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1. INTRODUCTION

It is well-known that special matrix functions appear in the study of many areas.
Generalization of the property of orthogonality [11, 12], Rodrigues formula [6, 10],
a second-order Sturm-Liouville differential equation [10], a three-term matrix re-
currence [6, 7], relation between different orthogonal matrix polynomials [21] are
theoretical examples. Statistics, group representation theory [17], scattering theory
[15], differential equations [18, 19], Fourier series expansions [9], interpolation and
quadrature [22, 23], splines [8], and medical imaging [5] are areas of application of
orthogonal matrix polynomials.

Throughout this paper, for a matrix A 2CN�N , its spectrum is denoted by �.A/.
The two-norm of A; which will be denoted by kAk ; is defined by

kAk D sup
x¤0

kAxk2
kxk2

;

where, for a vector y 2CN , kyk2 D
�
yT y

�1=2
is the Euclidean norm of y: I and �

will denote the identity matrix and the null matrix in CN�N , respectively. We say
that a matrix A in CN�N is a positive stable if <.�/ > 0 for all � 2 �.A/, where
�.A/ is the set of the eigenvalues of A. If A0;A1; :::;An are elements of CN�N and
An ¤ � , then we call

P.x/D Anx
n
CAn�1x

n�1
C :::CA1xCA0
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a matrix polynomial of degree n in x. From [20], one can see

.P /n D P.P CI /.P C2I /:::.P C .n�1/I /I n� 1I .P /0 D I: (1.1)

For any matrix A in CN�N , the authors exploited the following relation due to [20]

.1�x/�A D

1X
nD0

.A/n

nŠ
xn ; jxj< 1: (1.2)

Gould [16] presented a systematic study of an interesting generalization of the Hum-
bert and the Gegenbauer polynomials and several other polynomial systems, that is
called generalized Humbert polynomials and defined by

�
C �mxtCytm

�p
D

1X
nD0

Pn .m;x;y;p;C /t
n (1.3)

wherem is a positive integer and the other parameters are unrestricted (see also [26, p.
77, 86] ).

Aktas et al. [1] present a systematic investigation of a multivariable extension of
the Humbert polynomials generated by

rQ
iD1

˚
.Ci �mixi tCyi t

mi /�˛i
	
D

1P
nD0

P
.˛1;:::;˛r /
n .m;x;y;C/tn

.jmixi t �yi t
mi j< jCi j I i D 1;2; :::; r/

(1.4)

where xD.x1; :::;xr/ ;yD.y1; :::;yr/ ; CD.C1; :::;Cr/ ; mD.m1; :::;mr/, mi D
1;2; ::: .i D 1;2; :::; r/ and the other parameters are unrestricted.

The main objective of this paper is to construct a matrix version of the multiva-
riable Humbert polynomials given by (1.4) and the derivation of various families
of multilinear and mixed multilateral generating matrix functions for these matrix
polynomials. We present some special cases of our results and also obtain several
recurrence relations for these matrix polynomials.

2. MATRIX EXTENSION OF THE MULTIVARIABLE HUMBERT POLYNOMIALS

The main object of this section is to present a systematic investigation of the matrix
extension of the multivariable Humbert polynomials generated by

rQ
iD1

n
.Ci �mixi tCyi t

mi /�Ai

o
D

1P
nD0

P
.A1;:::;Ar /
n .m;x;y;C/tn

.jmixi t �yi t
mi j< jCi j I i D 1;2; :::; r/

(2.1)

where Ai 2CN�N ;xD.x1; :::;xr/ ;yD.y1; :::;yr/ ; CD.C1; :::;Cr/ ;
mD.m1; :::;mr/ ; mi D 1;2; ::: .i D 1;2; :::; r/ and the other parameters are unrestricted:
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(2.1) yields the following explicit representation:

P .A1;:::;Ar /
n .m;x;y;C/

D

X
m1k1C:::CmrkrCn1C:::CnrDn

.A1/n1Ck1
C
�A1�.n1Ck1/I
1 ::: .Ar/nrCkr

C
�Ar�.nrCkr /I
r

n1Š:::nr Šk1Š:::kr Š

�m
n1

1 :::m
nr
r .�1/

k1C:::Ckr x
n1

1 :::x
nr
r y

k1

1 :::y
kr
r

D

X
m1k1C:::CmrkrCn1C:::CnrDn

rY
pD18<:

�
Ap
�
npCkp

C
�Ap�.npCkp/I
p

npŠkpŠ
m
np

p .�1/kp x
np

p y
kp

p

9=; (2.2)

where, as usual, .A/n denotes the Pochhammer symbol given by (1.1).
We notice that the case r D 1 in (2.1) reduces to the matrix version of the gene-

ralized Humbert polynomials introduced by Gould [16]. In this case, it is generated
by �

C �mxtCytm
��A
D

1X
nD0

P .A/n .m;x;y;C /tn (2.3)

where jmxt �ytmj < jC j ; A 2 CN�N ; m is a positive integer and the other para-
meters are unrestricted. For the special cases of (2.3), including Gegenbauer matrix
polynomials, we refer [19].

It is clear that the case

Ci D 1; mi D 1; yi D 0 ; i D 1;2; :::; r

of the polynomials of (2.1) reduces to matrix version of the Chan-Chyan-Srivastava
multivariable polynomials, which is generated by [14]

rQ
iD1

n
.1�xi t /

�Ai

o
D

1P
nD0

g.A1;:::;Ar /
n .x1; :::;xr/ t

n�
Ai 2CN�N .i D 1;2; :::; r/ I jt j<min

n
jx1j
�1 ; :::; jxr j

�1
o�
:

(2.4)

Since Ai D ˛i 2 C for N D 1 in (2.4), we obtained the generating function of the
Chan-Chyan-Srivastava multivariable polynomials [3].

On the other hand, if we choose Ci D 1; mi D i; xi D 0; yi D �xi ; i D

1;2; :::; r in (2.1), we get a matrix version of the multivariable Lagrange-Hermite
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polynomials, which is generated by [14]

rQ
iD1

n�
1�xi t

i
��Ai

o
D

1P
nD0

h
.A1;:::;Ar /
n .x1; :::;xr/ t

n

�
Ai 2CN�N .i D 1;2; :::; r/ I jt j<min

n
jx1j
�1 ; jx2j

�1=2 ; :::; jxr j
�1=r

o�
:

(2.5)
Since Ai D ˛i 2C for N D 1 in (2.5), we have the multivariable Lagrange-Hermite
polynomials presented by Altın and Erkuş [2]. Furthermore, we should remark
that the case r D 2 of the polynomials corresponds to the familiar (two-variable)
Lagrange-Hermite polynomials considered by Dattoli et al. [4].

Moreover, the special case

Ci D 1; xi D 0; yi D�xi ; i D 1;2; :::; r

gives the matrix version of the Erkus-Srivastava multivariable polynomials generated
by [14]

rQ
iD1

n
.1�xi t

mi /�Ai

o
D

1P
nD0

u
.A1;:::;Ar /
n .x1; :::;xr/ t

n;

Ai 2CN�N .i D 1;2; :::; r/ ;

jt j<min
n
jx1j
�1=m1 ; jx2j

�1=m2 ; :::; jxr j
�1=mr

o
:

(2.6)

Since Ai D ˛i 2 C for N D 1 in (2.6), we have the Erkus-Srivastava multivariable
polynomials generated by [13].

3. AN APPLICATION OF SRIVASTAVA’S THEOREM ON MIXED GENERATING
FUNCTIONS

Srivastava [25] (see also the subsequent treatise on the subject by Srivastava and
Manocha [26, p. 378, Theorem 12]) obtained a family of mixed generating functions
for certain general multivariable and multiparameter sequences of functions. Our
generating function (2.1) fits easily into the general setting of Srivastava’s theorem.
Thus, by applying this general result to the generating function (2.1), we obtain the
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following family of mixed generating functions for matrix version of the multivaria-
ble Humbert polynomials given by (2.1)

1X
nD0

P .A1C�1nI;:::;ArC�rnI/
n .m;x;y;C/tn D

rQ
iD1

n
.Ci �mixi�Cyi�

mi /�Ai

o
1� �

�
rP
iD1

�imi .Ci Cyi�mi /�1
�
�yi�mi�1Cxi

.Ci �miyi�
mi Cyi�

mi /

.Ci �mixi�Cyi�mi /

�� ;
(3.1) 

� D � .t/ WD t

rY
iD1

n�
Ci �mixi�Cyi�

mi
���i

o
I �i 2C;

Ci ¤ 0 and Ai 2CN�N .i D 1; :::; r/
�

where all of the matrices commute with each other. In a special case, it is easily
seen that (3.1) would at once reduce to the generating function (2.1) when �i D
0 .i D 1; :::; r/ : For the special case of N D 1; (3.1) gives mixed generating function
for the multivariable Humbert polynomials given by [1]. Furthermore, the special
case of N D 1 and r D 1 of (3.1) reduces to the mixed generating function for the
generalized Humbert polynomials in [24].

4. BILINEAR AND BILATERAL GENERATING MATRIX FUNCTIONS

In this section, we derive several families of bilinear and bilateral generating mat-
rix functions for matrix version of the multivariable Humbert polynomials which are
generated by (2.1) and given explicitly by (2.2).

We begin by stating the following theorem.

Theorem 1. Corresponding to an identically non-vanishing function ˝�.z/ of s
complex variables ´1; :::;´s .s 2N/ and of complex order �, let

��;�.zIw/ WD
1X
kD0

ak˝�C�k.z/wk (4.1)

where .ak ¤ 0; �;� 2C/ ; zD.´1; :::;´s/ and

�n;p;�;�.x;yIzI�/ WD
Œn=p�X
kD0

akP
.A1;:::;Ar /

n�pk
.m;x;y;C/ ˝�C�k.z/�k (4.2)
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where n;p 2 N; Ai 2 CN�N I xD.x1; :::;xr/ I yD.y1; :::;yr/ ICD.C1; :::;Cr/ I
mD.m1; :::;mr/ ; mi D 1;2; ::: .i D 1;2; :::; r/: Then we have
1X
nD0

�n;p;�;�

�
x;yIzI

�

tp

�
tn D

rY
iD1

n�
Ci �mixi tCyi t

mi
��Ai

o
��;�.zI�/ (4.3)

provided that each member of (4.3) exists.

Proof. Let T denote the left-hand side of the equality (4.3) of Theorem 1. Then,
upon substituting the polynomials

�n;p;�;�

�
x;yIzI

�

tp

�
from definition (4.2) into the left-hand side of (4.3), we find

T D

1X
nD0

Œn=p�X
kD0

akP
.A1;:::;Ar /

n�pk
.m;x;y;C/˝�C�k.z/�ktn�pk : (4.4)

Replacing n by nCpk; we can write

T D

1X
nD0

1X
kD0

akP
.A1;:::;Ar /
n .m;x;y;C/˝�C�k.z/�ktn

D

1X
nD0

P .A1;:::;Ar /
n .m;x;y;C/tn

1X
kD0

ak˝�C�k.z/�k

D

rY
iD1

n�
Ci �mixi tCyi t

mi
��Ai

o
��;�.zI�/;

which completes the proof. �

In a similar manner, we can give the next result.

Theorem 2. For a non-vanishing function ˝�.z/ of s complex variables
´1; : : :´s .s 2N/ and for p 2N, �;� 2C, zD.´1; :::;´s/ ; A WD .A1; :::;Ar/ ;
B WD .B1; :::;Br/ ; Ai ;Bi 2CN�N for i D 1;2; :::; r; let

�
n;p
�;�;C;m.x;yIzIw/ WD

Œn=p�X
kD0

akP
.A1CB1;:::;ArCBr /

n�pk
.m;x;y;C/˝�C�k.z/wk (4.5)

where ak ¤ 0I n;k 2N0; N0 WDN[f0g. Then we have

nX
kD0

Œk=p�X
lD0

alP
.A1;:::;Ar /

n�k
.m;x;y;C/P .B1;:::;Br /

k�pl
.m;x;y;C/ ˝�C�l.z/wl

D�
n;p
�;�;C;m.x;yIzIw/ (4.6)
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provided that each member of (4.6) exists where the matrices commute with each
other.

5. SPECIAL CASES AND SOME FURTHER PROPERTIES

It is possible to give many applications of the theorems obtained in the previous
sections with the help of appropriate choices of the multivariable functions˝�C�k.z/ ;
zD.´1; :::;´s/ ; k 2N0 ; s 2N. For example, if we set

s D r and ˝�C�k.z/D h
.B1;:::;Br /

�C�k
.z/

in Theorem 1, where the matrix version of the multivariable Lagrange-Hermite poly-
nomials

h.B1;:::;Br /
n .x/

are generated by (2.5), then we obtain the following result which provides a class
of bilateral generating matrix functions for the matrix version of the multivariable
Lagrange-Hermite polynomials and for the matrix version of the multivariable Hum-
bert polynomials given explicitly by (2.2).

Corollary 1. If ��;�.zIw/ WD
1P
kD0

akh
.B1;:::;Br /

�C�k
.z/wk ;ak ¤ 0; �;� 2N0;

zD .´1; :::;´r/ and

�n;p;�;�.x;yIzI�/ WD
Œn=p�X
kD0

akP
.A1;:::;Ar /

n�pk
.m;x;y;C/h.B1;:::;Br /

�C�k
.z/�k

where n 2N0I p 2N; Ai ;Bi 2CN�N ; xD.x1; :::;xr/ I yD.y1; :::;yr/ I
CD.C1; :::;Cr/ ImD.m1; :::;mr/ ; mi D 1;2; ::: .i D 1;2; :::; r/, then
1X
nD0

�n;p;�;�

�
x;yIzI

�

tp

�
tn D

rY
iD1

n�
Ci �mixi tCyi t

mi
��Ai

o
��;�.zI�/ (5.1)

provided that each member of (5.1) exists.

Remark 1. Using the generating relation (2.5) for the matrix version of the mult-
ivariable Lagrange-Hermite polynomials and setting ak D 1; �D 0; �D 1;we obtain

1X
nD0

Œn=p�X
kD0

P
.A1;:::;Ar /

n�pk
.m;x;y;C/h.B1;:::;Br /

k
.z/�ktn�pk

D

 
rY
iD1

�
Ci �mixi tCyi t

mi
��Ai

! 
rY
iD1

.1�´i�
i /�Bi

!
;

where
j�j<min

n
j´1j
�1 ; j´2j

�1=2 ; :::; j´r j
�1=r

o
;
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jmixi t �yi t
mi j< jCi j I i D 1;2; :::; r:

Also, if we choose sD 2r and˝�C�k.z/DP
.E1;:::;Er /

�C�k
.m; t;!;C/; �;� 2N0; tD

.t1; :::; tr/ ; ! D .!1; :::;!r/ in Theorem 2, we obtain the following class of bilinear
generating matrix functions for the matrix version of the multivariable Humbert poly-
nomials given explicitly by (2.2).

Corollary 2. If

�
n;p
�;�;C;m.x;yI t;!Iw/

WD

Œn=p�X
kD0

akP
.A1CB1;:::;ArCBr /

n�pk
.m;x;y;C/P .E1;:::;Er /

�C�k
.m; t;!;C/wk

.ak ¤0I p 2NIn;k;�;� 2N0/

where Ai ;Bi ;Ei 2CN�N for i D 1;2; :::; r; then

nX
kD0

Œk=p�X
lD0

alP
.A1;:::;Ar /

n�k
.m;x;y;C/

P
.B1;:::;Br /

k�pl
.m;x;y;C/P .E1;:::;Er /

�C�l
.m; t;!;C/wl

D�
n;p
�;�;C;m.x;yI t;!Iw/ (5.2)

provided that each member of (5.2) exists where AiBj D BjAi for i;j D 1;2; :::; r:

For example, if we set

s D 1 and ˝�C�k.y /D L
.E;�/

�C�k
.y/

in Theorem 1, where the nth Laguerre matrix polynomials L.E;�/n .x/ are defined by
[18]

L.E;�/n .x/D

nX
kD0

.�1/k �k

kŠ.n�k/Š
.ECI /n Œ.ECI /k�

�1xk;

where E is a matrix in CN�N , ECnI is invertible for every integer n � 0 and � is
a complex number with <.�/ > 0 and they are generated by

1X
nD0

L.E;�/n .x/tn D .1� t /�.ECI/ exp
�
��xt

1� t

�
; (5.3)

jt j< 1; 0 < x <1;

then we obtain the following result which provides a class of bilateral generating
matrix functions for the matrix version of the multivariable Humbert and Laguerre
matrix polynomials.
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Corollary 3. If ��;�.´Iw/ WD
1P
kD0

akL
.E;�/

�C�k
.´/wk where .ak ¤ 0; �;� 2N0/I

and

�n;p;�;�.x;yI´I�/ WD
Œn=p�X
kD0

akP
.A1;:::;Ar /

n�pk
.m;x;y;C/L.E;�/

�C�k
.´/�k

where n;p 2N: Then we have
1X
nD0

�n;p;�;�

�
xIyI´I

�

tp

�
tn D

rY
iD1

n�
Ci �mixi tCyi t

mi
��Ai

o
��;�.´I�/ (5.4)

provided that each member of (5.4) exists.

Remark 2. Using the generating relation (5.3) for the Laguerre matrix polynomials
and taking ak D 1; �D 0; � D 1; we have

1X
nD0

Œn=p�X
kD0

P
.A1;:::;Ar /

n�pk
.m;x;y;C/L.E;�/

k
.´/�ktn�pk

D

rY
iD1

n�
Ci �mixi tCyi t

mi
��Ai

o
� .1��/�.ECI/ exp

�
��´�

1��

�
; (5.5)

where j�j< 1; 0 < ´ <1:

Remark 3. For r D 1 in (5.5), we have a bilateral generating matrix function of the
Humbert (2.3) and Laguerre matrix polynomials:

1X
nD0

Œn=p�X
kD0

P
.A/

n�pk
.m;x;y;C /L

.E;�/

k
.´/�ktn�pk

D
�
C �mxtCytm

��A
.1��/�.ECI/ exp

�
��´�

1��

�
:

Remark 4. For r D 1 and s D 2 in Theorem 1, setting
˝�C�k.´/ D P

.B/
n .m;x;y;C /.B 2 CN�N / and taking ak D 1; � D 0; � D 1;we

have bilinear generating matrix function for the Humbert matrix polynomials:

1X
nD0

Œn=p�X
kD0

P
.A/

n�pk
.m;x;y;C /P

.B/

k
.m;x;y;C /�ktn�pk

D
�
C �mxtCytm

��A �
C �mx�Cy�m

��B
:
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Furthermore, for every suitable choice of the coefficients ak .k 2N0/; if the mult-
ivariable function˝�C�k.y/; yD.y1; :::;ys/; .s 2N/; is expressed as an appropriate
product of several simpler functions, then the assertions of Theorems 1 and 2 can be
applied in order to derive various families of multilinear and multilateral generating
matrix functions for the matrix version of the multivariable Humbert polynomials
given explicitly by (2.2).

We now discuss some further properties of matrix version of the multivariable
Humbert polynomials given by (2.2). First of all, the generating matrix relation (2.1)
yields the following addition formula for these multivariable polynomials:

P .A1CB1;:::;ArCBr /
n .m;x;y;C/

D

nX
kD0

P
.A1;:::;Ar /

n�k
.m;x;y;C/P .B1;:::;Br /

k
.m;x;y;C/

where Ai ;Bi 2CN�N ; AiBj D BjAi for i;j D 1;2; :::; r:
On the other hand, the multivariable Humbert matrix polynomials satisfy the fol-

lowing equation:
rX

jD1

�
xj

@

@xj
Cmjyj

@

@yj

�
P .A1;:::;Ar /
n .m;x;y;C/D nP .A1;:::;Ar /

n .m;x;y;C/:

(5.6)
If we differentiate each member of the generating function (2.1) with respect to xj
and yj .j D 1;2; :::; r/; we obtain the following (differential) recurrence relations for
the matrix version of the multivariable Humbert polynomials:

@

@xj
P .A1;:::;Ar /
n .m;x;y;C/

D

n�1X
kD0

Œk=mj �X
lD0

.�1/l
�
kC l � lmj

�
ŠAj

�
mj
�k�lmjC1�

k� lmj
�
ŠlŠC

k�l.mj�1/C1
j

x
k�lmj

j ylj

�P
.A1;:::;Ar /

n�k�1
.m;x;y;C/ (5.7)

for n� 1; and

@

@yj
P .A1;:::;Ar /
n .m;x;y;C/

D�

n�mjX
kD0

Œk=mj �X
lD0

.�1/l
�
kC l � lmj

�
ŠAj

�
mj
�k�lmj�

k� lmj
�
ŠlŠC

k�l.mj�1/C1
j

x
k�lmj

j ylj

�P
.A1;:::;Ar /

n�k�mj
.m;x;y;C/ (5.8)
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where n �mj and mj .j D 1;2; :::; r/ is a positive integer and all matrices are com-
mutative. By applying (5.6), (5.7) and (5.8), the following recurrence relation for the
matrix polynomials (given explicitly by (2.2)) can be easily derived:
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where mj .j D 1;2; :::; r/ is a positive integer and all matrices commute.
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