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Abstract. In this manuscript, we consider the notion of generalized Sehgal contraction condi-
tion in a partial metric space. For the pair of two self mappings .S;T / which satisfies Sehgal
contraction condition, we obtain a unique common fixed point.
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1. INTRODUCTION AND PRELIMINARIES

Partial metric space (in short PMS), is one of the attempts to generalize the notion
of the metric space that by replacing the condition d.x;x/ D 0 with the condition
d.x;x/ � d.x;y/ for all x;y in the definition of the metric (see e.g.[14, 15]). In
these initial papers, Matthews discussed not only the general topological properties
of partial metric spaces but also some properties of convergence of sequences. In
[14, 15], he proved a fixed point theorem for contractive mappings of partial metric
spaces: Any mapping T of a complete partial metric space X into itself that satisfies,
for some 0 � k < 1, the inequality d.T x;Ty/ � kd.x;y/, for all x;y 2 X , has a
unique fixed point. Recently, many authors (see e.g.[1, 2, 8, 10–17, 20]) focused on
this subject and generalized some fixed point theorems from the class of metric spaces
to the class of partial metric spaces. In this manuscript, we discuss existence and
uniqueness of a common fixed point of self-mappings S;T of partial metric spaces.

A partial metric space (See e.g.[14,15]) is a pair .X;p WX �X! RC/ (where RC

denotes the set of all non negative real numbers) such that
(PM1) p.x;y/D p.y;x/ (symmetry)
(PM2) If 0� p.x;x/D p.x;y/D p.y;y/ then x D y (equality)
(PM3) p.x;x/� p.x;y/ (small self-distances)
(PM4) p.x;´/Cp.y;y/� p.x;y/Cp.y;´/ (triangularity)
for all x;y;´ 2 X . For a partial metric p on X , the functions dp;dm W X �X ! RC

given by
dp.x;y/D 2p.x;y/�p.x;x/�p.y;y/ (1.1)
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and
dm.x;y/Dmaxfp.x;y/�p.x;x/;p.x;y/�p.y;y/g (1.2)

are (usual) metrics onX . It is clear that dp and dm are equivalent. Each partial metric
p on X generates a T0 topology �p on X with a base consisting of the family of open
p-balls fBp.x;"/ W x 2X;" > 0g, where Bp.x;"/D fy 2X W p.x;y/ < p.x;x/C "g

for all x 2X and " > 0.

Example 1. A basic example of partial metric is .RC;p/, where p.x;y/Dmaxfx;yg.
It is clear that p is not a (usual) metric. Note that in this case dp.x;y/D jx�yj and
dm.x;y/D

1
2 jx�yj.

Example 2. (See [8]) Let X D fŒa;b� W a;b;2 R; a� bg and define p.Œa;b�; Œc;d �/
Dmaxfb;dg�minfa;cg. Then .X;p/ is a partial metric spaces.

Example 3. (See [8]) Let X WD Œ0;1�[ Œ2;3� and define p W X �X ! Œ0;1/ by

p.x;y/D

�
maxfx;yg if fx;yg\ Œ2;3�¤¿;
jx�yj if fx;yg � Œ0;1�:

Then (X, p) is a complete partial metric space.

Definition 1. (See e.g. [14, 15] )
.i/ A sequence fxng in a PMS .X;p/ converges to x 2X if and only if p.x;x/D

limn!1p.x;xn/,
.i i/ a sequence fxng in a PMS .X;p/ is called a Cauchy if and only if limn;m!1p.xn;xm/

exists (and finite),
.i i i/ A PMS .X;p/ is said to be complete if every Cauchy sequence fxng in X

converges, with respect to �p, to a point x 2X such that p.x;x/D limn;m!1p.xn;xm/.
.iv/ A mapping f WX!X is said to be continuous at x0 2X , if for every " > 0,

there exists ı > 0 such that f .B.x0; ı//� B.f .x0/;"/.

Lemma 1. (See e.g.[14, 15] )
.A/ A sequence fxng is Cauchy in a PMS .X;p/ if and only if fxng is Cauchy in

a metric space .X;dp/,
.B/ A PMS .X;p/ is complete if and only if a metric space .X;dp/ is complete.

Moreover,

lim
n!1

dp.x;xn/D 0, p.x;x/D lim
n!1

p.x;xn/D lim
n;m!1

p.xn;xm/ (1.3)

Remark 1. Since dp and dm are equivalent, we can take dp instead of dm in this
Lemma.

Let .X;p/ be a PMS and denote the closure of the set fp.x;y/ W x;y 2 Xg by P
and P 3 D P �P �P . A function � W P 3! RC is right continuous if and only if

(S1) the sequences fang;fbng;fcng decrease and converge to a;b;c 2 P , respect-
ively,
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then
�.an;bn; cn/! �.a;b;c/:

The function � is called symmetric if and only if

�.a;b;c/D �.b;a;c/; for all .a;b;c/ 2 P 3:

In the spirit of Sehgal [19], we state the following definition for partial metric
spaces.

Definition 2. Let .X;p/ be a PMS and S;T WX !X be two mappings. The pair
.S;T / is said to satisfy Sehgal k-condition if and only if there are maps IS W S �X!

ZC and IT W T �X !ZC such that if r.x/D IS .S;x/ and q.x/D IT .T;x/, then

p.Sr.x/x;T q.y/y/� k�.p.Sr.x/x;x/;p.y;T q.y/y/;p.x;y// (1.4)

for all x;y 2 X , where k 2 R and � is a symmetric right continuous. If 0 � k < 1,
then we say that .S;T / satisfy Sehgal contraction condition.

2. MAIN RESULTS

The following two lemmas are easy to prove but they will be very useful in the
proof of the main theorem.

Lemma 2. (See e.g. [1, 10]) Let .X;p/ be a complete PMS. Then
(A) If p.x;y/D 0 then x D y,
(B) If x ¤ y, then p.x;y/ > 0.

Lemma 3. (See e.g. [1,10]) Assume xn! ´ as n!1 in a PMS .X;p/ such that
p.´;´/D 0. Then limn!1p.xn;y/D p.´;y/ for every y 2X .

The following theorem extends the results of [19].

Theorem 1. Let .X;p/ be a complete partial metric space. Suppose that S;T W
X ! X are two mappings such that the pair .S;T / satisfies Sehgal’s contraction
contraction.

(A) If �.a;b;c/ � maxfa;b;cg, for .a;b;c/ 2 P 3, then S and T have a unique
common fixed point in X , that is, Sr.´/´D T q.´/´D ´.

Proof. Let x0 2X . Define the sequence fxng
1
nD1 in a way that x2D T

q.x1/x1 and
x1 D S

r.x0/x0 and inductively

x2nC2 D T
q.x2nC1/x2nC1 and x2nC1 D S

r.x2n/x2n for nD 0;1;2; : : : :

If n is odd, due to (1.4), we have

p.xnC1;xnC2/D p.T xn;SxnC1/� k�.p.xn;xnC1/;p.xnC1;xnC2/;p.xn;xnC1//

(2.1)
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Regarding the assumption of .A/,

p.xnC1;xnC2/D p.T xn;SxnC1/� kmaxfp.xn;xnC1/;p.xnC1;xnC2/g (2.2)

If maxfp.xn;xnC1/;p.xnC1;xnC2/gDp.xnC1;xnC2/ then the expression (2.2) turns
into

p.xnC1;xnC2/� kp.xnC1;xnC2/:

Since k < 1, this is impossible. Thus, we have

p.xnC1;xnC2/� kp.xn;xnC1/: (2.3)

If n is even, analogously we observe that p.xnC1;xnC2/ � kp.xn;xnC1/. Observe
that fp.xn;xnC1/g is a non-negative, non-increasing sequence of reals. Regarding
(2.3), one can observe that

p.xn;xnC1/� k
np.x0;x1/; 8nD 0;1;2; � � � (2.4)

Letting n!1, the right hand side of (2.4) tends to zero.
Consider now

dp.xnC1;xnC2/ D 2p.xnC1;xnC2/�p.xnC1;xnC1/�p.xnC2;xnC2/

� 2p.xnC1;xnC2/

� 2knC1p.x0;x1/: (2.5)

Hence, regarding (2.4), we have limn!1dp.xnC1;xnC2/D 0. Moreover,

dp.xnC1;xnCs/ � dp.xnCs�1;xnCs/C�� �Cdp.xnC1;xnC2/

� 2knCsp.x0;x1/C�� �C2k
nC1p.x0;x1/ (2.6)

which implies that fxng is a Cauchy sequence in .X;dp/ that is, dp.xn;xm/! 0:

Since .X;p/ is complete, by Lemma 1.3, .X;dp/ is complete and the sequence fxng

is convergent in .X;dp/; say to ´ 2X .
By Lemma 1.3,

p.´;´/D lim
n!1

p.xn;´/D lim
n;m!1

p.xn;xm/ (2.7)

Since fxng is a Cauchy sequence in .X;dp/, we have limn;m!1dp.xn;xm/ D 0.
Since

maxfp.xn;xn/;p.xnC1;xnC1/g � p.xn;xnC1/;

then by (2.4), it follows that

maxfp.xn;xn/;p.xnC1;xnC1/g � k
nC1p.x0;x1/ (2.8)

Thus from (2.4), (2.8) and from the definition of dp, we have
limn;m!1p.xn;xm/D 0. Therefore from (2.7) we have

p.´;´/D lim
n!1

p.xn;´/D lim
n;m!1

p.xn;xm/D 0: (2.9)
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We assert that T q.´/´D ´. Assume T q.´/´¤ ´, then p.´;T q.´/´/ > 0. Let fx2n.i/g

be subsequence of fx2ng and hence fxng. Due to (PM4), we have

p.Sx2n.i/;T
q.´/´/D p.Sx2n.i/;T

q.´/´/

� k�.p.x2n.i/;x2n.i/C1/;p.T
q.´/´;´/;p.x2n.i/;´/ (2.10)

Letting n!1 and taking the assumption of .A/ and (2.9) into account, we get that

p.´;T q.´/´/ � k�.0;p.T q.´/´;´/;0/� kp.T q.´/´;´/ (2.11)

Since k < 1, then p.T q.´/´;´/ D 0. By Lemma 2, we get T q.´/´ D ´. Analog-
ously, if we choose a subsequence fx2n.i/C1g be subsequence of fx2nC1g, we obtain
Sr.´/´D ´.

Assume now that there exists w 2X such that Sr.w/ D T q.w/w D w. By (PM3)

p.´;´/ � p.´;w/ and p.w;w/ � p.´;w/ (2.12)

Regarding that the function � satisfies the condition of .A/ with (2.12), we get

p.´;w/D p.Sr.´/´;T q.w/w/ � k�.p.´;Sr.´/´/;p.T q.w/w;w/;p.´;w//

� k�.p.´;´/;p.w;w/;p.´;w//

� kp.´;w/

Since k < 1, it yields a contradiction.
Thus, p.´;w/D 0 and by Lemma 2 we have ´D w. �

Corollary 1. Let .X;p/ be a complete partial metric space. Suppose IT and IS

are defined as above. S;T W X ! X are two mappings such that the pair .S;T /
satisfies one of the following condition:

(A) p.Sr.x/x;T q.y/y/ � kmaxfp.Sr.x/x;x/;p.y;T q.y/y/;p.x;y/g for some
0� k < 1,

(B) p.Sr.x/x;T q.y/y/ � ˛p.Sr.x/x;x/C ˇp.y;T q.y/y/C p.x;y/ for some
non-negative reals ˛;ˇ; with ˛CˇC < 1.

Then S and T have a unique common fixed point inX , that is, Sr.´/´D T q.´/´D

´.

Proof. For .A/, we choose a function �.a;b;c/D maxfa;b;cg as in Theorem 1.
In case of .B/, set k D ˛CˇC . Then .A/ implies .B/. �

Notice that this corollary generalizes also some results of ([6] -[4]).

Corollary 2. Let .X;p/ be a complete partial metric space. Let S;T WX !X be
two mappings such that the pair .S;T / satisfies the following condition:

p.Srx;T qy/� k�.p.Srx;x/;p.y;T qy/;p.x;y// (2.13)

for all x;y 2X where 0� k < 1 and � is symmetric right-continuous. If �.a;b;c/�
maxfa;b;cg then S and T have a unique common fixed point theorem.
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Proof. By Theorem 1,and by taking the maps IT ;IS as a constant, we get that Sr

and T q have a unique common fixed point, say ´ 2X . Now consider

Sq.S´/D SqC1´D S.Sq´/D S´

which says that S´ is a fixed point of Sq . Since ´ is the unique fixed point of Sq ,
then S´D ´. Analogously, one can get T ´D ´. �

Corollary 3. Let .X;p/ be a complete partial metric space. Let S;T WX !X be
two mappings such that the pair .S;T / satisfies the following condition:

p.Srx;T qy/� kmaxfp.Srx;x/;p.y;T qy/;p.x;y/g (2.14)

for all x;y 2X where 0� k < 1 and � is symmetric right-continuous. If �.a;b;c/�
maxfa;b;cg then S and T have a unique common fixed point theorem.

Corollary 4. Let .X;p/ be a complete partial metric space. Let S;T WX !X be
two mappings such that the pair .S;T / satisfies the following condition:

p.Srx;T qy/� ˛p.Srx;x/Cˇp.y;T qy/Cp.x;y/ (2.15)

for all x;y 2 X , where for some non-negative reals ˛;ˇ; with ˛CˇC < 1. 0 �
k < 1 and � is symmetric right-continuous. If �.a;b;c/�maxfa;b;cg then S and T
have a unique common fixed point theorem.

Remark 2. Consider Corollary 4 and take S D T .
(1) If we set r D q in (2.15) then we get Reich type fixed point theorem (See e.g.

[2, 18]).
(2) If we set r D q D 1 and  D 0 in (2.15) we get Kannan type fixed point

theorem (See e.g. [2, 9] )
(3) If we set r D q D 1 and ˛ D ˇ D 0 in (2.15) we get Banach type fixed point

theorem (See e.g. [2, 3, 15, 17] and [4–7])

Example 4. Let X D Œ0;1� and p.x;y/ D maxfx;yg. It is clear that .X;p/ is a
partial metric spaces but not a metric. Suppose that Sx D T x D x

2
and IS ;IT are

constant mappings, such as r.x/ D 2 D q.y/. Take �.a;b;c/ D 1
3
ŒaC bC c�. Let

p.x;y/Dmaxfx;yg for all x;y 2X . For k
3

the condition of Corollary 2 is satisfied.
Clearly, 0 is the common fixed point of S;T .

Example 5. Let X D Œ1;15� and p.x;y/D maxfx;yg. Here .X;p/ is a complete
metric spaces. Define the self-mappings S;T W X ! X as T x D x2

1Cx
and Sx D�

x
1Cx

if 1 < x � 15
0 if 0� x � 1

. Set �.a;b;c/ D 19
20

maxfx;yg. Without loss of generality,

assume y < x. Thus, p.T x;x/D x, p.x;y/D x, p.Sy;y/D y and p.T x;Sy/D
x2

1Cx
. Clearly, p.T x;Sy/D x2

1Cx
� �.x;y;x/D 19

20
x. Hence, it satisfies the condi-

tions of Corollary 2.14 for r D 1 and q D 1, and 0 is the unique common fixed point
of S and T .
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[8] D. Ilić, V. Pavlović, and V. Rakočević, “Some new extensions of Banach’s contraction principle to
partial metric space,” Appl. Math. Lett., vol. 24, no. 8, pp. 1326–1330, 2011.

[9] R. Kannan, “Some results on fixed points,” Bull. Calcutta Math. Soc., vol. 60, pp. 71–76, 1968.
[10] E. Karapınar, “Generalizations of Caristi Kirk’s theorem on partial metric spaces,” Fixed Point

Theory Appl., vol. 2011, no. 2011:4, p. 7, 2011.
[11] E. Karapınar, “Weak '-contraction on partial metric spaces and existence of fixed points in par-

tially ordered sets,” Math. Æterna, vol. 1, no. 3-4, pp. 237–244, 2011.
[12] E. Karapınar, “Weak '-contraction on partial metric spaces,” J. Comput. Anal. Appl., (in press).
[13] E. Karapınar and I. M. Erhan, “Fixed point theorems for operators on partial metric spaces,” Appl.

Math. Lett., vol. 24, no. 11, pp. 1894–1899, 2011.
[14] S. G. Matthews, “Partial metric topology,” in Research Report 212. Dept. of Computer Science.

University of Warwick, 1992.
[15] S. G. Matthews, “Partial metric topology,” in Papers on general topology and applications, ser.

Ann. New York Acad. Sci., vol. 728. New York: New York Acad. Sci., 1994, pp. 183–197.
[16] S. Oltra, S. Romaguera, and E. A. Sánchez-Pérez, “The canonical partial metric and the uniform
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