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1. INTRODUCTION

Approximation theory, which has a close relationship with other branches of math-
ematics, has been used in the theory of polynomial approximation and various do-
mains of functional analysis [2], in numerical studies of differential and integral op-
erators [15], and in the studies of the interpolation operator of Hermite-Fejér [6–8,10]
and of the partial sums of Fourier series [16]. Most of the classical approximation
operators tend to converge to the value of the function being approximated. How-
ever, at points of discontinuity, they often converge to the average of the left and
right limits of the function. There are, however, exceptions such as the interpolation
operators of Hermite-Fejér [6]. These operators do not converge at points of simple
discontinuity. In this case, the matrix summability methods of Cesáro type are strong
enough to correct the lack of convergence [7]. The main purpose of using summab-
ility theory has always been to make a nonconvergent sequence converge. Some
results regarding matrix summability for positive linear operators may be found in
the papers [3, 4, 14, 23]. Our interest in the present paper is to obtain a Korovkin-
type approximation theorem for a sequence of positive linear operators defined on
Hw

�
I 2
�
, which is the subspace of all continuous and bounded real valued functions

on I 2 D Œ0;1/� Œ0;1/ by using A-summation process.
A double sequence x D fxm;ngm;n2N is convergent in Pringsheim’s sense if, for

every " > 0; there existsN DN."/2N such that jxm;n�Lj< "wheneverm;n>N .
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In this case L is called the Pringsheim limit of x and is denoted by P � limx D L
(see [22]).

If there exists a positive number M such that jxm;nj �M for all .m;n/ 2 N2 D

N�N; then x D fxm;ng is said to be bounded. Note that in contrast to the case for
single sequences, a convergent double sequence need not to be bounded.

Let

AD Œaj;k;m;n�; j;k;m;n 2N;

be a four-dimensional infinite matrix. For a given double sequence x D fxm;ng, the
A-transform of x, denoted by Ax WD f.Ax/j;kg, is given by

.Ax/j;k D
X

.m;n/2N2

aj;k;m;nxm;n; j;k 2N;

provided the double series converges in Pringsheim’s sense for every .j;k/ 2 N2.
We say that a sequence x is A�summable to l if the A-transform of x exists for all
j;k 2N and is convergent in the Pringsheim’s sense i.e.,

P � lim
p;q

pX
m2N

qX
n2N

aj;k;m;nxm;n D yj;k and P � lim
j;k
yj;k D l:

In summability theory, a two-dimensional matrix transformation is said to be regular
if it maps every convergent sequence to a convergent sequence with the same limit.
The well-known characterization of regularity for two dimensional matrix transform-
ations is known as Silverman-Toeplitz conditions (see, for instance, [13]). In 1926,
Robison [24] presented a four dimensional analog of the regularity by considering an
additional assumption of boundedness. This assumption was made because a double
P -convergent sequence is not necessarily bounded. The definition and the charac-
terization of regularity for four dimensional matrices is known as Robison-Hamilton
conditions, or briefly, RH -regularity. (see, [12, 24])

Recall that a four dimensional matrix AD Œaj;k;m;n� is said to be RH -regular if it
maps every bounded P -convergent sequence into a P -convergent sequence with the
same P -limit. The Robison-Hamilton conditions state that a four dimensional matrix
AD Œaj;k;m;n� is RH -regular if and only if

.i/ P � lim
j;k
aj;k;m;n D 0 for each .m;n/ 2N2,

.i i/ P � lim
j;k

X
.m;n/2N2

aj;k;m;n D 1,

.i i i/ P � lim
j;k

X
m2N

ˇ̌
aj;k;m;n

ˇ̌
D 0 for each n 2N,

.iv/ P � lim
j;k

X
n2N

ˇ̌
aj;k;m;n

ˇ̌
D 0 for each m 2N,
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.v/
X

.m;n/2N2

ˇ̌
aj;k;m;n

ˇ̌
is P�convergent for each .j;k/ 2N2,

.vi/ there exist finite positive integers A and B such that
X

m;n>B

ˇ̌
aj;k;m;n

ˇ̌
< A

holds for every .j;k/ 2N2:

Now let A WD
n
A.i;l/

o
D

n
a
.i;l/

j;k;m;n

o
be a sequence of four-dimensional infinite

matrices with non-negative real entries. For a given double sequence of real numbers,
x D fxm;ng is said to be A�summable to l if

P � lim
j;k

X
.m;n/2N2

a
.i;l/

j;k;m;n
xm;n D l

uniformly in i and l . If A.i;l/ D A, four-dimensional infinite matrix, then
A�summability is the A�summability for four-dimensional infinite matrix.

Some results regarding matrix summability method for double sequences may be
found in the papers [20], [21], [25].

Now let A D Œaj;k;m;n� be a non-negative RH -regular summability matrix, and
let K � N2. Then, a real double sequence x D fxm;ng is said to be A-statistically
convergent to a number L if, for every " > 0,

P � lim
j;k

X
.m;n/2K."/

aj;k;m;n D 0;

where
K."/ WD f.m;n/ 2 BeginExpansionN2

W jxm;n�Lj � "g:

In this case we write st2A � lim
m;n
xm;n D L. Observe that, a P -convergent double se-

quence is A-statistically convergent to the same value but the converse does not hold
true.

We should note that if we take A D C.1;1/, which is the double Cesáro matrix,
then C.1;1/-statistical convergence coincides with the notion of statistical conver-
gence for double sequence, which was introduced in [18, 19]. Finally, if we replace
the matrix A by the identity matrix for four-dimensional matrices, then A-statistical
convergence reduces to the Pringsheim convergence.

2. A KOROVKIN-TYPE APPROXIMATION THEOREM

We recall that the Korovkin-type theorem on the Hw .Œ0;1// space was given by
Gadjiev and Çakar in [11]. Similarly as in [11], let us introduce a space denoted by
Hw

�
I 2
�
; where I 2 WD Œ0;1/� Œ0;1/.

Let ! be a modulus of continuity type functions such that the following conditions
are satisfied:

i) ! is a non-negative increasing function on Œ0;1/,
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ii) ! .ı1C ı2/� ! .ı1/C! .ı2/ ;
iii) lim

ı!0
! .ı/D 0:

Let H!
�
I 2
�

be a subspace of real valued functions satisfying the following con-
ditions: for some M > 0

jf .u;v/�f .x;y/j �M!

�ˇ̌̌̌�
u

1Cu
;
v

1Cv

�
�

�
x

1Cx
;
y

1Cy

�ˇ̌̌̌�
(2.1)

whereˇ̌̌̌�
u

1Cu
;
v

1Cv

�
�

�
x

1Cx
;
y

1Cy

�ˇ̌̌̌
D

s�
u

1Cu
�

x

1Cx

�2
C

�
v

1Cv
�

y

1Cy

�2
:

Let CB
�
I 2
�

be the space of all continuous and bounded functions on I 2. Then
CB

�
I 2
�

is a linear normed space with

kf kCB.I2/ D sup
x;y�0

jf .x;y/j .

Due to (ii), we can say that H!
�
I 2
�
� CB

�
I 2
�
:

A sequence fLm;ng of positive linear operators of H!
�
I 2
�

into CB
�
I 2
�

is called
an A-summation process on H!

�
I 2
�

if fLm;n .f /g is A-summable to f for every
f 2H!

�
I 2
�
, i.e.,

P � lim
j;k!1


X

.m;n/2N2

a
.i;l/

j;k;m;n
Lm;n .f /�f


CB.I2/

D 0; uniformly in i and l

(2.2)
where it is assumed that the series in (2.2) converges for each i; l;j;k 2N and f .

Note that, the results of type (2.2) are extensions of type

P � lim
j;k!1

X
.m;n/2N2

a
.i;l/

j;k;m;n
kLm;n .f /�f kCB.I2/ D 0; uniformly in i and l

for all f 2H!
�
I 2
�
.

We establish a theorem of Korovkin type with respect to the convergence behavior
(2.2) for a double sequence of positive linear operators of H!

�
I 2
�

into CB
�
I 2
�
.

Let fLm;ng be a sequence of positive linear operators of H!
�
I 2
�

into CB
�
I 2
�

such that
sup
i;l;j;k

X
.m;n/2N2

a
.i;l/

j;k;m;n
kLm;n .1/kCB.I2/ <1: (2.3)

Furthermore, for i; l;j;k 2N and f 2H!
�
I 2
�
, let

B
.i;l/

j;k
f D

X
.m;n/2N2

a
.i;l/

j;k;m;n
Lm;n .f /
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which is well defined by (2.3) and belongs to CB
�
I 2
�
.

Altın, Doğru and Özarslan [1] obtained the following Korovkin theorem.

Theorem 1 ([1]). Let fLm;ng be a double sequence of positive linear operators
acting from H!

�
I 2
�

into CB
�
I 2
�
. Then, for all f 2H!

�
I 2
�

P � lim
m;n
kLm;n .f /�f kCB.I2/ D 0

is satisfied if the following holds:

P � lim
m;n
kLm;n .fi /�fikCB.I2/ D 0 .i D 0;1;2;3/

where
f0 .u;v/D 1; f1 .u;v/D

u

1Cu
; f2 .u;v/D

v

1Cv
;

f3 .u;v/D

�
u

1Cu

�2
C

�
v

1Cv

�2
:

A-statistical analog of Theorem 1 can be given as follows.

Theorem 2 ([9]). Let AD
�
aj;k;m;n

�
be a non-negative RH -regular summability

matrix method. Let fLm;ng be a double sequence of positive linear operators acting
from H!

�
I 2
�

into CB
�
I 2
�
. Then, for all f 2H!

�
I 2
�

st2A� lim
m;n
kLm;n .f /�f kCB.I2/ D 0

is satisfied if the following holds:

st2A� lim
m;n
kLm;n .fi /�fikCB.I2/ D 0 .i D 0;1;2;3/

where
f0 .u;v/D 1; f1 .u;v/D

u

1Cu
; f2 .u;v/D

v

1Cv
;

f3 .u;v/D

�
u

1Cu

�2
C

�
v

1Cv

�2
:

If we replace the matrix A in Theorem 2 by the Cesáro matrix C .1;1/, we imme-
diately get the statistical Korovkin result.

Now we give the following generalization by using a A-summation process.

Theorem 3. Let AD
n
A.i;l/

o
be a sequence of four-dimensional infinite matrices

with non-negative real entries such that

sup
i;l;j;k

X
.m;n/2N2

a
.i;l/

j;k;m;n
<1: (2.4)
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Let fLm;ng be a double sequence of positive linear operators acting from H!
�
I 2
�

into CB
�
I 2
�
. Assume that (2.3) holds. Then, for all f 2H!

�
I 2
�

P � lim
j;k


X

.m;n/2N2

a
.i;l/

j;k;m;n
Lm;n .f /�f


CB.I2/

D 0 uniformly in i and l

is satisfied if the following holds:

P � lim
j;k


X

.m;n/2N2

a
.i;l/

j;k;m;n
Lm;n .fr/�fr


CB.I2/

D 0 (2.5)

uniformly in i and l .r D 0;1;2;3/, where

f0 .u;v/D 1; f1 .u;v/D
u

1Cu
; f2 .u;v/D

v

1Cv
;

f3 .u;v/D

�
u

1Cu

�2
C

�
v

1Cv

�2
:

Proof. If f 2H!
�
I 2
�
, then from (2.1) we have that for any " > 0 there exists a

number ı > 0 such that jf .u;v/�f .x;y/j< " ifs�
u

1Cu
�

x

1Cx

�2
C

�
v

1Cv
�

y

1Cy

�2
< ı:

Since f is bounded, there exists a positive constant N such that

jf .u;v/�f .x;y/j<
2N

ı2

"�
u

1Cu
�

x

1Cx

�2
C

�
v

1Cv
�

y

1Cy

�2#

if

r�
u
1Cu
�

x
1Cx

�2
C

�
v
1Cv
�

y
1Cy

�2
� ı. Therefore for all .u;v/, .x;y/ 2 I 2 one

can write

jf .u;v/�f .x;y/j< "C
2N

ı2

"�
u

1Cu
�

x

1Cx

�2
C

�
v

1Cv
�

y

1Cy

�2#
: (2.6)

Now using the linearity and the positivity of the operators Lm;n and considering the
inequalites (2.6) and (2.4) , for all .x;y/ 2 I 2, we obtainˇ̌̌̌

ˇ̌ X
.m;n/2N2

a
.i;l/

j;k;m;n
Lm;n .f Ix;y/�f .x;y/

ˇ̌̌̌
ˇ̌

�

X
.m;n/2N2

a
.i;l/

j;k;m;n
Lm;n .jf .u;v/�f .x;y/j Ix;y/
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Cjf .x;y/j

ˇ̌̌̌
ˇ̌ X
.m;n/2N2

a
.i;l/

j;k;m;n
Lm;n .1Ix;y/�1

ˇ̌̌̌
ˇ̌

�

X
.m;n/2N2

a
.i;l/

j;k;m;n
Lm;n

 
"C

2N

ı2

"�
u

1Cu
�

x

1Cx

�2
C

�
v

1Cv
�

y

1Cy

�2#
Ix;y

!

CN

ˇ̌̌̌
ˇ̌ X
.m;n/2N2

a
.i;l/

j;k;m;n
Lm;n .1Ix;y/�1

ˇ̌̌̌
ˇ̌

� "C "

ˇ̌̌̌
ˇ̌ X
.m;n/2N2

a
.i;l/

j;k;m;n
Lm;n .1Ix;y/�1

ˇ̌̌̌
ˇ̌CN

ˇ̌̌̌
ˇ̌ X
.m;n/2N2

a
.i;l/

j;k;m;n
Lm;n .1Ix;y/�1

ˇ̌̌̌
ˇ̌

C
2N

ı2

X
.m;n/2N2

a
.i;l/

j;k;m;n
Lm;n

 �
u

1Cu
�

x

1Cx

�2
Ix;y

!

C
2N

ı2

X
.m;n/2N2

a
.i;l/

j;k;m;n
Lm;n

 �
v

1Cv
�

v

1Cv

�2
Ix;y

!

� "C

�
"CN C

4N

ı2

�ˇ̌̌̌ˇ̌ X
.m;n/2N2

a
.i;l/

j;k;m;n
Lm;n .1Ix;y/�1

ˇ̌̌̌
ˇ̌

C
2N

ı2

ˇ̌̌̌
ˇ̌ X
.m;n/2N2

a
.i;l/

j;k;m;n
Lm;n

 �
u

1Cu

�2
C

�
v

1Cv

�2
Ix;y

!

�

 �
x

1Cx

�2
C

�
y

1Cy

�2!ˇ̌̌̌ˇ
C
4N

ı2

ˇ̌̌̌
ˇ̌ X
.m;n/2N2

a
.i;l/

j;k;m;n
Lm;n

��
u

1Cu

�
Ix;y

�
�

x

1Cx

ˇ̌̌̌
ˇ̌

C
4N

ı2

ˇ̌̌̌
ˇ̌ X
.m;n/2N2

a
.i;l/

j;k;m;n
Lm;n

��
v

1Cv

�
Ix;y

�
�

y

1Cy

ˇ̌̌̌
ˇ̌

� "CB

8<:
ˇ̌̌̌
ˇ̌ X
.m;n/2N2

a
.i;l/

j;k;m;n
Lm;n .1Ix;y/�1

ˇ̌̌̌
ˇ̌



82 SEVDA KARAKUŞ AND KAMIL DEMIRCI

C

ˇ̌̌̌
ˇ̌ X
.m;n/2N2

a
.i;l/

j;k;m;n
Lm;n

��
u

1Cu

�
Ix;y

�
�

x

1Cx

ˇ̌̌̌
ˇ̌

C

ˇ̌̌̌
ˇ̌ X
.m;n/2N2

a
.i;l/

j;k;m;n
Lm;n

��
v

1Cv

�
Ix;y

�
�

y

1Cy

ˇ̌̌̌
ˇ̌

C

ˇ̌̌̌
ˇ̌ X
.m;n/2N2

a
.i;l/

j;k;m;n
Lm;n

 �
u

1Cu

�2
C

�
v

1Cv

�2
Ix;y

!

�

 �
x

1Cx

�2
C

�
y

1Cy

�2!ˇ̌̌̌ˇ
)

where B WD max
n
"CN C 4N

ı2 ;
2N
ı2 ;

4N
ı2

o
. Then taking supremum over .x;y/ 2 I 2,

we have 
X

.m;n/2N2

a
.i;l/

j;k;m;n
Lm;n .f /�f


CB.I2/

� "CB

8̂<̂
:


X
.m;n/2N2

a
.i;l/

j;k;m;n
Lm;n .f0/�f0


CB.I2/

C


X

.m;n/2N2

a
.i;l/

j;k;m;n
Lm;n .f1/�f1


CB.I2/

C


X

.m;n/2N2

a
.i;l/

j;k;m;n
Lm;n .f2/�f2


CB.I2/

C


X

.m;n/2N2

a
.i;l/

j;k;m;n
Lm;n .f3/�f3


CB.I2/

9>=>; :
Using (2.5) and by taking limit as j;k!1, we obtain the desired result. �

Remark 1. If we take A.i;l/ D I , I being the four-dimensional identity matrix in
Theorem 3, then we immediately get Theorem 1.
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Corollary 1. Now we present an example such that our new approximation result
works but its classical case does not work. Let I 2D Œ0;1/� Œ0;1/ and f W I 2!R.
We consider the double sequence fLm;ng of positive linear operators defined by

Lm;n .f Ix;y/D
�
1C˛m;n

�
Bm;n .f Ix;y/

where fBm;ng is the Bleimann, Butzer and Hahn [5] operators defined by

Bm;n .f Ix;y/

D
1

.1Cx/m
1

.1Cy/n

mX
kD0

nX
lD0

f

�
k

m�kC1
;

l

n� lC1

� 
m

k

! 
n

l

!
xkyl

and
�
˛m;n

�
is a double sequence defined by ˛m;n D .�1/mCn.

From [1], we have

Bm;n .f0Ix;y/D 1;

Bm;n .f1Ix;y/D
m

mC1

x

1Cx
;

Bm;n .f2Ix;y/D
n

nC1

y

1Cy
;

Bm;n .f3Ix;y/D
m.m�1/

.mC1/2
x2

.1Cx/2
C

m

.mC1/2
x

1Cx

C
n.n�1/g

.nC1/2
y2

.1Cy/2
C

n

.nC1/2
y

1Cy
;

where

f0 .u;v/D 1; f1 .u;v/D
u

1Cu
; f2 .u;v/D

v

1Cv
;

f3 .u;v/D

�
u

1Cu

�2
C

�
v

1Cv

�2
:

A double sequence x D fxm;ng of real numbers is called almost convergent to a
limit s if

P � lim
p;q!1

sup
j;k�0

ˇ̌̌̌
ˇ̌ 1pq

jCp�1X
mDj

kCq�1X
nDk

xm;n� s

ˇ̌̌̌
ˇ̌D 0;

that is, the average value of fxm;ng taken over any rectangle

f.m;n/ W j �m� j Cp�1;k � n� kCq�1g

tends to s as both p and q tend to 1; and this convergence is uniform in j and
k. Now assume that A D

n
A.i;l/

o
D

n
a
.i;l/

j;k;m;n

o
is a sequence of four-dimensional

infinite matrices defined by a.i;l/
j;k;m;n

D
1
jk

if i � m � j C i � 1; l � n � kC l � 1
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and a.i;l/
j;k;m;n

D 0 otherwise. In this case A -summability method reduces to almost
convergence of double sequences introduced by Mòricz [17]. Observe that

�
˛m;n

�
is

almost convergent to zero, but it is not convergent in Pringsheim’s sense. Also
�
˛m;n

�
is not C.1;1/-statistically convergent. We conclude that for the double sequence
fLm;ng ; since

�
˛m;n

�
is almost convergent to zero, fLm;ng satisfies the conditions of

Theorem 3. Also, since
�
˛m;n

�
is not convergent in Pringsheim’s sense and C.1;1/-

statistical sense, fLm;ng does not satisfy Theorem 1 and Theorem 2 (for ADC.1;1/).
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[18] F. Móricz, “Statistical convergence of multiple sequences,” Arch. Math. (Basel), vol. 81, no. 1, pp.
82–89, 2003.

[19] M. Mursaleen and O. H. H. Edely, “Statistical convergence of double sequences,” J. Math. Anal.
Appl., vol. 288, no. 1, pp. 223–231, 2003.
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