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Abstract. Unimprovable efficient conditions are established for the unique solvability of the peri-
odic problem

u
.pi /
i .t/D

iC1X
jD2

li;j .uj /.t/Cqi .t/ for 1� i � n�1;

u
.pn/
n .t/D

nX
jD1

ln;j .uj /.t/Cqn.t/;

u
.p/
j .0/D u

.p/
j .!/ for 1� j � n; 0� p � pj �1;

where ! > 0; n � 2; pj 2 N; lij W C.Œ0;!�/! L.Œ0;!�/ are linear bounded operators, and
qi 2 L.Œ0;!�/.

2000 Mathematics Subject Classification: 34K06, 34K10

Keywords: Higher order linear functional differential system, periodic boundary value problem,
uniqueness

1. STATEMENT OF PROBLEM AND FORMULATION OF MAIN RESULTS

On Œ0;!�, consider the system

u
.pi /
i .t/D

iC1X
jD2

li;j .uj /.t/Cqi .t/ for 1� i � n�1;

u.pn/
n .t/D

nX
jD1

ln;j .uj /.t/Cqn.t/;

(1.1)
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with the periodic boundary conditions

u
.p/
j .0/D u

.p/
j .!/ for 1� j � n; 0� p � pj �1; (1.2)

where ! > 0; n � 2; pj 2 N; lij W C.Œ0;!�/! L.Œ0;!�/ are the linear bounded
operators, and qi 2 L.Œ0;!�/.

By a solution of the problem (1.1), (1.2) we understand a vector function u D
.ui /

n
iD1 with ui 2 zCpi�1.Œ0;!�/ .i D 1;n/which satisfies system (1.1) almost every-

where on Œ0;!� and satisfies conditions (1.2).
Much work had been carried out on the investigation of the existence and unique-

ness of the solution for a periodic boundary value problem for systems of ordinary
differential equations and many interesting results have been obtained (see, for in-
stance, [1,2,5,6,13,14] and the references therein). However, an analogous problem
for functional differential equations remains investigated in significantly less detail
even for linear equations. In the present paper, we study problem (1.1) (1.2) under
the assumption that ln;1;li;iC1 .i D 1;n�1/ are monotone linear operators. We
establish new unimprovable integral conditions sufficient for unique solvability of
the problem (1.1), (1.2) which generalize the well-known results of A. Lasota and
Z. Opial (see Remark 1.2) obtained for ordinary differential equations in [7] and, on
the other hand, extend our results obtained for linear functional differential equations
in [8, 9, 11]. These results are also new if (1.1) is the system of ordinary differential
equations of the form

u
.pi /
i .t/D

iC1X
jD2

li;j .t/uj .t/Cqi .t/ for 1� i � n�1;

u.pn/
n .t/D

nX
jD1

ln;j .t/uj .t/Cqn.t/;

(1.3)

where qi ; li;j 2L.Œ0;!�/: The method used for the investigation of the problem con-
sidered is based on that developed in our previous papers [8–11] for functional dif-
ferential equations.

The following notation is used throughout the paper: N (resp., R) is the set of all
the natural (resp., real) numbers; Rn is the space of n-dimensional column vectors
xD .xi /

n
iD1 with elements xi 2 R .i D 1;n/; RCD Œ0;C1ŒI C.Œ0;!�/ is the Banach

space of continuous functions u W Œ0;!�! R with the norm kukC Dmaxfju.t/j W 0�
t �!gI zCp.Œ0;!�/ .p 2N/ is the set of functions u W Œ0;!�!R which are absolutely
continuous together with their derivatives up to order k inclusive. L.Œ0;!�/ is the
Banach space of the Lebesgue integrable functions p W Œ0;!�! R with the norm
kpkL D

R !
0 jp.s/jds. If l W C.Œ0;!�/! L.Œ0;!�/ is a linear operator, then klk D

sup0<kxkC�1 kl.x/kL:
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Furthermore, define the functional � W C.Œ0;!�/! RC by setting

�.x/Dmaxfx.t/ W t 2 Œ0;!�g�minfx.t/ W t 2 Œ0;!�g:

Definition 1.1. We will say that a linear operator l W C.Œ0;!�/! L.Œ0;!�/ is
nonnegative ( resp., nonpositive), if for any nonnegative x 2 C.Œ0;!�/ the inequality
l.x/.t/� 0 (resp., l.x/.t/� 0) for is satisfied 0� t �!. We will say that an operator
l is monotone if it is either nonnegative or nonpositive.

The following notation is used in the sequel:

B0 D 1; B1 D
1

15
; Bj D B1

2X
m1D1

m1C1X
m2D1

� � �

mj�2C1X
mj�1D1

1

�.m1/ : : :�.mj�1/
;

C1 D
1

8
; Cj D B1

2X
m1D1

m1C1X
m2D1

: : :

mj�2C1X
mj�1D1

1

�.m1/ : : :�.mj�1/

mj�1C1Y
iD1

�
1C

1

2i

�
;

for j � 2; where
�.t/D .2tC1/.2tC3/:

Let
d0 D 1; d1 D 4; d2 D 32; d3 D 192; (1.4)

and for p 2N put

d2pC2 D
1

max
n�
hp.t/hp.1� t /

�1=2
W 0� t � 1

o ;
d2pC3 D

1

max
n�
fp.s; t/fp.1� s;1� t /

�1=2
W 0� s � 1; 0� t � 1

o ; (1.5)

where the functions fp W Œ0;1�� Œ0;1�! RC and hp W Œ0;1�! RC are defined as
follows:

fp.s; t/D

p�1X
jD0

p̨j t
2.jC1/

C p̨pt
2pC3s; hp.t/D

pX
jD0

p̌j t
2.jC1/;

and

p̨j D
Bj

3 �4jC1d2.p�j /C1
; p̌j D

Bj

3 �4jC1d2.p�j /
.j D 0;p�1/;

p̨p D
Bp

3 �4pC1
; p̌p D

Cp

3 �4pC1
:

Now we formulate a result from [4] in a suitable for us form.
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Theorem 1.1. Let p 2 N , x 2 zCp.Œ0;!�/, x.i/.0/D x.i/.!/ .i D 0; : : : ;p/, and
let dp be given by the equalities (1.4) and (1.5). Assume, moreover, that x is not
equal identically to a constant. Then

�.x/ <
!p

dp
�
�
x.p/

�
: (1.6)

Remark 1.1. It was shown in [4] that

d4 D
211 �3

5
; d5 D 2

9
�3 �5; d6 D

216 �32 �5

61
; d7 D

214 �32 �5 �7

17
;

and the numbers dk , k D 1;7, are optimal in the sense that (1.6) cannot be replaced
by the inequality

�.x/ <
!p

dpC "
�
�
x.p/

�
no matter how small " 2 �0;1� would be.

Definition 1.2. With system (1.1), we associate the matrixA1D .a
.1/
i;j /

n
i;jD1 defined

by the equalities

a
.1/
1;1 D�1; a

.1/
n;1 D

kln;1k

4
; a

.1/
i;1 D 0 for 2� i � n�1;

a
.1/
iC1;iC1 D kliC1;iC1k�

dpiC1�1

!piC1�1
; a

.1/
i;iC1 D

kln;1k

4
for 1� i � n�1;

a
.1/
i;j D 0 for iC2� j � n; a

.1/
i;j D kli;j k for 3� j C1� i � n;

(1.7)

and the matrices Ak D .a
.k/
i;j /

n
i;jD1 .k D 2;n/ given by the recurrence relations

A2 D A1; (1.8)

a
.kC1/
i;j D a

.k/
i;j for i � k or j 62 fk;kC1g; (1.9)

a
.kC1/
i;j D a

.k/
i;j C

a
.k/

k;j

ja
.k/

k;k
j

a
.k/

i;k
for kC1� i � n; k � j � kC1: (1.10)

Theorem 1.2. Let ln;1;li;iC1 W C.Œ0;!�/! L.Œ0;!�/ .i D 1;n�1/ be linear
monotone operators,Z !

0

ln;1.1/.s/ds 6D 0;

Z !

0

li;iC1.1/.s/ds 6D 0 for 1� i � n�1; (1.11)

and
a
.k/

k;k
< 0 for 2� k � n; (1.12)
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where the matrices Ak are defined by relations (1.7)–(1.10). Let, moreover,Z !

0

jln;1.1/.s/jds

n�1Y
jD1

Z !

0

jlj;jC1.1/.s/jds < 4
n
nY

jD2

ja
.j /
j;j j: (1.13)

Then problem (1.1), (1.2) has a unique solution.

Definition 1.3. For the system (1.3) we define the matrix A1 D .a
.1/
i;j /

n
i;jD1 by the

equalities (1.7)–(1.10) with

li;j .x/.t/D hi;j .t/x.t/ for i;j 2 1;n; x 2 C.Œ0;!�/: (1.14)

Corollary 1.1. Let

0� �nhn;1.t/ 6� 0; 0� �ihi;iC1.t/ 6� 0 for 1� i � n�1 (1.15)

where �i 2 f�1;1g .i D 1;n/; the matrices Ak are defined by the relations (1.8)-
(1.10), (1.14) and

a
.k/

k;k
< 0 for 2� k � n: (1.16)

Let, moreover, Z !

0

jhn;1.s/jds

n�1Y
jD1

Z !

0

jhj;jC1.s/jds < 4
n
nY

jD2

ja
.j /
j;j j: (1.17)

Then problem (1.3), (1.2) has a unique solution.

Now, assume that

l1;j � 0 for j 6D 2; li;j � 0 for j 62 fi; iC1g; i D 2;n�1;

ln;j D 0 for j D 2;n�1:
(1.18)

Then system (1.1) is of the following type:

u
.p1/
1 .t/D l1;2.u2/.t/Cq1.t/;

u
.pi /
i .t/D li;i .ui /.t/Cli;iC1.uiC1/.t/Cqi .t/ for 2� i � n�1;

u.pn/
n .t/D ln;1.u1/.t/Cln;n.un/.t/Cqn.t/;

(1.19)

and from Theorem 1.2 we obtain

Corollary 1.2. Let ln;1;li;iC1 .i D 1;n�1/ be linear monotone operators, the
conditions (1.11) hold and, moreover,Z !

0

jlk;k.1/.s/jds <
dpk�1

!pk�1
for 2� k � n: (1.20)
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Let, moreover,Z !

0

jln;1.1/.s/jds

n�1Y
jD1

Z !

0

jlj;jC1.1/.s/jds

< 4n
nY

jD2

�
dpj�1

!pj�1
�

Z !

0

jlj;j .1/.s/jds

�
: (1.21)

Then problem (1.19), (1.2) has a unique solution.

For the cyclic feedback system

u
.p1/
i .t/D li .uiC1/.t/Cqi .t/ for 1� i � n�1;

u.pn/
n .t/D ln.u1/.t/Cqn.t/;

(1.22)

Corollary 1.2 yields

Corollary 1.3. Let li W C.Œ0;!�/! L.Œ0;!�/ .i D 1;n/ be linear monotone op-
erators,

klik 6D 0 for i D 1;n; (1.23)

and
nY
iD1

klik< 4
n
nY

jD2

dpj�1

!pj�1
: (1.24)

Then problem (1.22), (1.2) has a unique solution.

Remark 1.2. The problem

u00.t/D p.t/u.t/Cq.t/; u.0/D u.!/; u0.0/D u0.!/; (1.25)

is equivalent to the problem (1.22), (1.2) with n D 2; n1 D n2 D 1 l1.x/.t/ D

x.t/; l2.x/.t/D p.t/x.t/; q1 � 0 and q2 � q:
Then if p;q 2 L.Œ0;!�/ , p.t/ � 0, and

R !
0 p.s/ds 6D 0, it follows from Corollary

1.3 that problem (1.22), (1.2) and, therefore, problem (1.25), has a unique solution
provided that the condition Z !

0

jp.s/jds <
16

!

is fulfilled. This follows from a well-known result of A. Lasota and Z. Opial (see
[7]).

Remark 1.3. Rewrite the problem

u.4/.t/D l.u/.t/Cq.t/; u.i/.0/D u.i/.!/ .i D 0;1;2;3/ (1.26)



PERIODIC SOLUTIONS FOR HIGHER ORDER FUNCTIONAL DIFFERENTIAL EQUATIONS 69

as the systems
u0i .t/D uiC1.t/ .i D 1;2;3/;

u04.t/D l.u1/.t/Cq.t/;

ui .0/D ui .!/ .i D 1;2;3;4/

(1.27)

and
u01.t/D u2.t/;

u
.3/
2 .t/D l.u1/.t/Cq.t/;

u1.0/D u1.!/; u
.j /
2 .0/D u

.j /
2 .!/ .j D 0;1;2/:

(1.28)

It follows from [12, Theorem 3] that problem (1.26), i. e., problems (1.27) and
(1.28), are uniquely solvable if klk � 768

!3 ; and the constant 768 is optimal.
On the other hand, it follows from Corollary 1.3 that system (1.27) (resp., (1.28))

is uniquely solvable if klk � 256
!3 (resp., klk � 512

!3 /: Consequently, if we rewrite
every equation of (1.1) as a system of first order equations, we debase the quality of
uniqueness condition.

Example 1.1. The example below shows that condition (1.24) in Corollary 1.3 is
optimal and cannot be replaced by the condition

nY
iD1

klik � 4
n
nY

jD2

dpj�1

!pj�1
: (1:241)

Define the function u0 2 zC.Œ0;1�/ on Œ0;1=2�; and extend it to Œ1=2;1� by the equal-
ities

u0.t/D

�
1 for 0� t � 1=8;
sin�.1�4t/ for 1=8 < t � 3=8
�1 for 3=8 < t � 1=2

;

and
u0.t/D u0.1� t / for 1=2 < t � 1:

Now let measurable functions �i W Œ0;1�! Œ0;1� and the linear nonnegative oper-
ators li W C.Œ0;1�/! L.Œ0;1�/.i D 1;n/ be given by the equalities

�i .t/D

(
1=8i for 0� u00.t/
1=2�1=8i for 0 > u00.t/

; li .x/.t/D ju
0
0.t/jx.�i .t//:

Then it is clear that u0.0/D u0.1/; li 6D lj if i 6D j; and klikD
R 1
0 jli .1/.s/jdsD

16�
R 1=4
1=8

cos�.1�4s/dsD 4 for i D 1;n: Thus, all the assumptions of Corollary 1.3
are satisfied except (1.24), instead of which condition (1:241) is fulfilled with ! D 1:
On the other hand, from the relations u00.t/ D ju

0
0.t/ju0.�i .t// D li .u0/.t/ .i D

1;n/; it follows that the vector function .ui .t//niD1 if ui .t/� u0.t/ .i D 1;n/; is a
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nontrivial solution of problem (1.22), (1.2) with ! D 1, q.t/� 0, pj D 1.j D 1;n/;
which contradicts the conclusion of Corollary 1.3.

2. AUXILIARY PROPOSITIONS

Lemma 2.1. Let the matrices Ak .k D 1;n/ be defined by equalities (1.7)-(1.10).
Then the following relations hold:

a
.m/
i;j � 0 for i 6D j; mD 1;n; (2:1m)

a
.1/
n;1 D a

.n/
n;1 (2:20)

a
.�/
i;j � a

.m/
i;j for i �m� 2; j �m; ��m: (2:2m)

Proof. It follows immediately from the definition of A1 and A2 that inequalities
.2:11/ and .2:22/ are true. Assume now that (2:1m) holds formD 3; : : : ;m0 .m0<n/
and prove .2:1m0C1/. If i �m0 or j 62 fm0; m0C1g; relation (1.9) implies inequality
.2:1m0C1/, and if i �m0C1; j 2 fm0; m0C1g; then .2:1m0C1/ follows from (1.10).

Now we prove inequality (2:2m). First assume that j � mC 1: Then from (1.9)
with k Dm�1 it is clear that

a
.�/
i;j D a

.�C1/
i;j D �� � D a

.m/
i;j for j �mC1; i �m; ��m: (2.3)

Now, let j Dm: Then from (1.9) we get a.�/i;mD a
.�C1/
i;m D �� � D a

.m�1/
i;m for i �m; ��

m�1: By the last equalities and (2:1m), from (1.10) it follows that

a
.m/
i;m D a

.m�1/
i;m C

a
.m�1/
m�1;m

ja
.m�1/
m�1;m�1j

a
.m�1/
i;m�1 � a

.m�1/
i;m D a

.�/
i;m for i �m; ��m:

From this inequality and (2.3) we conclude that (2:2m) is fulfilled for all j �m and
i �m: Equality (2:20) follows immediately from (1.8) and (1.9). �

Also we need the following simple lemma proved in the paper [11].

Lemma 2.2. Let � 2 f�1;1g and �l W C.Œ0;!�/! L.Œ0;!�/ be a nonnegative
linear operator. Then

�mjl.1/.t/j � �l.x/.t/�M jl.1/.t/j for 0� t � !; x 2 C.Œ0;!�/;

where mD�min0�t�!fx.t/g and M Dmax0�t�!fx.t/g:

Now, consider on Œ0;!� the homogeneous problem

v
.pi /
i .t/D

iC1X
jD2

li;j .vj /.t/ for 1� i � n; (2:4i )

v
.p/
j .0/D v

.p/
j .!/ for 1� j � n; 0� p � pj �1; (2.5)

where the operator ln;nC1 and function vnC1 are defined by the equalities ln;nC1 �

ln;1 and vnC1 � v1: Then it is clear that �.vnC1/��.v1/:
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Lemma 2.3. Let li;iC1 W C.Œ0;!�/! L.Œ0;!�/ .i D 1;n/ be linear monotone op-
erators, Z !

0

li;iC1.1/.s/ds 6D 0 for 1� i � n; (2.6)

the matrices Ak be defined by the equalities (1.7)–(1.10) and

a
.k/

k;k
< 0 for 2� k � n: (2.7)

Let, moreover v D .vi /niD1 be a nontrivial solution of the problem .(2:4i )/niD1, (2.5)
for which there exists a k1 2 f2; : : : ;ng such that vk1

6� 0. Then if

k0 Dminfk 2 f2; : : : ;ng W vk 6� 0g; (2.8)

the inequalities

0 < kvkkC ��.vk/ for k D 1; k0 � k � n; (2:9k)

0�
!pk�1

dpk�1
a
.k/

k;k
�.v

.pk�1/

k
/C

!pkC1�1

dpkC1�1
a
.k/

k;kC1
�.v

.pkC1�1/

kC1
/ (2:10k)

for k0 � k � n hold, where a.1/n;nC1 D a
.1/
n;1:

Proof. Define the numbersMk;i ;mk;i 2R; t 0
k;i
; t 00
k;i
2 Œ0;!� .kD 1;n; i D 1;pk�

1/ by the relations

Mk;i D v
.i/

k
.t 0k;i /D max

0�t�!
fv
.i/

k
.t/g;

�mk;i D v
.i/

k
.t 00k;i /D min

0�t�!
fv
.i/

k
.t/g;

(2:11k)

and introduce the sets I .1/
k
D Œt 0

k;pk�1
; t 00
k;pk�1

�; I
.2/

k
D I nI

.1/

k
for t 0

k;pk�1
< t 00

k;pk�1
:

It is clear from (2.8) that

vk0
6� 0: (2.12)

On the other hand, from .2:4k0�1/ by (2.8) we obtainZ !

0

lk0�1;k0
.vk0

/.s/ds D 0: (2.13)

Equality (2.13), in view of (2.6) and Lemma 2.2 guarantees the existence of a t0 2
Œ0; !� such that vk0

.t0/D 0: Then from (2.12) we get .2:9k0
/:

Let the numbers Mk0;pk0
�1; mk0;pk0

�1; Mk0C1;1; mk0C1;1 2 R, t 0
k0
; t 00
k0
2 Œ0;!�

be defined by the relations .2:11k/ and t 0
k0;pk0

�1
< t 00

k0;pk0
�1

(the case t 00
k0;pk0

�1
<

t 0
k0;pk0

�1
can be considered analogously). The integration of .2:4k0

/ on I .r/
k0

, by
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virtue of (2.5) and (2.8) results in

�.v
.pk0
�1/

k0
/D .�1/r

 Z
I

.r/

k0

lk0;k0
.vk0

/.s/ds

C

Z
I

.r/

k0

lk0;k0C1.vk0C1/.s/ds

!
(2.14)

for r D 1;2: From the last equality, by virtue of (1.7), (2.7), .2:9k0
/ and .2:2k0

/ with
�D 1; i D j D k0 we get

0 < �
!pk0

�1

dpk0
�1
a
.k0/

k0;k0
�.v

.pk0
�1/

k0
/� .�1/r

Z
I

.r/

k0

lk0;k0C1.vk0C1/.s/ds (2:15r )

for r D 1;2: Assume that vk0C1 is a constant sign function. Then, in view of the
fact that the operator lk0;k0C1 is monotone, we get a contradiction with .2:151/ or
.2:152/; i. e., vk0C1 changes its sign. Then

Mk0C1;1 > 0; mk0C1;1 > 0; (2.16)

and the inequality .2:9k0C1/ holds (.2:91/ if k0 D n). If lk0;k0C1 is a non-negative
operator, from (2:15r ) .r D 1;2/ in view of (2.16) by Lemma 2.2, we get

0 < �
!pk0

�1

dpk0
�1
a
.k0/

k0;k0
�.v

.pk0
�1/

k0
/�mk0C1

Z
I

.1/

k0

jlk0;k0C1.1/.s/jds;

0 < �
!pk0

�1

dpk0
�1
a
.k0/

k0;k0
�.v

.pk0
�1/

k0
/�Mk0C1

Z
I

.2/

k0

jlk0;k0C1.1/.s/jds:

By multiplying these estimates and applying the numerical inequality 4AB � .AC
B/2; in view of (1.6) and notation (1.7), we obtain

0�
!pk0

�1

dpk0
�1
a
.k0/

k0;k0
�
�
v
.pk0
�1/

k0

�
C
1

4
.Mk0C1;1Cmk0C1;1/

 Z
I

.1/

k0

jlk0;k0C1.1/.s/jdsC

Z
I

.2/

k0

jlk0;k0C1.1/.s/jds

!

�
!pk0

�1

dpk0
�1
a
.k0/

k0;k0
�.v

.pk0
�1/

k0
/C

!pk0C1�1

dpk0C1�1
a
.1/

k0;k0C1
�
�
v
.pk0C1�1/

k0C1

�
;

.0 � !pn�1

dpn�1
a
.n/
n;n�

�
v
.pn�1/
n

�
C
!p1�1

dp1�1
a
.1/
n;1�

�
v
.p1�1/
1

�
if k0 D n/; whence, by virtue

of (2:20) if k0D n and .2:2k0
/ with �D 1; i D k0; j D k0C1 if k0 < n, the relation

.2:10k0
/ follows. Analogously, from (2:15r ) we get .2:10k0

/ in the case where the
operator lk0;k0C1 is nonpositive.

We have thus proved the proposition:



PERIODIC SOLUTIONS FOR HIGHER ORDER FUNCTIONAL DIFFERENTIAL EQUATIONS 73

(i) Let 2 � k0 � n, then the inequalities .2:9k0
/; .2:9k0C1/ (.2:91/ if k0 D n)

and .2:10k0
/ hold.

Now, we shall prove the following proposition:

(ii) Let k1 2 fk0; : : : ;n�1g be such that the inequalities (2:9k),(2:10k) for .k D
k0;k1/; and .2:9k1C1/ hold. Then the inequalities .2:9k1C2/ if k1 � n� 2,
.2:91/ if k1 D n�1 and .2:10k1C1/ hold too.

Define the numbers

Mk1C1;pk1C1�1; mk1C1;pk1C1�1 2 R and t 0k1C1;pk1C1�1
; t 00k1C1;pk1C1�1

2 Œ0;!�;

by the relations .2:11k1C1/ and let t 0
k1C1;pk1C1�1

< t 00
k1C1;pk1C1�1

(the case where

t 00
k1C1;pk1C1�1

< t 0
k1C1;pk1C1�1

can be considered analogously). The integration of

.2:4k1C1/ on I .r/
k1C1

, by virtue of (2.5) and (2.8) results in

�.v
.pk1C1�1/

k1C1
/D .�1/r

k1C2X
jDk0

Z
I

.r/

k1C1

lk1C1;j .vj /.s/ds (2.17)

for r D 1;2: From this equality, by the conditions (1.6), (1.7), (2.7), (2:9k) with
k D k0; : : : ;k1C1; and .2:2k0

/ with �D 1; i D k1C1; j D k0; : : : ;k1C1 we get

0�

k1C1X
jDk0

!pj�1

dpj�1
a
.k0/

k1C1;j
�.v

.pj�1/

j /

C .�1/r
Z
I

.r/

k1C1

lk1C1;k1C2.vk1C2/.s/ds (2.18)

for r D 1;2: By multiplying (2:10k) with a.k/
k1C1;k

=ja
.k/

k;k
j for k 2 fk0; : : : ;k1g in view

of the inequalities (2.7) we obtain

0� �
!pk�1

dpk�1
a
.k/

k1C1;k
�.v

.pk�1/

k
/

C
!pkC1�1

dpkC1�1

a
.k/

k;kC1

ja
.k/

k;k
j

a
.k/

k1C1;k
�
�
v
.pkC1�1/

kC1

�
: (2:19k)
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Now, summing (2.18) and .2:19k0
/, by virtue of (1.10) with kD k0; i D k1C1; j D

k0C1; we get the estimate

0�
!pk0C1�1

dpk0C1�1
a
.k0C1/

k1C1;k0C1
�
�
v
.pk0C1�1/

k0C1

�
C

k1C1X
jDk0C2

!pj�1

dpj�1
a
.k0/

k1C1;j
�
�
v
.pj�1/

j

�
C .�1/r

Z
I

.r/

k1C1

lk1C1;k1C2.vk1C2/.s/ds;

from which, by .2:2k0C1/ with i D k1C1; j � k0C2; �D k0; we obtain

0�

k1C1X
jDk0C1

!pj�1

dpj�1
a
.k0C1/

k1C1;j
�.v

.pj�1/

j /

C .�1/r
Z
I

.r/

k1C1

lk1C1;k1C2.vk1C2/.s/ds (2.20)

for r D 1;2: Analogously, by summing (2.20) and the inequalities (2:19k) for all
k D k0C1; : : : ;k1 we get

0 < �
!pk1C1�1

dpk1C1�1
a
.k1C1/

k1C1;k1C1
�.v

.pk1C1�1/

k1C1
/

� .�1/r
Z
I

.r/

k1C1

lk1C1;k1C2.vk1C2/.s/ds (2.21)

for r D 1;2: In the same way as the inequality .2:9k0C1/ and .2:10k0
/ follow from

(2:15r ), the inequalities .2:9k1C2/ (.2:91/ if k0D n�1) and .2:10k1C1/ follow from
(2.21).

From the propositions (i) and (ii), by the method of mathematical induction, we
obtain that the inequalities .2:91/, .2:9k/ and .2:10k/ .k D k0;n/ hold. �

3. PROOFS

Proof of Theorem 1.2. It is known from the general theory of boundary value prob-
lems for functional differential equations that if li;j .i;j D 1;n/ are bounded lin-
ear operators, then problem (1.1), (1.2) has the Fredholm property (see [3]). Thus,
problem (1.1), (1.2) is uniquely solvable if and only if the homogeneous problem
.2:4i /

n
iD1, (2.5) has only the trivial solution.

Assume that, on the contrary, the problem .2:4i /
n
iD1, (2.5) has a nontrivial solution

v D .vi /
n
iD1: Let

v1 6� 0; vi � 0 for 2� i � n: (3.1)
Thus, from .2:41/ and .2:4n/, it follows that

v
.p1/
1 � 0; (3.2)
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and ln;1.v1/.t/ � 0: Then from (1.11) we obtain that v1 6� const; whence, due to
conditions (2.5), it follows v01 6� const : Also it is clear that from the conditions
v
.i/
1 6� const and (2.5) it follows v.iC1/1 6� const : Thus, by the method of mathem-

atical induction, we obtain that v.p1/
1 6� const; which contradicts (3.2) and, there-

fore, contradicts (3.1). Consequently, there exists k0 2 f2; : : : ;ng such that vk0
6� 0:

Then all the conditions of Lemma 2.3 are satisfied, from which we conclude that
0 < kv1kC ��.v1/; i. e., v1 6� const and in view of the condition (2.5) the function
v
.p1/
1 changes its sign. Thus, from .2:41/, by the monotonicity of the operator l1;2,

we get that v2 also changes its sign. Consequently, ifM2;1 andm2;1 are the numbers
defined by the equalities .2:112/, then

M2;1 > 0; m2;1 > 0; (3.3)

and if k0 is the number defined by the equality (2.8), then k0 D 2. Thus, it follows
from Lemma 2.3 that the inequalities .2:91/, .2:9k/ and .2:10k/ .k D 2;n/ hold.

Now, assume that the numbers M1;p1�1; m1;p1�1; and t 01;p1�1
; t 001;p1�1

2 Œ0;!Œ

are defined by the equalities .2:111/ and t 01;p1�1
< t 001;p1�1

(the case where t 001;p1�1
<

t 01;p1�1
is considered analogously). By integration of .2:41/ on the set I .r/1 and by

using the inequality .2:91/, we obtain

0 < �.v
.p1�1/
1 /D .�1/r

Z
I

.r/
1

l1;2.v2/.s/ds (3.4)

for r D 1;2: Let us first assume that the operator l1;2 is nonnegative (the case of
a nonpositive l1;2 can be considered analogously), then from (3.4) by (3.3) and
Lemma 2.2 we obtain

0 < �.v
.p1�1/
1 /�m2

Z
I

.1/
1

jl1;2.1/.s/jds;

0 < �.v
.p1�1/
1 /�M2

Z
I

.2/
1

jl1;2.1/.s/jds:

By multiplying these estimates and applying the numerical equality 4AB � .ACB/2

and the equalities (1.7), we get

0� a
.1/
1;1�.v

.p1�1/
1 /C

1

4
.m2CM2/

 Z
I

.1/
1

jl1;2.1/.s/jdsC

Z
I

.2/
1

jl1;2.1/.s/jds

!
D a

.1/
1;1�.v

.p1�1/
1 /Ca

.1/
1;2�.v

.p2�1/
2 /;

i. e., all the inequalities (2:10k) .k D 1;n/ are satisfied.
On the other hand from (1.7)–(1.9) and Lemma 2.1 it is clear that

a
.1/
1;1 D�1; a

.n/
n;1 D a

.1/
n;1; a

.k/

k;kC1
D a

.1/

k;kC1
D
1

4
klk;kC1k (3.5)
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for 1 � k � n�1. By multiplying all the estimates (2:10k) .k D 1;n/ and applying
(3.5), we get the contradiction with condition (1.13). Thus, our assumption fails, and
hence vi � 0 .i D 1;n/. �

Proof of Corollary 1.1. From (1.14) and (1.15) it is clear that ln;1 and li;iC1 are
monotone operators and (1.11) holds. Also, from (1.16) and (1.17), the conditions
(1.12) and (1.13) follow. Consequently, all the conditions of Theorem 1.1 are fulfilled
for system (1.3). �

Proof of Corollary 1.2. From (1.7), (1.9), and (1.18) we obtain

a
.k�1/

k;k
D a

.k�2/

k;k
D �� � D a

.1/

k;k
D klk;kk�

dpk�1

!pk�1
for 2� k � n; (3.6)

and

a
.k�i�1/

k;k�i
D a

.k�i�2/

k;k�i
D �� � D a

.1/

k;k�i
D klk;k�ik D 0 for 3� k� i � n;

a
.1/
2;1 D 0:

(3.7)

From (1.10), (1.18) and the first equality of (3.7) we get

a
.k�1/

k;k�1
D a

.k�2/

k;k�1
C
a
.k�2/

k�2;k�1

ja
.k�2/

k�2;k�2
j

a
.k�2/

k;k�2
D

a
.k�2/

k�2;k�1

ja
.k�2/

k�2;k�2
j

a
.k�2/

k;k�2

D
a
.k�2/

k�2;k�1

ja
.k�2/

k�2;k�2
j

a
.k�3/

k�3;k�2

ja
.k�3/

k�3;k�3
j

a
.k�3/

k;k�3
D �� � D a

.2/

k;2

k�2Y
jD2

a
.j /
j;jC1

ja
.j /
j;j j

D 0

(3.8)

for k � 3. From (3.8) and the second equality of (3.7) it is clear that

a
.k�1/

k;k�1
D 0 for 2� k � n: (3.9)

Then from (1.10) by (3.6) and (3.9) we obtain

a
.k/

k;k
D a

.k�1/

k;k
Ca

.k�1/

k�1;k
a
.k�1/

k;k�1
=ja

.k�1/

k�1;k�1
j D klk;kk�

dpk�1

!pk�1
:

Thus, it follows from the conditions (1.20) and (1.21) that (1.12) and (1.13) hold.
Therefore, all the conditions of Theorem 1.1 are fulfilled for the system (1.19). �
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