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1. Introduction

Let us consider the differential equation of first order with a parameter of the form
{

x′(t) = f(t, x(t), λ), t ∈ J = [0, b]
x(0) = k0 ∈ R G(x(b), λ) = 0 (1.1)

where f ∈ C(J×R×R, R), and G ∈ C(R×R, R). By a solution of (1.1) we mean a pair
(x, λ) ∈ C1(J,R)×R for which problem (1.1) is satisfied. Problems with a parameter
have been considered for many years. Some of them appeared as mathematical models
of physical systems (see, for example [16]).

An important area of research in the qualitative theory of differential equations
is the study of existence of solutions. Existence/uniqueness theorems for problem
(1.1) can be formulated under the assumption that f and G satisfy the Lipschitz
condition with respect to the last two variables with suitable Lipschitz constants or
Lipschitz functions (see [1, 2, 8, 15]). In the above mentioned papers the method
of successive approximations and comparison technique are used to obtain sufficient
conditions on existence/uniqueness solutions for problems with a parameter. An
interesting technique for proving existence results is the method based on upper and
lower solutions (for details, see [9]). The purpose of this paper is to formulate existence
results for problem (1.1) employing the method of upper and lower solutions. As we
see one-sided Lipschitz conditions are imposed on f and G (Theorems 1 and 2). If we
apply the method of quasilinearization (for details, see [10]), then we can construct
monotone sequences which converge quadratically to the unique solution of problem
(1.1). We show that if we replace f and G by the sum of two corresponding functions,
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then monotone iterations converge quadratically to the unique solution of problem
(3.1) (see Theorem 3). Theorem 4 generalizes this result. Theorem 5 concerns a
more general case when some Lipschiz functions are added to the right–hand sides of
problem (3.1). In this case the convergence is only semi–quadratic. This is a survey
paper connected with the above technique for problems of type (1.1).

2. Extremal solutions of problem (1.1)

A pair (v, α) ∈ C1(J,R)×R is said to be a lower solution of (1.1) if
{

v′(t) ≤ f(t, v(t), α), t ∈ J
v(0) = k0 0 ≤ G(v(b), α),

and an upper solution of (1.1) if the above inequalities are reversed.

The next two theorems give constructive sufficient conditions when problem (1.1)
has minimal and maximal solutions. Note that one–sided Lipschitz conditions are
imposed on f and G.

Theorem 1 (see [4]). Assume that f ∈ C(J ×R×R, R), G ∈ C(R×R, R) and

1o (y0, λ0), (z0, γ0) ∈ C1(J,R) × R are lower and upper solutions of problem (1.1)
such that y0(t) ≤ z0(t), t ∈ J and λ0 ≤ γ0,

2o f is nondecreasing with respect to the last variable,

2o f(t, ū, λ)− f(t, u, λ) ≥ −M(ū− u) = for y0 ≤ u ≤ ū ≤ z0 with M ≥ 0,

4o G(ū, λ)−G(u, λ) ≥ Q(ū− u) for y0 ≤ u ≤ ū ≤ z0, λ0 ≤ λ ≤ γ0 with Q ≥ 0,

5o G(u, λ̄)−G(u, λ) ≥= −N(λ̄− λ) for λ0 ≤ λ ≤ λ̄ ≤ γ0, y0 ≤ u ≤ z0 with N > 0.

Then there exist monotone sequences {yn, λn}, {zn, γn} such that yn(t) → y(t), zn(t)
→ z(t), t ∈ J and λn → λ, γn → γ as n → ∞ and this convergence is uniform
and monotone on J . Moreover, (y, λ) and (z, γ) are minimal and maximal solutions
of problem (1.1), respectively.

Remark 1. We observe that the special cases when f is monotone nondecreasing
with respect to the second variable and G is monotone nondecreasing with respect to
the first and second variables are covered by Theorem 1. To see this, it is enough to
put M = 0 in condition 3o, and Q = 0 in condition 4o. If G is monotone nondecreasing
with respect to the second variable, then there exists N > 0 such that for λ̄ ≥ λ we
have

G(u, λ̄)−G(u, λ) ≥ 0 ≥ −N(λ̄− λ) ,

which proves that condition 5o holds also.

Example (see [4]). Let J = [0, 1],
{

x′(t) = x2(t) + 1
3 [sin2 x(t) + t2 + g(λ)] ≡ f(t, x(t), λ), t ∈ J, x(0) = 0

0 = x(1.1) + 1
10 sin[x(1.1) + λ]− λ ≡ G(x(1.1), λ)
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where

g(λ) =





0 if λ ≤ 0,
λ2 if 0 < λ < 1,
1 if 1 ≤ λ.

Since
1
3
t2 ≤ f(t, x, λ) ≤ 1 + x2,

then
y0(t) =

1
9
t3, z0(t) = tan t, t ∈ J.

Similarly,

1
9
− 1

10
− λ ≤ x(1.1)− 1

10
− λ ≤ G(x(1.1), λ) ≤ x(1.1) +

1
10
− λ ≤ tan 1 +

1
10
− λ,

then
λ0 =

1
90
≈ 0.01, γ0 = tan 1 +

1
10
≈ 1.66.

Note that (y0, λ0), (z0, γ0) are lower and upper solutions of our problem, respectively,
and y0(t) ≤ z0(t), t ∈ J, λ0 < γ0. Condition 1o of Theorem 1 holds since g is
nondecreasing in λ. Let ū ≥ u and λ̄ ≥ λ. Using the mean value theorem we see that

f(t, ū, λ)− f(t, u, λ) = (ū)2−u2 +
1
3
[sin2 ū− sin2 u] ≥ 1

3
[sin2 ū− sin2 u] ≥ −1

3
(ū−u),

G(ū, λ)−G(u, λ) = ū− u +
1
10

[sin(ū + λ)− sin(u + λ)] ≥ 9
10

(ū− u),

G(u, λ̄)−G(u, λ) =
1
10

[sin(u + λ̄)− sin(u + λ)]− (λ̄− λ) ≥ −11
9

(λ̄− λ).

All assumptions of Theorem 1 hold, its assertion is satisfied for this problem.

Theorem 2 (see [4]). Let f ∈ C(J ×R×R,R), G ∈ C(R×R, R) and }
1o (y0, λ0), (z0, γ0) ∈ C1(J,R) × R are lower and upper solutions of problem (1.1)
such that y0(t) ≤ z0(t), t ∈ J and λ0 ≤ γ0,

2o f(t, u, λ̄)− f(t, u, λ) ≥= Q(λ̄− λ) for λ0 ≤ λ ≤ λ̄ ≤ γ0, y0 ≤ u ≤ z0 with Q ≥ 0,

3o f(t, ū, λ)− f(t, u, λ) ≥ −M(ū− u) = for y0 ≤ u ≤ ū ≤ z0 with M ≥ 0,

4o G is nondecreasing with respect to the first variable,

5o G(u, λ̄)−G(u, λ) ≥= −N(λ̄− λ) for λ0 ≤ λ ≤ λ̄ ≤ γ0, y0 ≤ u ≤ z0, with N > 0.

Then there exist monotone sequences {yn, λn}, {zn, γn} such that yn(t) → y(t),
zn(t) → z(t), t ∈ J and λn → λ, γn → γ as n →∞ and this convergence is uniform
and monotone on J. Moreover, (y, λ) and (z, γ) are minimal and maximal solutions
of problem (1.1), respectively.

Remark 2. Our results may be extended to a finite system of differential equations of
type (1.1). Although this extension follows similar ideas, such a case requires special
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care since we need to split variables as it is evident in the technique of monotone
iterations.

3. Quasilinearization method

Let y0, z0 ∈ C1(J,R) and λ0, γ0 ∈ R such that y0(t) ≤ z0(t) on J and λ0 ≤ γ0. Define
the closed sets:

Ω = {(t, y, λ) : t ∈ J, y0(t) ≤ y ≤ z0(t), λ0 ≤ λ ≤ γ0},
Ω̄ = {(y, λ) : y0(b) ≤ y ≤ z0(b), λ0 ≤ λ ≤ γ0}.

Now, instead of (1.1), we shall consider the following problem
{

x′(t) = f(t, x(t), λ) + g(t, x(t), λ), t ∈ J, x(0) = k0 ∈ R,
G(x(b), λ) + H(x(b), λ) = 0,

(3.1)

where f, g ∈ C(J ×R×R,R), G, H ∈ C(R×R, R).

The method of quasilinearization offers monotone sequences of approximate solu-
tions that converge quadratically to the unique solution. This problem is considered
in the next theorems using less restrictive assumptions.

Theorem 3 (see [5]). Let f, g, fy, gy, fλ, gλ ∈ C(Ω, R), G, H,Gy,Hy, Gλ, Hλ ∈
C(Ω̄, R). Assume that:

1o (y0, λ0), (z0, γ0) ∈ C1(J,R) × R are lower and upper solutions of problem (3.1),
respectively, and such that y0(t) ≤ z0(t), t ∈ J and λ0 ≤ γ0,

2o −Gλ(u, v) ≥ K1, −Hλ(u, v) ≥ K2,K = K1+K2 > 0, L̄1 ≤ Gy(u, v) ≤ L1, L̄2 ≤
Hy(u, v) ≤ L2, L̄ = L̄1+L̄2 ≥ 0, M̄1 ≤ fλ(t, ū, v̄) ≤ M1, M̄2 ≤ gλ(t, ū, v̄) ≤ M2, M̄ =
M̄1 + M̄2 ≥ 0

for (u, v) ∈ Ω̄, (t, ū, v̄) ∈ Ω, and put L = L1 + L2, M = M1 + M2,

3o |fy(t, u, v)| ≤ N1, |gy(t, u, v)| ≤ N2 =for (t, u, v) ∈ Ω, and put N = N1 + N2,

4o S(b) < 1, where

S(t) =
{

ML
K t if N = 0,

ML
KN [exp(Nt)− 1] if N > 0,

5o fyy, fyλ, fλy, fλλ, gyy, gyλ, gλy, gλλ exist, are continuous and satisfy the relations:

fyy(t, u, v) ≥ 0, fyλ(t, u, v) ≥ 0, fλλ(t, u, v) ≥ 0 for (t, u, v) ∈ Ω,

gyy(t, u, v) ≤ 0, gyλ(t, u, v) ≤ 0, gλλ(t, u, v) ≤ 0 for (t, u, v) ∈ Ω,

6o Gyy, Gyλ, Gλy, Gλλ,Hyy,Hλy,Hyλ,Hλλ exist, are continuous and satisfy the rela-
tions:

Gyy(u, v) ≥ 0, Gyλ(u, v) ≥ 0, Gλλ(u, v) ≥ 0 for (u, v) ∈ Ω̄,
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Hyy(u, v) ≤ 0, Hyλ(u, v) ≤ 0, Hλλ(u, v) ≤ 0 for (u, v) ∈ Ω̄.

Then there exist monotone sequences {yn}, {zn}, {λn}, {γn} which converge uniformly
to the unique solution (x, λ) of problem (3.1) and the convergence is quadratic, i.e.,

max
t∈J

|x(t)− yn+1(t)| ≤ a1 max
t∈J

|x(t)− yn(t)|2 + a2 max
t∈J

|x(t)− zn(t)|2

+a3|λ− λn|2 + a4|λ− γn|2,
|λ− λn+1| ≤ b1 max

t∈J
|x(t)− yn(t)|2 + b2 max

t∈J
|x(t)− zn(t)|2

+b3|λ− λn|2 + b4|λ− γn|2,
max
t∈J

|x(t)− zn+1(t)| ≤ ā1 max
t∈J

|x(t)− yn(t)|2 + ā2 max
t∈J

|x(t)− zn(t)|2

+ā3|λ− λn|2 + ā4|λ− γn|2,
|λ− γn+1| ≤ b̄1 max

t∈J
|x(t)− yn(t)|2 + b̄2 max

t∈J
|x(t)− zn(t)|2

+b̄3|λ− λn|2 + b̄4|λ− γn|2

for some nonnegative constants ai, bi, āi, b̄i, i = 1, 2, 3, 4.

4. Generalization of the quasilinearization method

We will use the following notation f ∈ C0,2,2(Ω, R) which means that f, fy, fλ, fyy,
fyλ, fλy, fλλ ∈ C(Ω, R). The next theorem generalizes the result of Theorem 3.

Theorem 4 (see [6]). Let f, g ∈ C0,2,2(Ω, R), G, H ∈ C2(Ω̄, R). Assume that:

1o (y0, λ0), (z0, γ0) ∈ C1(J,R) × R are lower and upper solutions of problem (3.1),
respectively, and such that y0(t) ≤ z0(t), t ∈ J and λ0 ≤ γ0,

2o −Gλ(u, v) ≥ K1, −Hλ(u, v) ≥ K2 and K = K1 + K2 > 0,

L̄1 ≤ Gy(u, v) ≤ L1, L̄2 ≤ Hy(u, v) ≤ L2, L̄ = L̄1 + L̄2,

M̄1 ≤ fλ(t, ū, v̄) ≤ M1, M̄2 ≤ gλ(t, ū, v̄) ≤ M2, M̄ = M̄1 + M̄2 for (u, v) ∈
Ω̄, (t, ū, v̄) ∈ Ω, and put L = L1 + L2, M = M1 + M2,

3o |fy(t, u, v)| ≤ N1, |gy(t, u, v)| ≤ N2 for (t, u, v) ∈ Ω, and put N = N1 + N2,

4o S(b) < 1, where S is defined as in condition 4o of Theorem 3,

5o Ψ, Φ ∈ C0,2,2(Ω, R) and satisfy the relations for (t, u, v) ∈ Ω with F = f + Φ, =
T = g + Ψ

Φyy(t, u, v) ≥ 0, Φyλ(t, u, v) ≥ 0, Φλλ(t, u, v) ≥ 0,

Fyy(t, u, v) ≥ 0, Fyλ(t, u, v) ≥ 0, Fλλ(t, u, v) ≥ 0,

Ψyy(t, u, v) ≤ 0, Ψyλ(t, u, v) ≤ 0, Ψλλ(t, u, v) ≤ 0,
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Tyy(t, u, v) ≤ 0, Tyλ(t, u, v) ≤ 0, Tλλ(t, u, v) ≤ 0

6o ∆, Γ ∈ C2(Ω̄, R) and satisfy the relations for (u, v) ∈ Ω̄ with P = G + ∆, = Q =
H + Γ

∆yy(u, v) ≥ 0, ∆yλ(u, v) ≥ 0, ∆λλ(u, v) ≥ 0,

Pyy(u, v) ≥ 0, Pyλ(u, v) ≥ 0, Pλλ(u, v) ≥ 0,

Γyy(u, v) ≤ 0, Γyλ(u, v) ≤ 0, Γλλ(u, v) ≤ 0,

Qyy(u, v) ≤ 0, Qyλ(u, v) ≤ 0, Qλλ(u, v) ≤ 0,

7o η̄ ≤ Γy(u, v) ≤ η, = ζ̄ ≤ ∆y(u, v) ≤ ζ, L̄+ ζ̄−ζ+ η̄−η ≥ 0, ϑ̄ ≤ Φλ(t, ū, v̄) ≤ ϑ,
µ̄ ≤ Ψλ(t, ū, v̄) ≤ µ, M̄ + ϑ̄− ϑ + µ̄− µ ≥ 0 for (u, v) ∈ Ω̄, (t, ū, v̄) ∈ Ω.

Then there exist monotone sequences {yn}, {zn}, {λn}, {γn} which converge uni-
formly to the unique solution of problem (3.1) and the convergence is quadratic.

Remark 3. Note that Theorem 4 contains, as a special case, the result of Theorem
3 if we put Φ(t, u, v) = Ψ(t, u, v) = 0 for (t, u, v) ∈ Ω, and ∆(ū, v̄) = Γ(ū, v̄) = 0
for (ū, v̄) ∈ Ω̄. Finally, we study the situation when problem (3.1) is replaced by the
following one {

x′(t) = f̄(t, x(t), λ), t ∈ J, x(0) = k0,
0 = Ḡ(x(b), λ) (4.1)

with f̄ = f + f̃ + g + g̃, = Ḡ = G + G̃ + H + H̃. We get weak quadratic convergence
only if we assume that f, g ∈= C0,2,2(Ω, R), G, H ∈ C2(Ω̄, R), f̃ , g̃ ∈ C0,1,1(Ω, R), =
G̃, H̃ ∈ C1(Ω̄, R). This general case is considered in the next theorem.

Theorem 5 (see [7]). Let f, g ∈ C0,2,2(Ω, R), G,H ∈ C2(Ω̄, R), f̃ , g̃ ∈ C(Ω, R), =
G̃, H̃ ∈ C(Ω̄, R). Assume that:

1o (y0, λ0), (z0, γ0) ∈ C1(J,R) × R are lower and upper solutions of problem (4.1),
respectively, and such that y0(t) ≤ z0(t), t ∈ J and λ0 ≤ γ0,

2o conditions 5o and 6o of Theorem 4 hold,

3o −Gλ(u, v) ≥ K1, −Hλ(u, v) ≥ K2, L̄1 ≤ Gy(u, v) ≤ L1, L̄2 ≤ Hy(u, v) ≤ L2,
M̄1 ≤ fλ(t, ū, v̄) ≤ M1, M̄2 ≤ gλ(t, ū, v̄) ≤ M2 for (u, v) ∈ Ω̄, (t, ū, v̄) ∈ Ω;
|fy(t, u, v)| ≤ N1, |gy(t, u, v)| ≤ N2 for (t, u, v) ∈ Ω,

5o F̃y, F̃λ, Φ̃y, = Φ̃λ, P̃y, P̃λ, ∆̃y, ∆̃λ exist, are nondecreasing in the last two variables,
while T̃y, T̃λ, Ψ̃y, Ψ̃λ, Q̃y, Q̃λ, Γ̃y, Γ̃λ exist and are nonincreasing in the last two vari-
ables with F̃ = f̃ + Φ̃, T̃ = g̃ + Ψ̃, P̃ = G̃ + ∆̃, = Q̃ = H̃ + Γ̃,

6o M̄3 ≤ f̃λ(t, ū, v̄) ≤ M3, M̄4 ≤ g̃λ(t, ū, v̄) ≤ M4,

K3 ≤ −G̃λ(u, v) ≤ K̄3, K4 ≤ −H̃λ(u, v) ≤ K̄4, L̄3 ≤ G̃y(u, v) ≤ L3, L̄4 ≤
H̃y(u, v) ≤ L4, |f̃y(t, ū, v̄)| ≤ N3, |g̃y(t, ū, v̄)| ≤ N4, η̄1 ≤ Γ̃y(u, v) ≤ η1, ζ̄1 ≤
∆̃y(u, v) ≤ ζ1, ϑ̄1 ≤ Φ̃λ(t, ū, v̄) ≤ ϑ1, µ̄1 ≤ Ψ̃λ(t, ū, v̄) ≤ µ1 for (u, v) ∈ Ω, (t, ū, v̄) ∈
Ω̄
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7o put L = L1+L2+L3+L4, K = K1+K2+K3+K4 > 0, M = M1+M2+M3+M4,
N = N1 + N2 + N3 + N4, L̄ = L̄1 + L̄2 + L̄3 + L̄4 + ζ̄1 − ζ1 + η̄1 − η1, M̄ =
M̄1 + M̄2 + M̄3 + M̄4 + ϑ̄1 − ϑ1 + µ̄1 − µ1,

8o condition 7o of Theorem 4 holds,

9o S(b) < 1, where S is defined as in condition 4o of Theorem 3.

Then there exist monotone sequences {yn}, {zn}, {λn}, {γn} which converge uni-
formly and monotonically to the unique solution of problem (4.1) and the convergence
is semi–quadratic, i.e.,

max
t∈J

|x(t)− yn+1(t)| ≤ a1 max
t∈J

|x(t)− yn(t)|2 + a2 max
t∈J

|x(t)− zn(t)|2 + a3|λ− λn|2

+a4|λ− γn|2 + a5 max
t∈J

|x(t)− yn(t)|+ a6|λ− λn|,

|λ− λn+1| ≤ b1 max
t∈J

|x(t)− yn(t)|2 + b2 max
t∈J

|x(t)− zn(t)|2 + b3|λ− λn|2

+b4|λ− γn|2 + b5 max
t∈J

|x(t)− yn(t)|+ b6|λ− λn|,

max
t∈J

|x(t)− zn+1(t)| ≤ ā1 max
t∈J

|x(t)− yn(t)|2 + ā2 max
t∈J

|x(t)− zn(t)|2 + ā3|λ− λn|2

+ā4|λ− γn|2 + ā5 max
t∈J

|x(t)− zn(t)|+ ā6|λ− γn|

|λ− γn+1| ≤ b̄1 max
t∈J

|x(t)− yn(t)|2 + b̄2 max
t∈J

|x(t)− zn(t)|2 + b̄3|λ− λn|2

+b̄4|λ− γn|2 + b̄5 max
t∈J

|x(t)− zn(t)|+ b̄6|λ− γn|,

for some nonnegative constants ai, bi, āi, b̄i, i = 1, 2, 3, 4, 5, 6.
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