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Abstract. In the present study we introduce uniform statistical convergence for double sequences.
We present a decomposition theorem that characterizes uniform statistical convergence for double
sequences.

2000 Mathematics Subject Classification: 40B05; 40G15

Keywords: double sequences, uniform density, uniform statistical convergence, almost conver-
gence

1. INTRODUCTION

In the summability theory uniform statistical convergence has important roles for
ordinary (single) sequences. Since this type of convergence method is stronger than
ordinary convergence, it is quite effective, especially when the classical limit does
not exist. This idea has been introduced by Brown and Freedman [2] by using the
notion of uniform density. Then the method has been discussed by many authors
in various directions ([1], [4] and [5]). The concept of uniform density has recently
been extended to double sequences [14].

In the present work we introduce the uniform statistical convergence by using the
uniform density for double sequences. We present a decomposition theorem that
characterizes uniform statistical convergence for double sequences and show that for
double sequences almost convergence and statistical convergence are not compat-
ible. Also we give a relation between uniform statistical convergence and strong
uniform p-Cesàro summable double sequences. Finally by defining strongly almost
convergence with respect to a modulus function we examine the new sequence space
together with the space of all uniformly statistically convergent sequences.

In 1900 Pringsheim [13] introduced the concept of convergence for double se-
quences. A double sequence x D

�
xij
�

is said to be convergent in Pringsheim sense
if for every " > 0 there exists anN 2N such that

ˇ̌
xij �L

ˇ̌
< "whenever i;j �N . In

this case L is called the Pringsheim limit of x and space of such sequences is denoted
by c2. A double sequence x is bounded if there exists a positive numberM such that
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544 E. TAS AND T. YURDAKADMINˇ̌
xij
ˇ̌
<M for all i and j ,i.e.,

kxk.1;2/ D sup
i;j

ˇ̌
xij
ˇ̌
<1.

We will denote the set of all bounded double sequences by l21. Note that in contrast
to the case for single sequences, a convergent double sequence need not be bounded.

Let K �N�N be a two dimensional set of positive integers and let K.n;m/ be
the numbers of .i;j / inK such that i � n; j �m. Then the lower asymptotic density
of a set K �N�N is defined as

d
¯2
.K/D liminf

n;m

K.n;m/

nm

and the upper asymptotic density is defined as

Nd2.K/D limsup
n;m

K.n;m/

nm
:

If Nd2.K/Dd
¯2
.K/ then d2.K/D Nd2.K/Dd

¯2
.K/ is called the asymptotic density

[11].
The following definition has been given in [10], [11] and [15] independently.

Definition 1. A double sequence x D .xij / is said to be statistically convergent if
for every " > 0, d2.A"/D 0 where A" D

˚
.i;j / 2N�N W

ˇ̌
xij �L

ˇ̌
� "

	
.

We will denote the set of all statistically convergent double sequences by st2.
The lower uniform density of a set K �N�N is defined as

u
¯2
.K/D lim

p;q

min
m;n�0

j f.i;j /�K WmC1� i �mCp;nC1� j � nCqg j

pq

and the upper uniform density is defined as

Nu2.K/D lim
p;q

max
m;n�0

j f.i;j /�K WmC1� i �mCp;nC1� j � nCqg j

pq
.

If Nu2.K/Du
¯2
.K/ then u2.K/D Nu2.K/Du

¯2
.K/ is called uniform density.

It is clear that u
¯2
.K/�d

¯2
.K/� Nd2.K/� Nu2.K/.

We now introduce the concept of uniform statistical convergence for double se-
quences.

Definition 2. A double sequence x D .xij / is said to be uniformly statistically
convergent if for every " > 0, u2.A"/D 0 where
A" D

˚
.i;j / 2N�N W

ˇ̌
xij �L

ˇ̌
� "

	
.

By st2u we will denote the set of all statistically convergent double sequences.
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Note that the set st2u \ l
2
1 is a closed linear subspace of the normed linear space

l21.
Uniform statistical convergence is closely related to statistical convergence. As in

the case of single sequences, we have the following inclusions

c2 � st
2
u � st

2.

These inclusions are proper as the following examples show.

Example 1. Let P be the set of all primes. Define a double sequence x D .xij / as
follows

xij D

�
1 I .i;j / 2 P �P

0 I otherwise:

We know that u.P /D 0 [3]. It is easy to see that u2.P �P /D 0: Hence xD .xij /
is uniformly statistically convergent to 0 but not convergent.

Example 2. Let A D
1S
kD1

n
5kC1;5kC2; :::;5kCk

o
: Define a double sequence

x D .xij / as follows

xij D

�
1 I .i;j / 2 A�A

0 I otherwise:

It is known from [1] that u
¯
.A/D 0; Nu.A/D 1;d.A/D 0.

One can easily see that u
¯2
.A�A/ D 0; Nu2.A�A/ D 1; d2.A�A/ D 0. Hence

the double sequence x is statistically convergent to 0; but not uniformly statistically
convergent.

2. CHARACTERIZATIONS OF UNIFORM STATISTICAL CONVERGENCE

This section presents some comparison results which are related to uniform stat-
istical convergence for double sequences. Also uniform statistical convergence is
characterized.

The next definition may be found in [8] and [9].

Definition 3. A double sequence x D .xij / is called almost convergent to L if

lim
p;q

1

pq

mCp;nCqX
i;jDmC1;nC1

xij D L; (uniformly in n and m).

By ac2, we denote the set of almost convergent double sequences.

Recall that ac2 � l21;[8].
We know that almost convergence and statistical convergence are not compatible

for ordinary sequences [7]. This raises the question of whether this property holds for
double sequences. The following examples demonstrates this fact in the affirmative.
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Example 3. Let xij D
�
ij I i and j square
0 I otherwise

.

Since x is unbounded, it can not be almost convergent. But it is easy to see that x is
statistically convergent to 0:

Example 4. Let xij D
�
0 I i is even, for every j
1 I i is odd, for every j .

One can observe that x can not be statistically convergent but it is almost convergent

to
1

2
.

For double sequences almost convergence was introduced by Mòricz and Rhoades
[8] and it was studied in some detail in [16] and [9].

The following definition is an extension of a definition given in [1] to double se-
quences.

Definition 4. A double sequence xD .xij / is said to be uniformly strong p�Cesàro
convergent .0 < p <1/ to L if

lim
k;l

1

kl

mCk;nClX
i;jDmC1;nC1

j xij �L j
p
D 0; (uniformly in n and m):

By uw2p , we denote the set of all uniformly strongly p�Cesàro convergent double
sequences. It is immediate that uw2p � w

2
p , where w2p denotes space of all strongly

p�Cesàro convergent double sequences studied in [11].

In case p D 1, x is said to be strongly almost convergent. So this implies almost
convergence.

It is known that c� ac for single (ordinary) sequences. But we have l21\c2� ac
2

for double sequences ([8]).
We now give our first characterization for uniform statistical convergence of double

sequences.

Theorem 1. (i) If 0 < p <1 and a sequence x D .xij / is uniformly strongly
p�Cesàro convergent to L, then it is uniformly statistically convergent to L.

(ii) If x D .xij / is bounded and uniformly statistically convergent to L, then it is
uniformly strongly p�Cesàro convergent to L for every p; 0 < p <1:

Proof. (i) Let x be uniformly strongly p�Cesàro convergent to L, 0 < p <1:
Suppose " > 0: Then for every n;m 2N, we have

k;lX
i;jD1;1

j xnCi;mCj �L j
p
�

k;lX
i;jD1;1

jxnCi;mCj�Lj�"

j xnCi;mCj �L j
p
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� "p
k;lX

i;jD1;1
jxnCi;mCj�Lj�"

1� "pA".nC1;nCkImC1;mC l/.

Then it follows that

1

kl
sup
n;m

k;lX
i;jD1;1

j xnCi;mCj �L j
p
� "p

1

kl
sup
n;m

A".nC1;nCkImC1;mC l/;

where

A".nC1;nCkImC1;mC l/D˚
.i;j / W nC1� i � nCk;mC1� j �mC l ; j xij �L j� "

	
:

This implies Nu2.A"/D 0 and u2.A"/D 0; so that st2u � limx D L.
(ii) Suppose that x is a bounded sequence and st2u � limx D L. Let 0 < p <1

and " > 0. According to the hypothesis we have u2.A"/D 0:
The boundedness of x D .xij / implies that there exists M > 0 such that for every

i;j D 1;2; :::, j xij �L j�M .
Observe that for every n;m 2N, we have
1

kl

k;lP
i;jD1;1

j xnCi;mCj �L j
pD

1

kl

k;lP
i;jD1;1

.nCi;mCj /2A"

j xnCi;mCj �L j
p C

1

kl

k;lP
i;jD1;1

.nCi;mCj /…A"

j xnCi;mCj �L j
p

�Mp 1

kl
max
n;m�0

A".nC1;nCkImC1;mC l/C "
p 1

kl

k;lP
i;jD1;1

1

�Mpu2.A"/C "
p.

This implies that lim
k;l

1

kl

mCk;nClP
i;jDmC1;nC1

j xij �L j
pD 0 (uniformly in n and m). �

We immediately obtain the following results from Theorem 1.

Corollary 1. Let x D .xij / is a bounded double sequence. If x is uniformly stat-
istically convergent to L then x is almost convergent to L:

But the converse of this corollary does not hold, see Example 4.

Corollary 2. Let x D .xij / is a bounded double sequence. Then x is uniformly
statistically convergent to L if and only if x is uniformly strongly p�Cesàro conver-
gent to L for every p; 0 < p <1:

The following result characterizes uniform statistical convergence.



548 E. TAS AND T. YURDAKADMIN

Theorem 2. The following are equivalent.
(i) The double sequence x D .xkl/ is uniformly statistically convergent to L.
(ii) There exists a sequence y D .ykl/ which is convergent and such that

u2.f.k; l/ W xkl D yklg/D 1.
(iii) There exists a subsetM D

˚
.ki ; lj / W i;j�N

	
such that u2.M/D 1 and .xki lj /

is convergent.
(iv) There exists two sequences .ykl/ and .´kl/ such that xkl D ykl C´kl for all

k; l and .ykl/ converges to L and .´kl/ is uniformly statistically convergent to 0.

Proof. (i))(ii): Let the double sequence .xkl/ be uniformly statistically con-
vergent to L: Let the complement of the set A 1

j

D

n
.p;q/ Wj xkplq �L j�

1
j

o
, j D

1;2; :::, be

Kj DN�N�A 1
j

.

Hence by the definition of uniform statistical convergence, we have
u2.Kj /D 1, for j D 1;2; :::

By the definition ofKj we haveK1 �K2 � :::�Kj �KjC1 � :::. Let us choose
an arbitrary s1 D .s

0

1; s
00

1/ 2K1: By the definition of Kj ; there exists
s2 D .s

0

2; s
00

2/ 2K2 such that s
0

2 > s
0

1, s
00

2 > s
00

1 and for every p � s
0

2; q � s
00

2

min
m;n�0

K2.mC1;mCpInC1;nCq/

pq
>
1

2
:

Again by the definition of Kj there exists s3 D .s
0

3; s
00

3/ 2 K3 such that s
0

3 > s
0

2,
s

00

3 > s
00

2 and for every p � s
0

3; q � s
00

3 .

min
m;n�0

K3.mC1;mCpInC1;nCq/

pq
>
2

3
:

Continuing in this way, we can construct increasing sequences of positive integers
s

0

1 < s
0

2 < s
0

3 < ::: < s
0

j < :::

s
00

1 < s
00

2 < s
00

3 < ::: < s
00

j < ::: such that sj D .s
0

j ; s
00

j / 2 Kj and for every p � s
0

j ;

q � s
00

j

min
m;n�0

Kj .mC1;mCpInC1;nCq/

pq
> 1�

1

j
; for j D 1;2;3; ::::

DefineK as follows: if 1� k � s
0

1 or 1� l � s
00

1 then .k; l/�KI suppose that j � 1
and s

0

j < k � s
0

jC1 or s
00

j < l � s
00

jC1 then .k; l/�K if and only if .k; l/�Kj :



UNIFORM STATISTICALLY CONVERGENCE 549

For every p;q, such that s
0

j < p � s
0

jC1 and s
00

j < q � s
00

jC1, we have

min
m;n�0

K.mC1;mCpInC1;nCq/

pq
�

min
m;n�0

Kj .mC1;mCpInC1;nCq/

pq

� 1�
1

j
:

Hence it is obvious that u2.K/ D 1. Let " > 0 be given and select j such that
1
j
< ". Let p � s

0

j ; q � s
00

j , .p;q/�K: Then there exists a number r � j such that

s
0

r < p � s
0

rC1 and s
00

r < q � s
00

rC1. According to the definition of K; .p;q/�Kr is
obtained, we have j xpq �L j< 1

r
�
1
j
< ". Thus j xpq �L j< " for every p � s

0

j ;

q � s
00

j , .p;q/�K. Hence lim
p;q

.p;q/�K

xpq D L:

Let us define y D
�
ypq

�
as follows

ypq D

�
xpq I .p;q/�K

L I otherwise
.

So lim
p;q

ypq D L and u2.
˚
.p;q/ W xpq D ypq

	
/D u2.f.p;q/�Kg/D 1

(ii))(iii): Let there exists a sequence y D .ykl/ which is convergent such that
u2.f.k; l/ W xkl D yklg/D 1: LetM Df.k; l/ W xkl D yklg then u2.M/D 1. Now we
can represent M as M D

˚
.ki ; lj / W i;j�N

	
. Clearly j xki lj �L jDj yki lj �L j! 0

as i;j !1
(iii))(iv): Let .xkl/ be a double sequence and there exists

M D
˚
.ki ; lj / W i;j�N

	
such that u2.M/D 1 and lim

i;j
xki lj D L:

Now construct the sequences .ykl/ and .´kl/ as follows:

ykl D

�
xkl I .k; l/�M

L I otherwise
,

and

´kl D

�
0 I .k; l/�M

xkl �L I otherwise
.

From the above construction , it is obvious that .ykl/ is convergent to L and
st2u � lim

k;l
´kl D 0 and xkl D yklC´kl for all k; l�N

(iv))(i): Suppose that there exists sequences such that xkl D ykl C ´kl for all
k; l�N; .ykl/ converges to L and st2u � lim

k;l
´kl D 0. For any " > 0, let

AD
˚
.k; l/ Wj ykl �L j<

"
2

	
and B D

˚
.k; l/ Wj ´kl j<

"
2

	
: Then clearly

u2.A/D u2.B/D 1. This implies that

u2.A\B/D 1; u2.f.k; l/ Wj xkl �L j< "g/� u2.A\B/:
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By u2.f.k; l/ Wj xkl �L j< "g/D 1, the sequence .xkl/ is uniformly statistically con-
vergent to L. �

3. A NEW SEQUENCE SPACE DEFINED BY A MODULUS FUNCTION

In the section we define a new sequence space by means of a modulus function
and we relate it to uniform statistical convergence.

Recall that a modulus [6] is a function from Œ0;1/ to Œ0;1/ such that
(i) f .x/D 0 if and only if x D 0,
(ii) f .xCy/� f .x/Cf .y/ for x;y � 0,
(iii) f is increasing,
(iv) f is continuous at the right at 0.
Because of (ii) j f .x/�f .y/ j� f .x�y/ so that in view of (iv) f is continuous

on Œ0;1/ : A modulus may be bounded or unbounded. For example
f .x/D xp.0 < p � 1/ is unbounded and f .x/D

x

xC1
is bounded.

The next sequence space of double sequences is motivated from [12] where in its
single version is studied: �

ac2.f /
�

D

8<:x D .xij / W limp;q 1

pq

nCp;mCqX
i;jDnC1;mC1

f .j xij �L j/D 0; uniformly in n and m

9=;
Let us give the following two theorems.

Theorem 3. Let f be any modulus. Then
�
ac2.f /

�
� st2u :

Proof. Suppose x�
�
ac2.f /

�
and " > 0. Then we have for every n;m

1

pq

nCp;mCqX
i;jDnC1;mC1

f . j xij �L j/�
1

pq

nCp;mCqX
i;jDnC1;mC1
jxij�Lj�"

f .j xij �L j/

� f ."/
1

pq
jE" j

where
E" D

˚
.i;j / W nC1� i � nCp;mC1� j �mCq and j xij �L j� "

	
. This in-

equality implies that x�st2u : �

Theorem 4. st2u D
�
ac2.f /

�
if and only if f is bounded.

Proof. Suppose that f is bounded and x�st2u : Since f is bounded there exists an
integer K such that f .xij / < K for all xij � 0, i;j D 1;2; ::: . Then for each n;m
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we have

1

pq

nCp;mCqX
i;jDnC1;mC1

f . j xij �L j/

D
1

pq

nCp;mCqX
i;jDnC1;mC1
jxij�Lj�"

f .j xij �L j/

C
1

pq

nCp;mCqX
i;jDnC1;mC1
jxij�Lj<"

f .j xij �L j/

�
1

pq
K max
m;n�0

jE" j Cf ."/

Conversely suppose that f is unbounded so that there is a positive sequence .uij /
such that f .uij /D i2j 2 for i;j D 1;2; :::

Now consider the sequence x D .xij / defined by xij D
�
uij I i;j square
0 I otherwise .

Then we have
1

pq
max
m;n�0

j
˚
nC1� i � nCp;mC1� j �mCq Wj xij �L j� "

	
j�

p
p
p
q

pq

Hence st2u � limx D L: But x …
�
ac2.f /

�
. Contradicting st2u D

�
ac2.f /

�
. This

completes the proof. �

As a result of Theorem 1 and Theorem 4 we easily obtain the next corollary.

Corollary 3. For bounded double sequences we have
�
ac2.f /

�
D uw2p , .0 < p <

1/, if and only if f is bounded.

The boundedness of the sequence can not be omitted. The next example demon-
strates this fact.

Define x D .xij / by

xij D

�
ij I i and j square
0 I otherwise

and take
f .x/D

x

xC1
:

It is clear that x is unbounded.

1

kl

nCk;mClP
i;jDnC1;mC1
i;j square

f .j xij j/�
1

kl

nCk;mClP
i;jDnC1;mC1
i;j square

1
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�
1

kl
max
m;n�0

j fnC1� i � nCk;mC1� j �mC l W i;j squareg j

So x D .xij /�
�
ac2.f /

�
.

1

kl

nCk;mClP
i;jDnC1;mC1

j xij �0 j
pD

1

kl

nCk;mClP
i;jDnC1;mC1

xij
p D

1

kl

nCk;mClP
i;jDnC1;mC1
i;j square

.ij /p

D
1

kl

nCk;mClP
i;jDnC1;mC1
i;j square

.ij /p .�/

One can find p so that .�/ does not converge.
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