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Abstract. Based on Andrews’ recent work on parity in partitions, this paper will prove two par-
tition identities proposed by Andrews (2010), simplify two generating functions into single sum
expressions and extend two double series expansions of the first and second g-exponential func-
tions.
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In a recent paper [1] on parity in partition identities, Andrews proposed fifteen
problems. The two of them, numbered with 9 and 10 and soon proved by Yee [5],
demand essentially to confirm the following identities:
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where the summation index 7 in the second equation should start from O instead of
1. Here we follow the standard notation of shifted factorials in base ¢ given by

(x;9)g =1 and (x;9), = (1—x)1—gx)---(1—¢" 'x) for neN

which admit for |¢| < 1 the two well-defined infinite product expressions
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The goal of this paper will be threefold. Firstly, we shall present proofs (different
from Yee’s ones) for both identities proposed by Andrews through combinations of
the g-Gauss summation theorem and Jacobi’s triple product identity. Secondly, An-
drews’ double sum generating functions for partitions with parity index enumerator
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will be reduced to single sum expressions by utilizing the g-binomial theorem. Fi-
nally, two double sum expansions for (g.x; q)gfo1 will slightly be generalized with two
free variables.

Throughout the paper, the g-binomial theorem (cf. [4, I[-4]) will be fundamental
in our derivation, which reads as

(X =Y (=DF |:Z:|q(§)xk

k=0
where the g-binomial coefficient is defined by
= (@:9)n for n,ke Ny with n>k.
k]l @Dk Dn—k

1. SOLUTIONS FOR ANDREWS’ PROBLEMS 9 AND 10

This section will be devoted to the confirmation to the two identities demanded
by Andrews [1], which will be accomplished by combining limiting cases of the
q-Gauss summation theorem with Jacobi’s triple product identity. Our proofs are
different from those given by Yee [5], who employed a partial theta series identity
due to Ramanujan [2, Entry 1.6.2].

Theorem 1 (Andrews, Problem 9 in [1]).
(—1)igU=P+j>+i=]
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Theorem 2 (Andrews, Problem 10 in [1]).
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Replacing i by 2j 4+ k — 1, we can express the double sum in (1.1) as
RHS(1.)=>" >~
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The inner sum with respect to k can be evaluated, by the g-Gauss summation theorem
(cf. [3, §8.4] and [4, II-8]) for ¢ -series, as (—qu ;q);ol, which leads the double sum
to the following closed form

.2_.
—1 77 (@)oo~ (—4:9) oo

RHS(1.1) = =
(b (=q:@)o0 =] (@:9)2j-1 2(—4:9) oo




GENERATING FUNCTIONS FOR PARTITIONS 295

where the second g-exponential function (cf. [3, §8.2] and [4, II-2]) has been ap-
pealed. Finally applying Jacobi’s triple product identity (cf. [3, §8.6] and [4, II-28]),
we can make further reformulation

2RHS(1.1) —% —1=(4"9"oo(q:47)2 —
=3 (=1)"g" —1=2)"(~1)"¢"" = 2LHS(1.1)
neZ n>1

which proves the first identity displayed in (1.1).
The identity displayed (1.2) can be confirmed analogously. In fact, performing the
replacement i — 2j + k, we can express the double sum in (1.2) as
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By invoking again the g-Gauss summation theorem and the second g-exponential
function, we can proceed with the following simplifications

2 .
¢ (@Dt (4D
(9:9)2; 2(—4:9) oo

RHS(1.2) =

(=4:0)o0 5

Then the identity (1.2) follows for the same reason as that for (1.1). O

2. SINGLE SUM EXPRESSIONS FOR COROLLARIES 11 AND 13

For a partition A = (11 > A5 > --- > Ay > 0), define its upper even (odd) index
by the number of terms in the longest decreasing subsequence of parts beginning
with an even (odd) part and alternating in parity. Following Andrews [1], denote by
De(00) (resp. Dy(00)) the generating function of the partitions into distinct parts
in three variables ¢, x, y, which account respectively for weights, lengths and upper
even (resp. odd) parity indices. Andrews finds the following double sum expressions.

Lemma 1 (Andrews, Corollary 11 in [1]).
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Recalling the g-binomial theorem, we can express D,(00) in (2.1a-2.1b) as fol-
lows:
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The generating function D, (oo) in (2.1c-2.1d) can similarly be treated as follows:
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Recombining the summation terms and then inverting the shifted factorials involving
y, we may state the resulting equations as the following theorem.

Theorem 3 (Single sum generating function).

1 1 i
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Instead, let F,(co) (resp. F,(00)) be the generating function of the unrestricted
partitions in three variables ¢, x, y, which account, respectively, for weights, lengths
and upper even (resp. odd) parity indices. Andrews obtains also the following double
sum expressions.

Lemma 2 (Andrews, Corollary 13 in [1]).
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Following exactly the same procedure, we can show that both F,(c0) and F,(00)
can be reduced to the following single sum expressions.

Theorem 4 (Single sum generating function).

Fo(c0) _Z(IJ;? z( Y q)z( x +Z( —q )(y q)z (@) (2.42)
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3. TWO PARAMETER EXTENSIONS OF EQUATIONS (9.18) AND (10.19)

Letting y = 1 in Lemmas 1 and 2, Andrews deduced, in view of partition inter-
pretations, the following two interesting identities.
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Proposition 1 (Andrews, Equation 9.18 in [1]).
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Proposition 2 (Andrews, Equation 10.19 in [1]).
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However, if we relate Lemmas 1 and 2 respectively to Theorems 3 and 4, the
last two identities follow immediately from the first and the second g-exponential
functions. This observation suggests that there may exist more general identities
behind these two examples. In fact, this can be realized by examining the following

nonterminating g-binomial series (cf. [3, §8.1] and [4, II-3]):

(@x:9)o0o Z (x/y:9k

(@y:9)o0 iz @k

Observe the two almost trivial equations
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We can manipulate the g-binomial sum as follows
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By switching the two terms in the linear factor 14 ¢, we may alternatively reformu-
late the g-binomial sum as
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Writing the Gaussian binomial coefficients in terms of shifted factorials, we get the
following two bivariate series identities.
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Theorem 5 (Two parameter generalization of Proposition 1).

(Gx:9)o0 yi(x/yiq)iqQ) T2 =20 +i+]
3.3
(@i 9)s Z (—4:9)i (4:9)2j(q:9)i—2) (3.3a)

> Y (x/yiq)ig G223

, 3.3b
(=9:9)i(q:9)2j-1(q:9)i—2j+1 (3-3b)

i,j=0

(@x:9)o00 Z y

(@y: @)oo =

i(x/y; q)iq(§)+2j2—zij+2i+j

3.3
(=4:9)i(q:9)2(q:9)i—2; (339

D)+2j2-2ij+2i—)

Y (x/y:9)iqC
Z (=4:9)i(@:9)2j-1(q:Q)i—2j+1

(3.3d)
i,j=0

When y — 0, this theorem gives the identities displayed in Proposition 1.
Similarly, consider two further simple equations
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We can express the g-binomial sum as follows
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By interchanging the two terms in the linear factor 1 + ¢’, we may alternatively
reformulate the g-binomial sum as
(4x:9)o0 -y /9 1+61i
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Writing the Gaussian binomial coefficients in terms of shifted factorials, we get the
following two bivariate series identities.

Theorem 6 (Two parameter generalization of Proposition 2).

(@¥i@oo _ ¥ (x/y19)ig? Ga)
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. 2 . .
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When x = 0, this theorem gives the identities displayed in Proposition 2.

Open Problem: It would be interesting to find combinatorial interpretations via
partitions for the two variable identities displayed in Theorems 9 and 10.
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