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1. Introduction

The so-called numerical-analytic method (shortly NAM) based upon successive ap-
proximations was introduced by the first author jointly with Professor A. Samoilenko
[1,2] for the purpose of studying the existence of solutions of non-linear boundary
value problems (BVP) and finding approximations to them. For a survey of the fur-
ther application and development of the NAM to various types of BVPs, including
periodic, two-point, multipoint, impulsive, and parametrised ones, one can consult
our series of papers in the Ukrainian Mathematical Journal joint with Samoilenko
and Trofimchuk. The most recently published paper [3] from this series contains
the seventh part of the survey. Extentions of NAM to some types of parametrised
boundary value problems (PBVPS) can be found in [4,5].

2. Main results

We consider the following two-point non-linear boundary value problem containing
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parameters both in the given differential equation and in the boundary condition:

dx/dt = f(t,z, A1), (2.1
Az(0) + C(A1)z(A\2) = d(A1, Aa), (2.2)
1’1(0) = 10, 1‘2(0) = T20- (23)

Here, we suppose that = : [0,7] — R™, T > 0 is fixed, the functions f : Q :=
[0,T] x D x [a1,b1] — R™ and d : I; x Is — R™ are continuous in their domains of
definition, D C R™(n > 3) is a closed, connected, and bounded domain, and A\, €
I :=[a1,b1], A2 € Iz := (0, T] are unknown scalar parameters. The n X n matrices A
and C' (A1) are supposed to be such that det h(A1) # 0 and rank [1"11()\1), 7"12()\1)] =2
for some real ky and kg (k1 # ko) and all Ay € I, where h(A1) := k1A + kaC(\),
H()\l) = h()\l)il,

r1i1(A1)  riz(Ar)
21 (/\1) T22 ()\1)

(In the equality above, the matrices 711(A1), r12(A1), r21(A\1), and ra2(A1) have di-
mension 2 x 2, 2 x (n —2), (n —2) x 2, (n —2) x (n— 2), respectively.)

We aim at obtaining the values A} € I; and A5 € I for which the BVP (2.1),
(2.2) has a solution x* satisfying the additional condition (2.3) for its first and second
components. By a solution of (2.1)—(2.3), we thus mean the pair (A, z), where A =
(A1, o).

It is obvious that the right-hand side boundary in BVP (2.1)—(2.3) should also be
regarded as a parameter.

Let us denote by |f| the column (|f1],|f2],-..,|fn]). The inequalities between the
vectors will be understood component-wise.

=E—-kH(M\)A+C\).

With this conventions adopted, we set

Dy i={z € R": B(,B(x)) C D},
where 8 : R — R", and B(xz, 5(z)) is the §(z)-neighbourhood of an « € R™.
We also assume that the following three conditions hold for the BVP (2.1)-(2.3):
(i) f is continuous on 2 and bounded by some vector M € R} :
[ft,z, M) <M forall (t,z,\) € Q,
and is Lipschitzian in the last two variables, i.e.,
(2, X)) = (82", M) < Ko — 2]+ [\ = M| M,

where K and M are non-negative matrices of dimension n X n and n X 1,
respectively;

(1) The set Dg, where
1
Bz, ) :== §TM’ + Bi(x, N),



On some non-linear boundary value problems with parameters 159

dy(z,A) := d(\) — [A+ C(\)]z,
Bi(x, A) := |(k1 — k2) H(A1) [d(A1, A2) — (A + C(M))x] | + [kr H(A1)dq (2, M),

and )
M == tyw, ) — i t,w, A\

9 (t,;g\al})(eﬂf( s Ly 1) (t,wI,Iilll;EQf( y Ly 1) )

18 not empty:
Dg # 0;
(iii) The greatest eigen-value Amax(K) of the matriz K satisfies the inequality
q
)\max K T
(K) < 7
where q = 13—0.
Let us introduce the sequence of functions
t
Bt (60 N) = #(0) + BHOD @) + [ 76w (o0, M) ds
0
t[
- N f(T, xm(’raya A)v)\l)dT
A2 Jo
t
+ )\*2(762 — k1) H(M)di(2(y), A), (2.4)
where
z=col(z1,22, .., Ziy. 1 Zjy v, 2n)

= COl(y1’y27 . ayl(y)a s 7y](y)’ s ayn—Q) = Z(y)7

y = col(y1,¥2, - .., Yn—2), and y;(y), y;(y) are solutions of the first two equations in
the system

Tm+1(0,y, A) = col(z10, 220, 23(0), - . ., 2 (0)),
i.e., the system
[E — le()\l){A + C(/\l)}]z = COl(fElo, 20, 1’3(0), ey .Tn(O)) — d(Ah )\2) (25)
(Here and above, ¢ and j denote the numbers of components of the vector z with

respect to which system (2.5) is solvable.)

We set G = {y € R""2: z(y) € Dg}. One can verify by direct computation that
sequence (2.4) depending on the parameters A1, Ao and on the additional (n — 2)-
dimensional vector y, satisfies the boundary conditions (2.2), (2.3) for arbitrary A\; €
I, o€, andy € G.

Theorem 1 Assume that the conditions (i)-(iii) hold.
Then:
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1. The sequence (2.4) converges to the function x* = x*(t,y,\) as m — oo uni-
formly in (t,y,\) € [0,T] x G x I x I5;

2. The limit function x* is a solution of the “perturbed” BVP (2.6), (2.2), (2.3),
dx/dt = f(t,z, A1) + Ay, A), (2.6)
with the initial value x*(0,y,\) = z(y) + k1 H (A1 )d1(2(y), A), where

A2
Ay, A) = %2(7@2 — k1) H(M)di(2(y), A) — %2 ; f(t 2" (t,y, \), \1)dt;

3. The following error estimation holds:

[ (9, A) — 2 (t,y, A)| < @1 (t, A2)[Q™ (A2) (B — Q(A2)) ' M’
+ KQ(X)™ HE — QX)) 'Bi(2(y), N)], (2.7)

where @y (t, A2) = Lay(t,A2) < SXo, ar(t,Ag) = 2t (1 —tA;"), Q(\2) =
3Aa [~
10 :

The proof of Theorem 1 can be carried out by using the techniques from [2] (The-
orems 16.1, 18.1, and 20.1) and Theorem 1 of [4].

The following statement establishes the relation of the limit function z* to the
solution of the original BVP (2.1)-(2.3).

Theorem 2 Under the conditions of Theorem 1, the pair (x*(-,y*, \*), \*) is a solu-
tion of the BVP (2.1)-(2.3) if, and only if (y*, \*) satisfies the determining equation

1 1 [

Ay, \) = " (ko — k1)H(A1)d1(2(y), A) — A flt,z*(t,y,A), \)dt =0. (2.8)

The proof of Theorem 2 is analogous to the corresponding statements from [2]
(Theorems 16.3 and 18.3).

3. Sufficient existence conditions

In what follows, we need to consider the mth approximation to the determining
equation (2.8):

1 1 [

Ay, A) = )\2 (ko — k1)H(A1)d1(2(y), \) — N Flt, xm(t,y, A), A1)dt = 0. (3.1)

Theorem 3 Suppose that, for PBVP (2.1)~(2.3), conditions (i)-(iii) hold and, fur-
thermore,
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(iv) There exists a closed, convexr subset
Q1:G1XI{XI£CGX11XIQ,

where, for some m > 1 fized, the approximate determining equation (3.1) has

only one solution (g, \), which has non-zero topological index;

(v) The inequality

10
inf  |A,L(y,\)| > = su A KW (y, A 3.2
B An N> 52 s (KW () (32)

1s satisfied on the boundary 91 of the subset 2y, where
W(z,y) = Q" (M) (E — Q(X2)) "M’ + KQ(X2)" (B — Q(X2)) " A1 (2(y), ).

Then, there exists a solution (x*,A\*) of PBVP (2.1)-(2.3), and the initial value
x*(0) of this solution att =0 is equal to

2(y") + ki Hd(2(y"), A7),
where y* € G, A} € I], and N5 € I}.
Proof. Based on inequalities (2.7) and (3.2), similarly to Theorems 3.1 and 17.1
of [2], one can show that the vector fields A(-,\) and A,, (-, A) are homotopic for all

A, which, by the well-known result of degree theory, immediately implies the assertion
of Theorem 3. m

4. Necessary Existence Conditions

The following subsidiary statements will be used in the sequel.

Lemma 4 Under conditions (i)-(ii), for an arbitrary pair
{(z'\N), ", N} C D x I x I, (4.1)
the inequality
|£L'*(t, y/a )‘/) - x*(ta y/lv >‘H)| < [E +al(ta WQ)K[E - Q(’YQ)]_l} {‘Z(y/) - Z(y//)|
+ bl(y/,y//7)\/7)\ll)}
+an(t, 12)K[E - Q)] N — M[M: (4.2)
holds, where
b,y XX o= [l O (), X) — HODd ("), X))

1
H(X)d1(2(y"), \")| + 2T M,

1
+ Tlky = k| |57 HODd (2(y), X) = 37
2 2
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Z(y/) = COl(yllayé7 . -ayg—layz{(y/)a e 7y;'(y/)7 - 'ay;—2)7

2(y") = col(yi, Yo s - i U ()5 U W) U —a),

and v, = max{A5, A5 }.

Proof. By virtue of (2.4), we have

xl(ta y/a A/) - xl(ta y”7 A//) - Z(y/) - Z(y//)
+ ki [H(X)di(2(y), N') = H(N"1)da (2(y"), A")]

+ / (s, 2 A0) — Fls, 2, X)) dis
0

X, ;

- 5p [ He s e+ [ ). i
+ 5 Ok — k) HOWd: (2(), X)

2
— (k2 = k) HO)d (=), X)

2
=z(y") —2(y")
+h HODd (), X) — B (2(5"), X))

; / {f<s,z<y'>,x1>  f(s 2y XD
1 [

YA
>‘2 0

+ 5 t [
+ = / f(r,z(y"), \))dr — +— / flr, 2(y"), N)dr
A3 Jo Ay Jo

(20 X)) — F(r 2y, X)) dT}ds

1

by — ) [%Hw)dmz(y'), X)-

1

)\/Q/H()\Y)dl(Z(y’),/\”)}

By using the Lipschitz condition on f, similarly to Lemma 19.1 from [2, p. 154],
we obtain

21 (8, y', N) — a1ty A < B+ aa(t,92) K]l2(y') = 2(y")]
+an(t,92) [N = X[ My
+ bl(y,,y//, A/,)\H).
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One can prove by induction that

i=0
+ ) ai(ty2) KN = MMy
i=0
m—1
+ Z Q; (t7 ’72)bi1 (yla y//a )‘/a )‘H)a (43)
i=0
where (see, e.g., [2, p. 148] or [5])
t t t [
amia(t)i= (1= 1) [Cannas+ & [an s
Y 0 Y J

and ap(t,v) = 1.
Taking into account estimate (see Lemma 4 in [6])

3

Oém_;,_l(t,’)/) S (107> al(ta,)/%

10_ 5
ai(t,y) = gal(tw) <g7

and passing to the limit as m — oo in (4.3), we obtain the required inequality (4.2).
[

Lemma 5 Let us suppose that BVP (2.1)~(2.3) satisfies conditions (i)—(iii).

Then the determining function A is continuous in the domain G X I; X Iy and,
for arbitrary pairs (4.1), the following relation holds:

7
AW X) = AW < baly'sy" XX + N = MMy

25 B+ Trak(8 - Q0n) | (1) — 20

+M@WTMV0=w@WA%MMAW,M®
where

L HOOd ), ) — — HO)d (2('), )| + 20

bg(y/,y”,AI,A/l) = |I€2 — ]f1| /\7/
2

and 1 := min{\;, \J}.

Proof. For every {y',y"} C G such that {z(y'),2(y")} C Dg, there exists a
continuous limit function of the uniformly convergent function sequence (2.4). The
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determining function is thus also continous and bounded in the domain G x I; X I5.
Due to the form of the function A in (2.8), we have

A@AswaszfgbfmwummawAﬁ
—;gwr4wHunmwwmxv

1 [ 1 [
—)\—,2 ; f(t,x*(t,y/,)\’),/\’l)dt—&-)\g/o Ft,x*(t,y" N, \])dt.

By direct computation, using the Lipschitz condition on f and estimate (4.2), we
obtain

|A(yl,A/) _ A(y/l7)\//)| S b2(y17y”,)\/, )\//)

1

_’_7
A

>\2
/O [f(t 2™ty X)), X)) = f(t 2™ty A7), M) dt

1 5
S b2(y17y”7)‘/7 )‘//) + )\7// {K|‘T*(t7y/7)‘l) - x*(tﬂy//7>\”)| + ‘)‘ll - >\111|M1}dt
2 J0

Ao
gmmwxnw+ié &{w+mwwmwmwnwmwdw»

+(E+a(t72)K(E-QMa) ™) by, y" N, A”)] + [N - X{IMl}dt
<ba(y,y" N N)
+ 25 B k(- Q)| (120 - 0]+ o XX )
22X = XM < (A V), Al X)),
as required. m

The following statement gives a necessary condition for the existence of solutions
of PBVP (2.1)—(2.3).

Theorem 6 Assume that conditions (i)—(iii) hold. Then the subset
Do =Gy x I x I/ CGx1I; xI
may contain a pair (y*, \*) generating a solution
¥ (t,y*, ) = lim (¢ y*, A")
m—oo

of PBVP (2.1)—(2.3) only if, for every m > 1 and every pair (§,\), the following
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relation holds true:

Am(gaA) S SUP {bZ(gay75‘aA)+’Y2|5‘l 7)\1|M1
(y)A)EQZ ’Yl

+ 2 (B4 k(B - Q)| (1) - )

by A)) } o AG A, A N). (45)

Proof. Let the determining function A vanish at y = y*, A = \*, i.e., that
x*(-,y*,A*) is a solution of the PBVP (2.1)—(2.3). Rewriting inequality (4.4) for the
pairs (v, \) = (g, A) and (y”,\") = (y*, \*), we obtain

AN < ba(, 5™, A ) + %m — N[
V2 10 -1 ~ * ~ x *
+ %K E+ ﬁWK(E— Q(r2)) |2(9) — 2(y")| + b1(F,y", A, A7) .

Relations (2.8) and (3.1) yield

I
|A(y7)‘) - Am(yv)‘” = YQA [f(t7x*(t7ya )‘)7)‘1) - f(taxm(tvya )‘)7)‘1)] dt

1 A2 10
<KW [ a2 = SR (02) = By ), An (5 0). - (16)
0

Relation (4.6) with (y, A) = (¢, A) implies
(A3 ] <A@ D] + (A (1), A (5, 1)) (47)

Combining (4.6) and (4.7), we obtain the desired necessary condition (4.5). m
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