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Abstract. We shall give a proof in this extension of our previous paper for the conjecture
about the occurrence of periodic orbits by means of Hopf bifurcation in non-symmetric
May-Leonard systems.
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1. Introduction

This paper is the continuation of our previous considerations in which we have studied
the occurrence of periodic orbits by means of Hopf bifurcation in non-symmetric
May-Leonard systems ([5], [8]). In the previous work we gave a conjecture through
graphical analysis of the null-clines and we shall give a proof in the present work. In
the meantime the valuable results of Chia-Wei Chi, Sze-Bi Hsu and Lih-Ing Wu ([7])
were published in which they observed the global behavior of a more general three-
dimensional non-symmetric system than it was shown in our paper. Their results
contain our former findings about a special case of the non-symmetric May-Leonard
model.

We have analyzed in the previous paper when a Hopf bifurcation occurs in the
following special case of the Lotka-Volterra model ([1]):

dx1
dt

= x1 · (1− x1 − α · x2 − γ · x3)
dx2
dt

= x2 · (1− β · x1 − x2 − α · x3)
dx3
dt

= x3 · (1− α · x1 − β · x2 − x3)

 (1.1)

with the conditions:

0 < α < 1 , β > 1 , γ > 1 (1.2)

May and Leonard [2] first observed the symmetric case (it means that γ = α) of the
system (1.1) and they showed:

1. if α+ β < 2, then there is an internal fixed point P in the positive cone R3+ and
P is stable,
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2. if α + β ≥ 2 and also α > 1 and β > 1, then the system converges to a fixed
point, denoted by Ri (i = 1, 2, 3) lying on any of the coordinate axes. Fixed
points of this type are called axial fixed points,

3. if α + β ≥ 2 and also α < 1 and β > 1 (or α > 1 and β < 1, which is a totally
symmetric case), then no stable fixed point exists.

May, Leonard and Schuster, Sigmund and Wolf [2], [3] showed that in the last
case the system exhibits a general class of solutions with non-periodic oscillations of
bounded amplitude and increasing cycle time.

The third is the most interesting case for our recent considerations and we call the
system May-Leonard system if the conditions in the third case hold. (We supposed the
condition (1.2) because of this.) We will analyze the system and sketch the possible
phase-portraits for this model in Section 2. We shall give a necessary and sufficient
condition for the occurrence of Hopf bifurcation. We will use by this consideration
the classification theory of M. L. Zeeman for three-dimensional Lotka-Volterra models
[4], [6]. We will give a summary about the global behavior of the general case of non-
symmetric May-Leonard systems in Section 3.

2. Occurrence of periodic orbits in the special case

We will study in this section the global behavior of system (1.1) with condition
(1.2) on the carrying simplex. For the sake of completeness we will observe the case
0 < γ < 1 at the end of the section. Let us first compute the equilibrium points of
the model:

1. the origin: O = col[0, 0, 0],
2. the axial fixed points: R1 : col[1, 0, 0], R2 : col[0, 1, 0] and R3 : col[0, 0, 1],

3. the planar fixed points: Q1 :
1

α · β − 1col[0, α − 1, β − 1], Q2 :
1

α · γ − 1col[γ −

1, 0, α− 1] and Q3 :
1

α · β − 1col[α− 1, β − 1, 0],
4. the interior fixed point:

P :
1

detA
col
£
α2 − αβ − α+ 1 + γβ − γ, 1− α− γα− β + α2 + γβ,

1− αβ + α2 − α− β + β2
¤
=

1

detA
(a, b, c)

where detA = 1−2αβ−γα+α3 > 0 and a, b, c are the coordinates of the interior
fixed point. A later computation shows that a > 0, b > 0, c > 0, detA > 0 and
because of this P is lying in the positive cone.

Considering conditions (1.2) we can see that by these assumptions the planar
fixed points do not lie in the positive cone. Computing the Rij and Qiiexpressions
(i, j = 1, 2, 3) for the classification of M. L. Zeeman ([4]) we get:

R12 = 1 , R21 = −1 , R31 = 1 ,
R13 = −1 , R23 = 1 , R32 = −1 .
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Figure 1. Possible phase

On the basis of the preceding considerations we can classify the system into a stable
null-cline class and we can draw two possible phase portraits for the system on the
carrying simplex (FIGURE 1) representing the global long-term behavior (it is repre-
sented for simplicity on the unit simplex which is homeomorphic with the real phase
portrait).

If we want to say something about the occurrence of Hopf bifurcation, we have to
compute the varying system. The varying system of system (1.1) is the following:

ẏ =
1

detA

 −a −αa −γa
−βb −b −αb
−αc −βb −c

 · y = 1

detA

 −a 0 0
0 −b 0
0 0 −c

 ·
 1 α γ

β 1 α
α β 1

 · y ,
(2.1)

where detA > 0 and a, b, c > 0. Computing the eigenvalues of the varying system
(2.1):

λ1 = −1
λ2,3 =

1
2

·
(1− a− b− c)±

q
(a+ b+ c− 1)2 − 4abc(detA)

¸
(2.2)

By studying the (2.2) eigenvalues of the varying system we can find the following:

Theorem 1 In system (1.1) there occurs a Hopf bifurcation if and only if the expres-
sion

γ = 1− (α− 1)
3

(β − 1)2

holds.

Proof. Let us consider how the conditions of the Andronov-Hopf theorem [1]
hold.
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1. Condition Reλ1 < 0 is fulfilled because λ1 = −1.
2. Secondly, we need to observe the two other eigenvalues. Let us use the following
notations:

∆ = detA, ∆1 = det

 1 α γ
1 1 α
1 β 1

 , ∆2 = det

 1 1 γ
β 1 α
α 1 1

 ,
∆3 = det

 1 α 1
β 1 1
α β 1


and A = 1 − α > 0, B = β − 1 > 0, C = γ − 1 > 0. Using these notations a
simple computation yields:

∆ = B2C + 2BC +B2 + 2AB +AC +A2(3−A) > 0,
∆1 = A2 +AB +BC > 0,
∆2 = A2 +AC +BC > 0,
∆3 = A2 +AB +B2 > 0.

We can easily see with these results that the interior fixed point is lying in the
positive cone:

P : (a, b, c) =

µ
∆1
∆

,
∆2
∆

,
∆3
∆

¶
> 0

The real part of λ2,3 is 12 (1− a− b− c) because

(a+ b+ c− 1)2 − 4abc(detA) < 0
Let us prove this inequality:

(a+ b+ c− 1)2 − 4abc(detA) = 1
∆2

h
(∆1 +∆2 +∆3 −∆)2 − 4∆1∆2∆3

i
=

1
∆2

h¡
B2C −A3

¢2 − 4 ¡A2 +AB +BC
¢ ¡
A2 +AC +BC

¢ ¡
A6 +AB +B2

¢i
=

1
∆2

£
B4C0 +A6 − 2A2B2C − 4(B4C2 +A6 +G(A,B,C)

¤
< 0

where G is a homogeneous polynomial of A,B,C and G > 0. Since the inequality
holds, λ2,3 has not only real parcs. Let us observe the following bifurcation
parameter:

µ = 1− (a+ b+ c)

The real part of λ2,3 is with this parameter:

Reλ2,3 =
µ

2
and

dReλ2,3
dµ

=
1

6
> 0 .

All of the conditions of the Andronov-Hopf theorem are fulfilled.
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3. Summary

We could see previously a simple generalization of the symmetrical May-Leonard
model, which neglects eonsidering symmetry. The papers mentioned in the intro-
duction give stability results also for models more general than system (1.1). In our
previous and current paper we examined which conditions should hold for periodic
orbits to occur in the model by means of Hopf bifurcation. We gave a necessary and
sufficient condition for Hopf bifurcation to occur in the above non-symmetric system,
and our results coincided with the more general case restricted to model (1.1) with
(1.2). Based sn this fact we can say that the stability loss of the equilibrium state
of the system by the specified conditions is due to the presence of periodic orbits
occurring by means of Hopf bifurcation.
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