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1. Introduction

The existence of solutions on compact intervals for three-point boundary value prob-
lems for second order differential equations has received much attention in the last
decade. We refer for instance to the papers of Boucherif and Bouguima [1], Gupta
[2], [3], [4], [5], Gupta et al [6], [7], [8], Gupta and Trofimchuk [7], [8] and Marano
[9]. However, to our knowledge, this type of problem has not been studied for the
multivalued case.

The study of multi-point boundary value problems for second order ordinary dif-
ferential equations was initiated by Il’In and Moiseev in [10], [11] motivated by the
work of Bitsadze and Samarskii on nonlocal elliptic boundary value problems, 12],
[13], [14].

The methods used are usually the topological transversality of Granas or the
degree theory methods combined with Wirtinger type inequalities.

In this paper we shall prove a theorem which assures the existence of solutions
defined on a compact real interval for the three-point boundary value problem (BVP



40 M. Benchohra, S. K. Ntouyas

for short) of the second order differential inclusion

y′′ ∈ F (t, y), t ∈ J = [0, 1] (1.1)
y(0) = 0, y(η) = y(1) , (1.2)

where F : J × R −→ 2R is a multivalued map with compact convex values and
η ∈ (0, 1).

The method we are going to use is to reduce the existence of solutions to problem
(1.1)-(1.2) to the search for fixed points of a suitable multivalued map on the Banach
space C(J,R). In order to prove the existence of fixed points, we shall rely on a fixed
point theorem for condensing maps due to Martelli [15].

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts from multi-
valued analysis which are used throughout this paper.

Let (X, ‖ · ‖) be a Banach space. A multivalued map G : X −→ 2X is con-
vex (closed) valued if G(x) is convex (closed) for all x ∈ X. G is bounded on
bounded sets if G(B) = ∪x∈BG(x) is bounded in X for any bounded set B of X
(i.e. supx∈B{sup{‖y‖ : y ∈ G(x)}} < ∞).

G is called upper semicontinuous (u.s.c.) on X if for each x∗ ∈ X the set G(x∗)
is a nonempty, closed subset of X, and if for each open set B of X containing G(x∗),
there exists an open neighbourhood V of x∗ such that G(V ) ⊆ B.

G is said to be completely continuous if G(B) is relatively compact for every
bounded subset B ⊆ X.

If the multivalued map G is completely continuous with nonempty compact values,
then G is u.s.c. if and only if G has a closed graph (i.e. xn −→ x∗, yn −→ y∗, yn ∈
Gxn imply y∗ ∈ Gx∗).

G has a fixed point if there is x ∈ X such that x ∈ Gx.

In the following CC(X) denotes the set of all nonempty compact and convex
subsets of X.

A multivalued map G : J −→ CC(E) is said to be measurable if for each x ∈ X
the function Y : J −→ R defined by

Y (t) = d(x, G(t)) = inf{|x− z| : z ∈ G(t)}
is measurable.

Definition 1 A multivalued map F : J ×R −→ 2R is said to be an L1-Carathéodory
if

(i) t 7−→ F (t, y) is measurable for each y ∈ R;

(ii) y 7−→ F (t, y) is upper semicontinuous for almost all t ∈ J ;



A note on a three point boundary value problem 41

(iii) For each k > 0, there exists hk ∈ L1(J,R+) such that

‖F (t, y)‖ = sup{‖v‖ : v ∈ F (t, y)} ≤ hk(t) for all |y| ≤ k

and for almost all t ∈ J .

An upper semi-continuous map G : X −→ 2X is said to be condensing if for
any subset B ⊆ X with α(B) 6= 0, we have α(G(B)) < α(B), where α denotes the
Kuratowski measure of noncompactness. For properties of the Kuratowski measure,
we refer to Banas and Goebel [16].

We remark that a completely continuous multivalued map is the easiest example of
a condensing map. For more details on multivalued maps see the books by Deimling
[17] and Hu and Papageorgiou [18].

We will need the following hypotheses:

(H1) F : J ×R −→ CC(R) is an L1- Carathéodory multivalued map.

(H2) There exists a function H ∈ L1(J,R+) such that

‖F (t, y)‖ := sup{‖v‖ ∈ F (t, y)} ≤ H(t) for almost all t ∈ J and all y ∈ R.

Definition 2 A function y : J −→ R is called a solution for the BVP (1.1)-(1.2)
if y and its first derivative are absolutely continuous and y′′ (which exists almost
everywhere) satisfies the differential inclusion (1.1) a.e. on J and the condition (1.2).

For the multivalued map F and for each y ∈ C(J,R) we define S1
F,y by

S1
F,y = {v ∈ L1(J,R) : v(t) ∈ F (t, y(t)) for a.e. t ∈ J}.

Our considerations are based on the following lemmas.

[19]. Let I be a compact real interval and X be a Banach space. Let F be a
multivalued map satisfying (H1) and S1

F,y 6= ∅ for any y ∈ C(J,X). Let Γ be a linear
continuous mapping from L1(I, X) to C(I, X), then the operator

Γ ◦ SF : C(I, X) −→ CC(C(I, X)), y 7−→ (Γ ◦ SF )(y) := Γ(SF,y)

is a closed graph operator in C(I, X)× C(I, X).

Lemma 3 [15]. Let X be a Banach space and N : X −→ CC(X) be a condensing
map. If the set

Ω := {y ∈ X : λy ∈ N(y) for some λ > 1}
is bounded, then N has a fixed point.
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3. Main Result

Now, we are able to state and prove our main theorem.

Theorem 4 Assume that hypotheses (H1)-(H2) hold. Then the BVP (1.1)-(1.2) has
at least one solution on J.

Proof. Let C(J,R) be the Banach space provided with the norm

‖y‖∞ := sup{‖y(t)‖ : t ∈ J}, for y ∈ C(J,R).

Transform the problem into a fixed point problem. Consider the multivalued map,
N : C(J,R) −→ 2C(J,R) defined by

N(y) =
{

h ∈ C(J,R) : h(t) =
∫ t

0

(t− s)g(s)ds +
t

1− η

∫ η

0

(η − s)g(s)ds

− t

1− η

∫ 1

0

(1− s)g(s)ds

}
,

where
g ∈ SF,y =

{
g ∈ L1(J,R) : g(t) ∈ F (t, y(t)) for a.e. t ∈ J

}
.

Remark 5 (i) It is clear that the fixed points of N are solutions to (1.1)-(1.2).

(ii) For each y ∈ C(J,R) the set SF,y is nonempty (see Lasota and Opial [19]).

We shall show that N satisfies the assumptions of Lemma 3. The proof will be
given in several steps.

Step 1: N(y) is convex for each y ∈ C(J,R).

Indeed, if h1, h2 belong to N(y), then there exist g1, g2 ∈ SF,y such that for each
t ∈ J we have

hi(t) =
∫ t

0

(t−s)gi(s)ds+
t

1− η

∫ η

0

(η−s)gi(s)ds− t

1− η

∫ 1

0

(1−s)gi(s)ds, i = 1, 2.

Let 0 ≤ α ≤ 1. Then for each t ∈ J we have

(αh1 + (1− α)h2)(t) =
∫ t

0

(t− s)[αg1(s) + (1− α)g2(s)]ds

+
t

1− η

∫ η

0

(η−s)[αg1(s)+(1−α)g2(s)]ds− t

1− η

∫ 1

0

(1−s)[αg1(s)+(1−α)g2(s)]ds .

Since SF,y is convex (because F has convex values), then

αh1 + (1− α)h2 ∈ N(y).
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Step 2: N is bounded on bounded sets of C(J,R).

Indeed, it is enough to show that there exists a positive constant c such that for
each h ∈ N(y), y ∈ Br = {y ∈ C(J,R) : ‖y‖∞ ≤ r} one has ‖h‖∞ ≤ c.

If h ∈ N(y), then there exists g ∈ SF,y such that for each t ∈ J we have

h(t) =
∫ t

0

(t− s)g(s)ds +
t

1− η

∫ η

0

(η − s)g(s)ds− t

1− η

∫ 1

0

(1− s)g(s)ds.

By (H1) we have for each t ∈ J that

‖h(t)‖ ≤
∫ t

0

hr(s)ds +
1

1− η

∫ η

0

(η − s)hr(s)ds +
1

1− η

∫ 1

0

(1− s)hr(s)ds

Then

|h|∞ ≤
∫ 1

0

hr(s)ds +
1

1− η

∫ η

0

(η − s)hr(s)ds +
1

1− η

∫ 1

0

(1− s)hr(s)ds = c.

Step 3: N sends bounded sets of C(J,R) into equicontinuous sets.

Let t1, t2 ∈ J, t1 < t2 and Br be a bounded set of C(J,R). For each y ∈ Br and
h ∈ N(y), there exists g ∈ SF,y such that

h(t) =
∫ t

0

(t− s)g(s)ds +
t

1− η

∫ η

0

(η − s)g(s)ds− t

1− η

∫ 1

0

(1− s)g(s)ds, t ∈ J.

Thus we obtain

‖h(t2)− h(t1)‖ ≤
∫ t2

0

(t2 − s)|g(s)|ds +
∫ t2

t1

(t1 − s)‖g(s)‖ds+

+
t2 − t1
1− η

∫ η

0

(η − s)‖g(s)‖ds +
t2 − t1
1− η

∫ 1

0

(1− s)‖g(s)‖ds

≤
∫ t2

0

(t2 − s)hr(s)ds +
∫ t2

t1

(t1 − s)hr(s)ds

+
t2 − t1
1− η

∫ η

0

(η − s)hr(s)ds +
t2 − t1
1− η

∫ 1

0

(1− s)hr(s)ds.

As t2 −→ t1 the right-hand side of the above inequality tends to zero.

As a consequence of Step 2, Step 3 together with the Ascoli-Arzela theorem we
can conclude that N is completely continuous.

Step 4: N has a closed graph.

Let yn −→ y∗, hn ∈ N(yn), and hn −→ h∗. We shall prove that h∗ ∈ N(y∗).

hn ∈ N(yn) means that there exists gn ∈ SF,yn such that

hn(t) =
∫ t

0

(t− s)gn(s)ds +
t

1− η

∫ η

0

(η− s)gn(s)ds− t

1− η

∫ 1

0

(1− s)gn(s)ds, t ∈ J.
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We must prove that there exists g∗ ∈ SF,y∗ such that

h∗(t) =
∫ t

0

(t− s)g∗(s)ds +
t

1− η

∫ η

0

(η − s)g∗(s)ds− t

1− η

∫ 1

0

(1− s)g∗(s)ds, t ∈ J.

Now, we consider the linear continuous operator

Γ : L1(J,R) −→ C(J,R)

g 7−→ Γ(g)(t) =
∫ t

0

(t−s)g(s)ds+
t

1− η

∫ η

0

(η−s)g(s)ds− t

1− η

∫ 1

0

(1−s)g(s)ds, t ∈ J.

From Lemma , it follows that Γ ◦ SF is a closed graph operator.

Moreover, from the definition of Γ we have

hn(t) ∈ Γ(SF,yn
).

Since yn −→ y∗, it follows from Lemma that

h∗(t) =
∫ t

0

(t− s)g∗(s)ds +
t

1− η

∫ η

0

(η − s)g∗(s)ds− t

1− η

∫ 1

0

(1− s)g∗(s)ds, t ∈ J

for some g∗ ∈ SF,y∗ .

Step 5: The set

Ω := {y ∈ C(J,R) : λy ∈ N(y) for some λ > 1}

is bounded.

Let y ∈ Ω. Then λy ∈ N(y) for some λ > 1. Thus there exists g ∈ SF,y such that

y(t) = λ−1

∫ t

0

(t− s)g(s)ds + λ−1 t

1− η

∫ η

0

(η − s)g(s)ds−

− λ−1 t

1− η

∫ 1

0

(1− s)g(s)ds, t ∈ J.

This implies by (H2) that for each t ∈ J we have

‖y(t)‖ ≤
∫ t

0

(t− s)H(s)ds +
1

1− η

∫ η

0

(η − s)H(s)ds +
1

1− η

∫ 1

0

(1− s)H(s)ds.

Thus

‖y‖∞ ≤
∫ 1

0

(1− s)H(s)ds +
1

1− η

∫ η

0

(η − s)H(s)ds +
1

1− η

∫ 1

0

(1− s)H(s)ds := K.

This shows that Ω is bounded. Set X := C(J,R). As a consequence of Lemma 3 we
deduce that N has a fixed point which is a solution of (1.1)-(1.2) on J .



A note on a three point boundary value problem 45

4. Concluding Remarks

Let ai ∈ R, with all of the a,
is having the same sign, ξi ∈ (0, 1), i = 1, 2, . . . , m − 2,

0 < ξ1 < ξ2 < . . . < ξm−2 < 1. Consider the following m-point boundary value
problem for second order differential inclusions

y′′(t) ∈ F (t, y(t)), t ∈ [0, 1] (4.1)

y(0) = 0, y(1) =
m−2∑

i=1

aiy(ξi). (4.2)

It is well known (see [10] for example) that if a function y ∈ C1 satisfies the boundary
condition (4.2) and all of the ai, i = 1, 2, . . . ,m − 2 have the same sign, then there
exists η ∈ [ξ1, ξm−2], depending on y ∈ C1[0, 1] such that

y(1) = αy(η)

with α =
m−2∑
i=1

ai. Accordingly, the problem of the existence of a solution for the BVP

(4.1)- (4.2) can be studied via the use of the a priori estimates for the three point
BVP

y′′(t) ∈ F (t, y(t)), t ∈ [0, 1]
y(0) = 0, y(1) = αy(η),

where η ∈ (0, 1) is given. We omit the details, since the proof follows the steps of the
proof of Theorem 4, with obvious modifications.

It is obvious that the above method can also be applied to other types of m-point
BVPs. For example for the BVPs

y′′(t) ∈ F (t, y(t)), t ∈ [0, 1]

y′(0) = 0, y(1) =
m−2∑

i=1

aiy(ξi)

or

y′′(t) ∈ F (t, y(t)), t ∈ [0, 1]

y(0) = 0, y′(1) =
m−2∑

i=1

aiy
′(ξi)

which can be reduced to the following three point BVPs:

y′′(t) ∈ F (t, y(t)), t ∈ [0, 1]
y′(0) = 0, y(1) = αy(η)
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and

y′′(t) ∈ F (t, y(t)), t ∈ [0, 1]
y(0) = 0, y′(1) = αy(η) ,

respectively.
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