn/:

Theorem 3. System (3.6) is (GC) if and only if B�1.t/ exists.

Proof. Sufficient condition: For t1 > 0; we consider

� .t1/ WD

Z t1

0

Œ.t � �/˛�1�A.�/�d�:

Then for all t 2 J; the control U.t/ 2Kc.Rm/ has the form

U.�/D B�1.�/� .˛/� �1.t1/X1:

In view of Remark 1, we have

X.t/D I˛ŒA.t/X.t/CB.t/U.t/�D I˛A.t/X.t/CI˛B.t/U.t/:

By using the Laplace transform and its inverse for the fractional integral operator (see
[11], P 104), we obtain

ŁfX.t/g D ŁfI˛A.t/X.t/CI˛B.t/U.t/g

)X.s/D ŁfI˛A.t/X.t/gCŁfI˛B.t/U.t/g

)X.s/D s�˛A.s/X.s/C s�˛B.s/U.s/

)X.s/Œ1�A.s/s�˛�DB.s/s�˛U.s/

)X.s/D
B.s/s�˛

1�A.s/s�˛
U.s/D

B.s/

s˛�A.s/
U.s/;
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where A.s/;B.s/;X.s/ and U.s/ are the Laplace transform of A;B;X and U re-
spectively. Hence by the inverse of Laplace transform, we have

X.t/D
1

� .˛/

Z t

0

Œ.t � �/˛�1�A.�/�B.�/U.�/d�:

Now, for t1 > 0; this yields

X.t1/D
1

� .˛/

Z t1

0

Œ.t1� �/
˛�1
�A.�/�B.�/U.�/d�

D
B

� .˛/

Z t1

0

B.�/Œ.t1� �/
˛�1
�A.�/�ŒB�1.�/� .˛/� �1.t1/X1�d�

D

�Z t1

0

Œ.t1� �/
˛�1
�A.�/�d�

�
� �1.t1/X1 DX1:

This implies that system (3.6) is (GC).
Necessary condition: Assume that system (3.6) is (GC). If B.t/ has no inverse, then
we have not the feedback control U.t/ implies that system (3.6) is not (GC) and this
is a contradiction. �

3.3. Nonlinear control set of a fractional differential equation (NLSCFDE)

Theorem 4. Let F be continuous and kF k �M; 0 < M <1: Then the control
system (3.1) is (CC).

Proof. The solution set of system (3.1) takes the form

X.t/D I˛F.t;X.t/;U.t//; .t 2 J /:

By continuity of F , the solution X.t/ is continuous. We only need to find X0 and
X1: Since

X.0/DX0 D 0;

and by Definition 1,X.t/D t˛�1�F.t/
� .˛/

;where .�/ is the convolution product, we have

X.T /D
T ˛�1 �F.T /

� .˛/
; .F.T /¤ 0/:

We can choose X0 and X1 such that X0D 0 and X1DX.T /: Hence the system (3.1)
is completely controllable on J . �

Our next aim is to show that system (3.1) is (GC). For this purpose we need to the
following preliminary result..

Lemma 1. Suppose that the decreasing Lyapunov-like function V.t;X.t/;U.t//;
t 2 RC satisfies the followings:
(i) V 2 C ŒRC�Kc.Rn/�Kc.Rm/;Kc.Rn/�;
( ii) jV.t;X1;U1/�V.t;X2;U2/j � L.DŒX1;X2�CDŒU1;U2�/; L > 0
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(iii) b.kXk/� V.t;X;U /� a.t;kXk/; for t 2RC;X;X1;X2 2Kc.Rn/;U;U1;U2 2
Kc.Rm/; where b.:/;a.t; :/ 2 ˚ D f' 2 C ŒRC;RC� W '.!/ is increasing in ! and
'.!/!1as!!1g then for every � > 0; t0 2 RC;9� > 0 such that

kX0k< � implies kX.t/k< �; 8t > t0: (3.7)

Proof. Given � > 0; we can choose � > 0 such that a.t0;�/ < b.�/; t0 2 RC: If
(3.7) is not hold, then for t0 < t1; we obtain

b.�/� b.kX.t1/k/� V.t1;X.t1/;U.t1//

� V.t0;X.t0/;U.t0//� a.t0;kX0k/ < a.t0;�/ < b.�/:

This contradiction proves (3.7). �

Theorem 5. Assume that the assumptions of Lemma 1 are satisfied. Assume that
F.t;X.t/;U.t// 2 C ŒRC�Kc.Rn/�Kc.Rm/;Kc.Rn/� with

kF.t;X.t/;U.t//k �eL.kXkCkU k/; eL> 0
such that

kU k �
� .˛C1/eLT ˛ Œ�kX0k�

eLT ˛kXk
� .˛C1/

CkX1k�:

In that case the system (3.1) is (GC).

Proof. The solution set of system (3.1) satisfies the following: for t1 2 J

kX.t1/k � kX0kC

Z t1

0

.t1� �/
˛�1

� .˛/
kF.�;X.�/;U.�//kd�

�kX0kC

Z t1

0

.t1� �/
˛�1

� .˛/
eL.kXkCkU k/kd� �kX0kC T ˛

� .˛C1/
eL.kXkCkU k/k

� kX1k:

Our aim is to prove kX.t1/k D kX1k: If this is not true, i.e. kX.t1/k< kX1k, then in
view of Lemma 1, we have

b.�/� b.kX.t1/k/� V.t1;X.t1/;U.t1//

� V.t0;X1;U.t1//� a.t1;kX1k/ < a.t1;�/ < b.�/:

That means the state pair .X0;X1/ 2Kc.Rn/ is controllable. Hence the (NLSCFDE)
(3.1) is (GC). �

In the same manner as in Theorem 5, we can prove the following result

Theorem 6. Suppose that the assumptions of Lemma 1 hold. Assume that
F.t;X.t/;U.t// 2 C ŒRC�Kc.Rn/�Kc.Rm/;Kc.Rn/� with

kF.t;X.t/;U.t//k �eL.kXkCkU k/; eL> 0
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such that U.t/ WD �.t/X1 and

k�k �
� .˛C1/

kX1keLT ˛ Œ�kX0k� eLT
˛kXk

� .˛C1/
CkX1k�; (3.8)

then system (3.1) is (GC).

Remark 3. In the case mD n; the control operator �.t/ must chose as a real func-
tion such that

j� j �
� .˛C1/

kX1keLT ˛ Œ�kX0k� eLT
˛kXk

� .˛C1/
CkX1k�;

then system (3.1) is (GC).

We present a few examples of these two cases:

Example 1. Global controllable case: The movement of the oil trace on the sea
will be controllable. Because for every pair of state sets
.X0;X1/ 2Kc.Rn/�Kc.Rn/;8 t1 > t0;9U.t/ 2Kc.Rm/; such that U.t/D �.t/X1;
(where the control operator �.t/ satisfies (3.8)) the NLSCFDE (3.1) is (GC).

Example 2. Non controllable case: We consider the problem of transfer of an
alcohol concentrations in a volatile environment. This motion of the alcohol will
not be controllable, because it might move to somewhere else so we can’t find any
suitable feedback U.t/D h.X.t//:

FIGURE 1. Globally controllable case

4. CONCLUSION

In this paper we used Riemann-Liouville fractional differential and integral oper-
ators for the study of the possibility of global control. We established the complete
controllability of generalized systems of the form (3.1). In the case of ˛ D 1; the
system (3.1) reduces to the form

DHX.t/D F.t;X.t/;U.t//; (4.1)

where D is the Hukuhara derivative

.X.0/DX0; X.t/ 2Kc.R
n/; U.t/ 2Kc.R

m/; t 2 J WD Œ0;T �/;

F .t;X.t/;U.t// W J �Kc.R
n/�Kc.R

m/ �!Kc.R
n/:

This system has been studied by several authors (see [8, 10]).
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FIGURE 2. Non controllable case
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