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Abstract. In the last two decades, substantial effort has been devoted to solve large systems of
linear equations with algebraic multigrid (AMG) method. Usually, these systems arise from
discretizing partial differential equations (PDE) which we encounter in engineering problems.
The main principle of this methodology focuses on the elimination of the so-called algebraic
smooth error after the smoother has been applied. Smoothed aggregation style multigrid is a
particular class of AMG method whose coarsening process differs from the classic AMG. It
is also a very popular and effective iterative solver and preconditioner for many problems. In
this paper, we present two kinds of novel methods which both focus on the modification of the
aggregation algorithm, and both lead a better performance while apply to several problems, such
as Helmholtz equation.
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1. INTRODUCTION

In this study we consider multigrid methods for solving large and sparse n� n
linear systems

AuD b

arising from the discretization of partial differential equations.
Multigrid methods are widely popular as linear solvers because they can achieve

linear algorithmic scalability for many practical problems. A very important ingredi-
ent of multigrids is the choice of both the relaxation and the correction scheme. The
relaxation scheme utilizes a simple iterative solver such as the Jacobi or (symmetric)
Gauss-seidel method as the smoother, and is aimed at eliminating the high-frequency
components of the error. Afterwards, the low-frequency components of the error are
damped via the coarse-grid correction, which consists of solving approximately the
residual equation on a coarser grid.
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In order to construct the coarse-grid correction, we need to define several mul-
tigrid components, that are the hierarchy of grids, the smoothing and transfer (pro-
longation/restriction) operators, and a solver for the coarsest grid. Both theory and
several reported experiments indicate that the rate of convergence of multigrid met-
hods may be independent on the number of unknowns, and the complexity increases
only linearly with the problem size.

In AMG methods, the grids and the operators are selected using only informa-
tion from the entries of the coefficient matrix, and not using physical meshes like in
Geometric multigrids (GMG). It has been shown that AMG often inherits the excel-
lent algorithmic scalability of GMG, without requiring any geometric information.
For this reason, the development of efficient and reliable AMG methods has received
considerable research attention in the past decade.

Variants of AMG methods based on smoothed aggregation (referred to as SA met-
hods) have been introduced in [17, 18]. The main algorithmic difference between
the two approaches consists in the distinction between coarse and fine variables. In
classic AMG techniques, the fine-level variables are splitted into two disjoint subsets,
the so-called C/F splitting where C represent the variables on the coarser level. Vice
versa, in the SA method the coarsening process is defined by generating aggregates
rather than by constructing the C/F splitting. All unknowns in the same aggregate are
strongly dependent on each other in order to guarantee the accuracy of the interpola-
tion.

Recent trend of development of SA methods moved in two directions: 1. Use the
near-null space information to accelerate the standard algorithm, such as in [3, 6].
2. Construct more accurate interpolation operators, such as in [6, 12]. In this paper,
we follow the second direction and we investigate a different strategy to construct
efficient interpolation operators that can also preserve low iteration cost and storage
requirements.

The paper is organized as follows. In Section 2, we briefly recall SA methods and
we introduce the standard notation that is used throughout the remainder of the paper.
In Section 3, we focus on the description of two modified aggregation algorithms.
Finally, we demonstrate the performance of our new method in Section 4.

2. PRELIMINARIES

We briefly recall the standard SA method and its principles following [3, 17]. Let
us assume that the coefficient matrix A of the linear system is of order n D n1 and
it arises from the discretization of a PDE. A hierarchy of coarse-level matrices is
defined as

AlC1 D .SlP
l
lC1/

TAlSlP
l
lC1;A1 D A;



TWO NOVEL AGGREGATION-BASED ALGEBRAIC MULTIGRID METHODS 145

for l D 1; : : : ;L� 1. A simple and proper choice for the prolongation smoother is
Richardson’s method with a particular step size:

Sl D I �
4

3�l
Al ;

where �l is an upper bound on the spectral radius of the matrix on level l , that is
�.Al/� �l . Notice that this smoother is different from the relaxation smoother ment-
ioned in Section 1, like the Jacobi smoother.

Suppose that we are given a smoothing procedure for the projected system Alxl D

bl , at each level l 2 f1; : : : ;Lg, of the form

xl  .I �RlAl/xlCRlbl :

Here, Rl is some approximation of the inverse of Al for l D 1; : : : ;L�1, which we
consider again to be the Richardson iteration (Rl D slI , where sl � 1

�.Al /
). Assume

for simplicity to use a direct solver at the coarsest level: RL D A�1L . We assume that

�min.I �RlAl/� 0 and �min.Rl/�
1

C 2R�.Al/

for constant CR > 0 independent of the level l . This assumption enables us to make
use of the existing convergence estimates for Richardson’s iteration.

The SA method can be formally viewed as a standard variational multigrid method
with prolongator of the form SlP

l
lC1

. One SA iteration for solving A1x1 D b1 is
represented by x1  AMG.x1;b1/. We set AMG D AMG1, where AMGl.�; �/,
for l D 1; : : : ;L�p D p1, is defined recursively as follows.
Since the prolongation smoother Sl has been formally introduced before, now we

Algorithm 1 AMGl

(1) Presmoothing: Apply v presmoothings toAlxl D bl of the form xl 

.I �RlAl/xlCRlbl
(2) Coarse-grid correction:

(a) Set blC1 D .SlP llC1/
T .bl �Alxl/.

(b) If l C 1 D L, solve AlC1xlC1 D blC1 by a direct method,
Otherwise set xlC1 D 0 and perform 
 iterations of xlC1  
AMGlC1.xlC1;blC1/

(c) Correct the solution on level l W xl  xlC .SlP
l
lC1

/xlC1:

(3) Postsmoothing: apply v postsmoothings to Alxl D bl of the form
xl  .I �RlAl/xlCRlbl .

AMGL returns, simply, xL D A�1L bL.

focus on the construction of the tentative prolongator operatorsP l
lC1

. For illustration,
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here we present the simplest prolongator for the 1D Laplace equation discretized on
a mesh consisting of n1 D 3L�1nL nodes:

P llC1 D

0BBBBBBBBBBBBBBBBBBBB@

1

1

1

1

1

1
: : :

: : :

: : :

1

1

1

1CCCCCCCCCCCCCCCCCCCCA

:

For later reference, we outline the standard SA setup in Algorithm 2 below.
The prolongator P l

lC1
and the nlC1� r matrix BlC1 are such that

Algorithm 2
Given A1, and L, do the following for l D 1; : : : ;L�1:

(1) Construct fC li g
Nl

iD1 based on Al . (fC li g
Nl

iD1, a disjoint covering for all no-
des.)

(2) Construct P l
lC1

based on fC li g
Nl

iD1.
(3) Construct the prolongation smoother: Sl .
(4) Construct the coarse matrix: AlC1 D .SlP llC1/

TAlSlP
l
lC1

.

P llC1BlC1 D Bl ;

where Bl has been constructed during the setup of P l�1
l

or it has been given if l D 1.
A typical example for Bl is B1D .1; � � � ;1/T or B1DKernel.A/ if A is the discrete
representation of a continuous differential operator with an appropriate null space.

The prolongator P l
lC1

is constructed from a given system of aggregates fC li g
Nl

iD1

which form a disjoint covering of the set f1; :::;nlg. Next, we present an algorithm
introduced in [19] for generating aggregates based on information on the structure of
the matrix Al .

For a given parameter � , the strongly coupled neighborhood of the node i is defi-
ned as

N l
i .�/D fj W

ˇ̌
aij
ˇ̌
� �
p
ai iajj g[fig:

This algorithm generates as output a disjoint covering fC li g
Nl

iD1 of the set f1; :::;nlg.
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Algorithm 3
Let Al be a matrix of order nl and � 2 Œ0;1/. Generate a disjoint covering

fC li g
Nl

iD1 of the set f1; : : : ;nlg as follows.
Aggregate (U ).

Initialization: set U D f1; : : : ;nlg, i D 1 and j D 0.
Step 1: disjoint strongly-coupled neighborhoods are selected as the initial appro-

ximation of the covering:
f

for(i 2 U )
f

if(N l
i .�/� U )

fj D j C1IC lj DN
l
i .�/IU D U �C

l
j ;g

g

Step 2: each remaining i 2 U is added to one of the selected sets to which it is
strongly connected, if possible:

for(k <D j ) C l
k
D C l

k
;

for(i 2 U )
f

for(k <D j )
f

if(N l
i .�/\C

l
k
¤¿)

fC l
k
D C l

k
[fig; U D U �fig;g

g

g

Step 3: combine the remaining i 2 U into aggregates that consist of subsets of
strongly coupled neighborhoods:

for(i 2 U ) until U D¿
f

j D j C1; C lj DN
l
i .�/\U ; U D U �C lj ;

g

g

The columns of P l
lC1

associated with the aggregate C li are formed by restriction
of the rows of Bl onto the aggregate C li . Each aggregate gives rise to r degrees of
freedom on the coarse-grid.

The detailed algorithm follows here. For ease of presentation, we assume that the
fine level unknowns are numbered lexicographically within each aggregate. A diffe-
rent order can be used by renumbering them. The algorithm and figure described
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FIGURE 1. The structure of the tentative prolongator P l
lC1

.

above are based on the assumption that the fine level unknowns are numbered con-
secutively within each aggregate. The typical structure of a tentative prolongator is
described below, where we denote by � one nonzero element in the matrix.
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�
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Algorithm 4

For the given system of aggregates fC li g
Nl

iD1 and the nl � r matrix satisfying
P 1
l
Bl D B1, we create a prolongator, a matrix BlC1 and the unknowns on level

lC1 as follows:
(1) Let di denote the number of unknowns associated with aggregate C li . Split

the nl � r matrix Bl into blocks B li of size di � r , i D 1; : : : ;Nl , each
corresponding to the unknowns on an aggregate C li .

(2) A reduced QR decomposition is applied to B li DQ
l
iR
l
i , where Qli is an

di � r orthogonal matrix, and Rli is an r � r upper triangular matrix.
(3) Create the tentative prolongator P l

lC1
D diag.Ql1; : : : ;Q

l
Nl
/ , and set

BlC1 D

0BB@
Rl1
RL2
� � �

RlNl

1CCA :
.

(4) For each aggregate C li , the coarsening gives rise to r unknowns on the
coarse level (the i -th block column of P l

lC1
).

In Algorithm 4, the QR decomposition has been used to generate the prolongator
P l
lC1

. A basic prolongator P l
lC1

may be computed to be piecewise constant, which
leads to the simplest definition:

.P llC1/ij D

�
1; i 2 C lj ;

0;otherwise:

However, this choice is not efficient in general and the computation is still time
consuming. A different way to generate the prolongator P l

lC1
has been considered in

[6]. It uses the singular value decomposition for minimizing the interpolation error.
In Algorithm 4, we need to change the step 2 as:

The reduced singular value decomposition is applied to B li D Q
l
iT
l
i M

l
i , Rli D

T li M
l
i , where Qli is an di � r matrix, and Rli is an r � r matrix.

For ease of discussion, in this paper we simply denote this algorithm as the SVSA
method. See [6] for more details.

3. TWO NOVEL AGGREGATION SCHEMES

We briefly describe a general measure of strength of connection between two unk-
nowns. In [2], the authors propose a general definition of strength of connection and
an algorithm, which is not restricted to M -matrices.
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We define the column vector G.i/ first, with entries .G.i//j D .A�1/ij . Next, we
define the strength measure as follows:

Sij D




G.i/� .G.i//j I .j /



A

G.i/



A

;

where I .j / is the j th canonical unit vector.
It is evident that this measure is not a practical option to implement, as G.i/ is

the column vector of A�1. A natural choice is to apply the relaxation scheme of the
AMG solver on the Gauss-Jordan system AG D I columnwise, that is AG.i/ D I .i/

for each node i .
Now, we can give the full algorithmic computation of the matrix Sij as follows:

for each node i , 1� i � n:
(1) relax � times on AG.i/ D I .i/, starting from a zero initial guess,
(2) for each j such that the approximation to .G.i//j is non-zero, compute

Sij D




bG.i/� .bG.i//j I .j /



A


bG.i/




A

: (3.1)

Once the measure of strength of connection has been computed, the set of nodes that
are strongly dependent on node i is defined as

Si D fj W Sij �1� �max
k¤i
fSik �1gg (3.2)

In [2], the authors define the strong connections based on the entries of A�1 instead
of those of A; then they present the theoretical analysis, and finally the practical al-
gorithmic implementation. The key point in [2] is to replace the traditional definition
of strong dependence in classic AMG with the Formula 3.1, which produces efficient
AMG V-cycles for many problems.

Inspired by this analysis, we aim at applying the Formula 3.2 to our SA method.
As we mentioned before, clearly the connection between two nodes in the same agg-
regate should be as strong as possible to make the interpolation more accurate. The
aggregation Algorithm 3 is based on the definition of strongly coupled neighborhood:

N l
i .�/D fj W

ˇ̌
aij
ˇ̌
� �
p
ai iajj g[fig:

Here, we utilize the Formula 3.2 to the Algorithm 3 and we have a modified aggre-
gation scheme, which results into Algorithm 5:

Generally, as output of this algorithm, a disjoint covering is constructed by Algo-
rithm 5. Intuitively, the nodes in the same aggregate inherit the strong connectivity
from Formula 3.2, which does favor better performance of the AMG method.

It is not difficult to establish an AMG scheme with the components defined above,
once an appropriate smoother and cycling strategy are selected. Then we have a novel
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Algorithm 5
Input: U D f1; : : : ;nlg, strong coupling threshold �
Output: a disjoint covering fC li g

Nl

iD1 of the set f1; :::;nlg
Definition: for all i 2 U , N l

i .�/D fj W Sij � 1 � �max
k¤i
fSik � 1gg, where Sij is

defined by Formula 3.1
Algorithm: the loop process is the same as Algorithm 3, the difference is the

definition of Sij .

SA method whose prolongator differs from the one of the traditional SA method
because of the different aggregation scheme. The numerical results in the next section
will show better performance of our novel methods.

Similarly to what we did in Algorithm 5, here we also propose another novel aggre-
gation scheme. Let us go back to the standard aggregation Algorithm 3 and highlight
the step 1. The strongly coupled neighborhood of each node has been generated and
disjoint strongly coupled neighborhoods are selected as initial approximation of the
covering. We noticed that the set U is changing over the recursion. If we calculate
the strongly coupled neighborhood only in the remaining set U , to be more specific,
we define:

M l
i .�/D fj W

ˇ̌
aij
ˇ̌
� �
p
ai iajj g[fig

N l
i .�/DM

l
i .�/\U:

Another variant of standard aggregation scheme results. In step 1, the assumpt-
ion N l

i .�/ � U is not necessary anymore for the definition of N l
i .�/. Algorithm 6

follows below:

Algorithm 6
Input: U D f1; : : : ;nlg, strong coupling threshold �
Output: a disjoint covering fC li g

Nl

iD1 of the set f1; :::;nlg
Definition: for all i 2 U , M l

i .�/ D fj W
ˇ̌
aij
ˇ̌
� �
p
ai iajj g [ fig, N l

i .�/ D

M l
i .�/\U

Step 1: f
j D 0I i D 1;
for(i 2 U )
f

j D j C1;C lj DN
l
i .�/;U D U �C

l
j

g

g

After step 1, the strongly coupled neighborhood of each node is either ¿ or it is
the covering set. The latter case means that the algorithm stops. From Algorithm 6,
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we clearly see that all the nodes in the same aggregate are mutually coupled, cont-
rast to Algorithm 3 and 5. Additionally, we achieve some gaining in time, leading
potentially to overall better performances.

4. NUMERICAL TESTS

We illustrate the performance of our two methods on different matrix problems,
also in comparison against the standard SA method in the first subsection and the
classic AMG method in the second subsection.

In our experiments, we used an adaptive scheme which consists of applying a few
iterations of relaxation to the homogeneous problem, Ae D 0, to expose the slowly
converging components of the error. The residuals produced by the iterations are
then used to update the approximate solution. We combined the SA method with this
adaptive scheme to yield an enhanced SA method. Notice that this approach is diffe-
rent from the pure ˛SA method described in [3], which has an expensive setup cost
and high efficiency, that cannot be achieved in our problems. For the sake of simp-
licity and cost effectiveness, we applied several steps of a weighted Jacobi smoother
to generate some near-null space vectors that were used as initial approximations.

Next, we introduce some parameters for the construction of the SA scheme. We
used V(1,1) with weighted Jacobi smoother, and we ran five post-smoothing steps
with a weighed Jacobi smoother. Here we have to point out that, according to the
basic theory of MG methods, it is a fact that no value of ! effectively eliminates the
smooth, or low-frequency, error components. However, it is possible to reduce them
significantly. We denote by R! the error propagation matrix of the weighted Jacobi
method. The eigenvalues of the iteration matrix are given by

�k.R!/D 1�2! sin2.
k�

2n
/; 1� k � n�1

so that
�n=2.R!/D��n.R!/:

The solution of this equation gives the value ! D 2
3

, which is our choice here. Anot-
her parameter is the strength threshold � which is set to 0.25 in our experiments. In
Algorithm 4, we used the singular value decomposition instead of the QR decompo-
sition to achieve better performance. The traditional SA method with singular value
decomposition was denoted as SVSA; the variant of SVSA based on Algorithm 5 is
denoted in the forthcoming experiments as SVSA1, and that based on Algorithm 6
as SVSA2. All our numerical tests are performed using the MATLAB environment
version 7.8.0 (R2009a) run on the Windows 7 operating system.

For each experiment shown in the following tables, we report the following per-
formance measures:

(1) the time cost for the construction of the AMG preconditioner (column ”P-T”)
and for solving the linear system (column ”I-T”);
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(2) the memory burden (column ”M-cost”), calculated as the sum of the num-
ber of nozero entries in the projected matrix A at each level divided by the
number of nonzeros in the coefficient matrix A;

(3) the number of iterations (column ”Its”) required by the Krylov subspace met-
hod to reduce the initial residual by six orders of magnitude. The symbol ”-1”
indicates a failure in the solving phase due to two possible reasons, either the
preconditioner is ill-conditioned and the iterative solution was not started, or
the number of iterations was larger than 2000.

(4) The reduction factor (column ”r-ratio”), which gives the ratio of the sum of
the number of unknowns at all levels of the initial matrices to the number of
unknowns in the original system.

4.1. Helmholtz equation

In this section we report on experiments for solving sparse linear systems resulting
from the five point finite difference approximation of the 2D Helmholtz equation

�
@2u

@x2
�
@2u

@y2
�k2uD f in ˝ D .0;1/� .0;1/

with the right function f D sin.�x/sin.�y/sin.
p
2�x/sin.

p
3�y/ and u.x;y/D 0

everywhere on @˝.
For Helmholtz equation, empirically, we keep k

n
D 0:625 constant for the iterative

solution. While k D 20;30, the grid number is nD 32;48. Here we use a multigrid-
preconditioned Krylov subspace method. The Bi-CGSTAB method is the Krylov
subspace method of choice in our experiments for the Helmholtz equation, especially
for the problem without damping.

TABLE 1. Experiments with SA-preconditioned Bi-CGSTAB met-
hod for Helmholtz equation.

Method Its M-cost r-ratio P-T I-T

k=20
SVSA 209.5 1.2845 1.1719 127.1 11.2
SVSA1 141.5 1.0929 1.0605 292.1 7.8
SVSA2 88.5 1.6859 1.5000 127.1 6.9

k=30
SVSA 620.5 1.2931 1.1719 699.0 47.5
SVSA1 383.5 1.0791 1.0512 2032.8 25.0
SVSA2 293 1.6907 1.5000 715.5 67.5

Here, for comparison we also try to solve the system using another Krylov subs-
pace method, which is GMRES with restart equal to 20.
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FIGURE 2. Table 1, k=20.
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FIGURE 3. Table 1, k=30.

4.2. Experiments with Harwell-Boeing matrices.

Here, in Table 3, we present the comparison of classic AMG and our new method
on five matrices. These matrices arise from different applications: SHERMAN1
and SAYLR3 come from computational fluid dynamics problems, PLBUCKLE and
BCSSTK08 from structural problems and CAGE8 from directed weighted graphs.

The column ”cond” shows the condition number of the matrix, which is a measure
of the sensitivity of linear solvers to numerical errors. We can see from the Table 3
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TABLE 2. SA-preconditioned GMRES method for Helmholtz equation.

Method Its M-cost r-ratio P-T I-T

k=20
SVSA 2800 1.2845 1.1719 134.0 82.3
SVSA1 1179 1.0929 1.0605 317.9 33.3
SVSA2 856 1.6859 1.5000 135.7 33.9

k=30
SVSA 15738 1.2931 1.1719 698.0 646.2
SVSA1 3519 1.0791 1.0512 1959.3 117.8
SVSA2 2062 1.6907 1.5000 669.8 240.4
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FIGURE 4. Table 2, k=20.

that some linear systems are ill-conditioned and thus difficult to solve. In the third
column, called ”Method”, ”C-AMG” denotes the classic AMG.

The results highlight the robustness of the SVSA2 preconditioner, which delivered
faster and more stable convergence. There are three cases where C-AMG diverge and
SVSA2 converges within a few iteration steps and requires less time cost. Even on
the two problems where C-AMG converges, our method is more efficient with respect
to memory cost, number of iterations and solution time.

5. CONCLUSION

All the numerical experiments reported in this paper illustrate an interesting be-
havior of the three proposed aggregation schemes. In most of our runs, the SVSA2
method decreases the number of iterations of the standard SA method by a factor
of two, or sometimes larger. Also the solution time is moderately reduced for some
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Matrix cond Method P-T I-T Its r-ratio M-cost

SHERMAN1 2:2575�104
C-AMG
SVSA2

68.809
40.885

0.55672
0.86451

-1
6.5

-1
1.684

-1
1.6672

PLBUCKLE 4:128�106
C-AMG
SVSA2

73.739
56.905

9.5594
3.3188

60.5
51

1.3378
1.3261

1.4889
1.2119

BCSSTK08 4:7262�107
C-AMG
SVSA2

62.33
54.329

0.75017
0.63049

-1
4

-1
1.7486

-1
1.8298

CAGE8 5:8238�10
C-AMG
SVSA2

59.569
43.33

0.12071
0.048572

1
1

1.2512
1.2148

1.9009
1.3515

SAYLR3 INF
C-AMG
SVSA2

73.839
42.71

0.55805
0.65484

-1
6.5

-1
1.684

-1
1.6672

TABLE 3. Performance comparison of the two methods C-AMG
and SVSA2.

problems. The only flaw are the larger r-ratio and M-cost, which means extra storage
cost. However, it is relatively small in comparison to the order of matrix A.

A significant disadvantage of SVSA1 is its computational complexity in comput-
ing the aggregates, being inherited from [2]. In Algorithm 5, the calculation of strong
neighborhood requires the number of relaxation to be small. Now, searching for an
optimal number of relaxations steps in Formula 3.1 is still a problem under investiga-
tion.

The results suggest that the two novel methods proposed in this paper can improve
the performance of the SA method to some extent for various problems. The whole
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SA scheme includes many ingredients, such as the adaptive scheme and the choice of
the smoother. Different choices lead to different performance for each problem, but
the key point is the interplay between interpolation and adaptive method, which is a
subject of ongoing research.
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