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Abstract. Based on Andrews’ recent work on parity in partitions, this paper will prove two par-
tition identities proposed by Andrews (2010), simplify two generating functions into single sum
expressions and extend two double series expansions of the first and second q-exponential func-
tions.
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In a recent paper [1] on parity in partition identities, Andrews proposed fifteen
problems. The two of them, numbered with 9 and 10 and soon proved by Yee [5],
demand essentially to confirm the following identities:X

n�1

.�1/nqn2

D

X
i;j�0

.�1/iq.i�j /2Cj 2Ci�j

.�qIq/i .qIq/2j�1.qIq/i�2jC1
;

X
n�0

.�1/nqn2

D

X
i;j�0

.�1/iq.i�j /2Cj 2Cj

.�qIq/i .qIq/2j .qIq/i�2j
I

where the summation index n in the second equation should start from 0 instead of
1. Here we follow the standard notation of shifted factorials in base q given by

.xIq/0 D 1 and .xIq/n D .1�x/.1�qx/ � � �.1�qn�1x/ for n 2N

which admit for jqj< 1 the two well–defined infinite product expressions

.xIq/1 D

1Y
kD0

.1�qkx/ and .xIq/n D .xIq/1 =
�
qnxIq

�
1
:

The goal of this paper will be threefold. Firstly, we shall present proofs (different
from Yee’s ones) for both identities proposed by Andrews through combinations of
the q-Gauss summation theorem and Jacobi’s triple product identity. Secondly, An-
drews’ double sum generating functions for partitions with parity index enumerator
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will be reduced to single sum expressions by utilizing the q-binomial theorem. Fi-
nally, two double sum expansions for .qxIq/˙1

1 will slightly be generalized with two
free variables.

Throughout the paper, the q-binomial theorem (cf. [4, II-4]) will be fundamental
in our derivation, which reads as

.xIq/n D

nX
kD0

.�1/k

"
n

k

#
q.

k
2/xk

where the q-binomial coefficient is defined by"
n

k

#
D

.qIq/n

.qIq/k.qIq/n�k

for n;k 2N0 with n� k:

1. SOLUTIONS FOR ANDREWS’ PROBLEMS 9 AND 10

This section will be devoted to the confirmation to the two identities demanded
by Andrews [1], which will be accomplished by combining limiting cases of the
q-Gauss summation theorem with Jacobi’s triple product identity. Our proofs are
different from those given by Yee [5], who employed a partial theta series identity
due to Ramanujan [2, Entry 1.6.2].

Theorem 1 (Andrews, Problem 9 in [1]).X
n�1

.�1/nqn2

D

X
i;j�0

.�1/iq.i�j /2Cj 2Ci�j

.�qIq/i .qIq/2j�1.qIq/i�2jC1
: (1.1)

Theorem 2 (Andrews, Problem 10 in [1]).X
n�0

.�1/nqn2

D

X
i;j�0

.�1/iq.i�j /2Cj 2Cj

.�qIq/i .qIq/2j .qIq/i�2j
: (1.2)

Replacing i by 2j Ck�1, we can express the double sum in (1.1) as

RHS(1.1)D
X
j�1

X
i�2j�1

.�1/iq.i�j /2Cj 2Ci�j

.�qIq/i .qIq/2j�1.qIq/i�2jC1

D

X
j�1

�q2j 2�j

.q2Iq2/2j�1

X
k�0

.�1/kqk2C2kj�k

.qIq/k.�q
2j Iq/k

:

The inner sum with respect to k can be evaluated, by the q-Gauss summation theorem
(cf. [3, �8.4] and [4, II-8]) for 2�1-series, as .�q2j Iq/�1

1 , which leads the double sum
to the following closed form

RHS(1.1)D
�1

.�qIq/1

X
j�1

q2j 2�j

.qIq/2j�1
D
.qIq/1� .�qIq/1

2.�qIq/1
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where the second q-exponential function (cf. [3, �8.2] and [4, II-2]) has been ap-
pealed. Finally applying Jacobi’s triple product identity (cf. [3, �8.6] and [4, II-28]),
we can make further reformulation

2RHS(1.1)D
.qIq/1

.�qIq/1
�1D .q2

Iq2/1.qIq
2/21�1

D

X
n2Z

.�1/nqn2

�1D 2
X
n�1

.�1/nqn2

D 2LHS(1.1)

which proves the first identity displayed in (1.1).
The identity displayed (1.2) can be confirmed analogously. In fact, performing the

replacement i ! 2j Ck, we can express the double sum in (1.2) as

RHS(1.2)D
X
j�0

X
i�2j

.�1/iq.i�j /2Cj 2Cj

.�qIq/i .qIq/2j .qIq/i�2j

D

X
j�0

q2j 2Cj

.q2Iq2/2j

X
k�0

.�1/kqk2C2kj

.qIq/k.�q
2jC1Iq/k

:

By invoking again the q-Gauss summation theorem and the second q-exponential
function, we can proceed with the following simplifications

RHS(1.2)D
1

.�qIq/1

X
j�0

q2j 2Cj

.qIq/2j
D
.qIq/1C .�qIq/1

2.�qIq/1
:

Then the identity (1.2) follows for the same reason as that for (1.1). �

2. SINGLE SUM EXPRESSIONS FOR COROLLARIES 11 AND 13

For a partition � D .�1 � �2 � � � � � �` > 0/, define its upper even (odd) index
by the number of terms in the longest decreasing subsequence of parts beginning
with an even (odd) part and alternating in parity. Following Andrews [1], denote by
De.1/ (resp. Do.1/) the generating function of the partitions into distinct parts
in three variables q;x;y, which account respectively for weights, lengths and upper
even (resp. odd) parity indices. Andrews finds the following double sum expressions.

Lemma 1 (Andrews, Corollary 11 in [1]).

Do.1/D
X

i;j�0

xiy2j q.i�j /2Cj 2CiCj

.�qIq/i .qIq/2j .qIq/i�2j
(2.1a)

C

X
i;j�0

xiy2j�1q.i�j /2Cj 2Ci�j

.�qIq/i .qIq/2j�1.qIq/i�2jC1
; (2.1b)
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De.1/D
X

i;j�0

xiy2j q.i�j /2Cj 2Cj

.�qIq/i .qIq/2j .qIq/i�2j
(2.1c)

C

X
i;j�0

xiy2j�1q.i�j /2Cj 2C2i�j

.�qIq/i .qIq/2j�1.qIq/i�2jC1
: (2.1d)

Recalling the q-binomial theorem, we can express Do.1/ in (2.1a-2.1b) as fol-
lows:

Do.1/D
X
i�0

xiqi2Ci

.q2Iq2/i

X
j

"
i

2j

#
q.

2j
2 /C2j.1�i/y2j

C

X
i�1

xiqi2

.q2Iq2/i

X
j

"
i

2j �1

#
q.

2j�1
2 /C.2j�1/.1�i/y2j�1

D

X
i�0

xiqi2Ci

2.q2Iq2/i

n
.�q1�iyIq/i C .q

1�iyIq/i

o

C

X
i�1

xiqi2

2.q2Iq2/i

n
.�q1�iyIq/i � .q

1�iyIq/i

o
:

The generating function De.1/ in (2.1c-2.1d) can similarly be treated as follows:

De.1/D
X
i�0

xiqi2

.q2Iq2/i

X
j

"
i

2j

#
q.

2j
2 /C2j.1�i/y2j

C

X
i�1

xiqi2Ci

.q2Iq2/i

X
j

"
i

2j C1

#
q.

2jC1
2 /C.2jC1/.1�i/y2jC1

D

X
i�0

xiqi2

2.q2Iq2/i

n
.�q1�iyIq/i C .q

1�iyIq/i

o

C

X
i�1

xiqi2Ci

2.q2Iq2/i

n
.�q1�iyIq/i � .q

1�iyIq/i

o
:

Recombining the summation terms and then inverting the shifted factorials involving
y, we may state the resulting equations as the following theorem.

Theorem 3 (Single sum generating function).

Do.1/D
X
i�0

.1Cqi /.�1=yIq/i

2.q2Iq2/i
q.

i
2/Ci .xy/i (2.2a)
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�

X
i�0

.1�qi /.1=yIq/i

2.q2Iq2/i
q.

i
2/Ci .�xy/i ; (2.2b)

De.1/D
X
i�0

.1Cqi /.�1=yIq/i

2.q2Iq2/i
q.

i
2/Ci .xy/i (2.2c)

C

X
i�0

.1�qi /.1=yIq/i

2.q2Iq2/i
q.

i
2/Ci .�xy/i : (2.2d)

Instead, let Fe.1/ (resp. Fo.1/) be the generating function of the unrestricted
partitions in three variables q;x;y, which account, respectively, for weights, lengths
and upper even (resp. odd) parity indices. Andrews obtains also the following double
sum expressions.

Lemma 2 (Andrews, Corollary 13 in [1]).

Fe.1/D
X

i;j�0

xiy2j q2j 2Ci�j

.�qIq/i .qIq/2j .qIq/i�2j
(2.3a)

C

X
i;j�0

xiy2jC1q2j 2C2iCj

.�qIq/i .qIq/2jC1.qIq/i�2j�1
; (2.3b)

Fo.1/D
X

i;j�0

xiy2j q2j 2C2i�j

.�qIq/i .qIq/2j .qIq/i�2j
(2.3c)

C

X
i;j�0

xiy2jC1q2j 2CiCj

.�qIq/i .qIq/2jC1.qIq/i�2j�1
: (2.3d)

Following exactly the same procedure, we can show that both Fe.1/ and Fo.1/

can be reduced to the following single sum expressions.

Theorem 4 (Single sum generating function).

Fe.1/D
X
i�0

.1Cqi /.�yIq/i

2.q2Iq2/i
.qx/i C

X
i�0

.1�qi /.yIq/i

2.q2Iq2/i
.qx/i ; (2.4a)

Fo.1/D
X
i�0

.1Cqi /.�yIq/i

2.q2Iq2/i
.qx/i �

X
i�0

.1�qi /.yIq/i

2.q2Iq2/i
.qx/i : (2.4b)

3. TWO PARAMETER EXTENSIONS OF EQUATIONS (9.18) AND (10.19)

Letting y D 1 in Lemmas 1 and 2, Andrews deduced, in view of partition inter-
pretations, the following two interesting identities.



298 WENCHANG CHU

Proposition 1 (Andrews, Equation 9.18 in [1]).

.�qxIq/1 D
X

i;j�0

xiq.i�j /2Cj 2CiCj

.�qIq/i .qIq/2j .qIq/i�2j
(3.1a)

C

X
i;j�0

xiq.i�j /2Cj 2Ci�j

.�qIq/i .qIq/2j�1.qIq/i�2jC1
(3.1b)

D

X
i;j�0

xiq.i�j /2Cj 2Cj

.�qIq/i .qIq/2j .qIq/i�2j
(3.1c)

C

X
i;j�0

xiq.i�j /2Cj 2C3jC1

.�qIq/i .qIq/2jC1.qIq/i�2j�1
: (3.1d)

Proposition 2 (Andrews, Equation 10.19 in [1]).

1

.qxIq/1
D

X
i;j�0

xiq2j 2Ci�j

.�qIq/i .qIq/2j .qIq/i�2j
(3.2a)

C

X
i;j�0

xiq2j 2C2iCj

.�qIq/i .qIq/2jC1.qIq/i�2j�1
(3.2b)

D

X
i;j�0

xiq2j 2C2i�j

.�qIq/i .qIq/2j .qIq/i�2j
(3.2c)

C

X
i;j�0

xiq2j 2CiCj

.�qIq/i .qIq/2jC1.qIq/i�2j�1
: (3.2d)

However, if we relate Lemmas 1 and 2 respectively to Theorems 3 and 4, the
last two identities follow immediately from the first and the second q-exponential
functions. This observation suggests that there may exist more general identities
behind these two examples. In fact, this can be realized by examining the following
nonterminating q-binomial series (cf. [3, �8.1] and [4, II-3]):

.qxIq/1

.qyIq/1
D

X
k�0

.x=yIq/k

.qIq/k
.qy/k where jqyj< 1:

Observe the two almost trivial equations

1 D
.�q1�i Iq/i C .q

1�i Iq/i

.�q1�i Iq/i
D

1Cqi

.�qIq/i
q.

i
2/
X

j

"
i

2j

#
q2j 2�2ijCj ; i > 0I
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1 D
.�q1�i Iq/i � .q

1�i Iq/i

.�q1�i Iq/i
D

1Cqi

.�qIq/i
q.

i
2/
X

j

"
i

2j�1

#
q2j 2�2ijCi�j ; i > 0:

We can manipulate the q-binomial sum as follows

.qxIq/1

.qyIq/1
D

X
i�0

.x=yIq/i

.qIq/i
.qy/i

1Cqi

1Cqi

D

X
i�0

.x=yIq/i

.qIq/i

.qy/i

1Cqi

.�q1�i Iq/i C .q
1�i Iq/i

.�q1�i Iq/i

C

X
i�0

.x=yIq/i

.qIq/i

.q2y/i

1Cqi

.�q1�i Iq/i � .q
1�i Iq/i

.�q1�i Iq/i

D

X
i�0

.x=yIq/i

.qIq/i

.qy/i

.�qIq/i

X
j

"
i

2j

#
q.

i
2/C2j 2�2ijCj

C

X
i�0

.x=yIq/i

.qIq/i

.q2y/i

.�qIq/i

X
j

"
i

2j �1

#
q.

i
2/C2j 2�2ijCi�j :

By switching the two terms in the linear factor 1Cqi , we may alternatively reformu-
late the q-binomial sum as

.qxIq/1

.qyIq/1
D

X
i�0

.x=yIq/i

.qIq/i
.qy/i

1Cqi

1Cqi

D

X
i�0

.x=yIq/i

.qIq/i

.q2y/i

1Cqi

.�q1�i Iq/i C .q
1�i Iq/i

.�q1�i Iq/i

C

X
i�0

.x=yIq/i

.qIq/i

.qy/i

1Cqi

.�q1�i Iq/i � .q
1�i Iq/i

.�q1�i Iq/i

D

X
i�0

.x=yIq/i

.qIq/i

.q2y/i

.�qIq/i

X
j

"
i

2j

#
q.

i
2/C2j 2�2ijCj

C

X
i�0

.x=yIq/i

.qIq/i

.qy/i

.�qIq/i

X
j

"
i

2j �1

#
q.

i
2/C2j 2�2ijCi�j :

Writing the Gaussian binomial coefficients in terms of shifted factorials, we get the
following two bivariate series identities.
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Theorem 5 (Two parameter generalization of Proposition 1).

.qxIq/1

.qyIq/1
D

X
i;j�0

yi .x=yIq/iq
.i

2/C2j 2�2ijCiCj

.�qIq/i .qIq/2j .qIq/i�2j
(3.3a)

C

X
i;j�0

yi .x=yIq/iq
.i

2/C2j 2�2ijC3i�j

.�qIq/i .qIq/2j�1.qIq/i�2jC1
; (3.3b)

.qxIq/1

.qyIq/1
D

X
i;j�0

yi .x=yIq/iq
.i

2/C2j 2�2ijC2iCj

.�qIq/i .qIq/2j .qIq/i�2j
(3.3c)

C

X
i;j�0

yi .x=yIq/iq
.i

2/C2j 2�2ijC2i�j

.�qIq/i .qIq/2j�1.qIq/i�2jC1
: (3.3d)

When y! 0, this theorem gives the identities displayed in Proposition 1.
Similarly, consider two further simple equations

1 D
.�1Iq/i C .1Iq/i

.�1Iq/i
D

1Cqi

.�qIq/i

X
j

"
i

2j

#
q2j 2�j ; i > 0I

1 D
.�1Iq/i � .1Iq/i

.�1Iq/i
D

1Cqi

.�qIq/i

X
j

"
i

2jC1

#
q2j 2Cj ; i > 0:

We can express the q-binomial sum as follows

.qxIq/1

.qyIq/1
D

X
i�0

.x=yIq/i

.qIq/i
.qy/i

1Cqi

1Cqi

D

X
i�0

.x=yIq/i

.qIq/i

.qy/i

1Cqi

.�1Iq/i C .1Iq/i

.�1Iq/i

C

X
i�0

.x=yIq/i

.qIq/i

.q2y/i

1Cqi

.�1Iq/i � .1Iq/i

.�1Iq/i

D

X
i�0

.x=yIq/i

.qIq/i

.qy/i

.�qIq/i

X
j

"
i

2j

#
q2j 2�j

C

X
i�0

.x=yIq/i

.qIq/i

.q2y/i

.�qIq/i

X
j

"
i

2j C1

#
q2j 2Cj :
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By interchanging the two terms in the linear factor 1C qi , we may alternatively
reformulate the q-binomial sum as

.qxIq/1

.qyIq/1
D

X
i�0

.x=yIq/i

.qIq/i
.qy/i

1Cqi

1Cqi

D

X
i�0

.x=yIq/i

.qIq/i

.q2y/i

1Cqi

.�1Iq/i C .1Iq/i

.�1Iq/i

C

X
i�0

.x=yIq/i

.qIq/i

.qy/i

1Cqi

.�1Iq/i � .1Iq/i

.�1Iq/i

D

X
i�0

.x=yIq/i

.qIq/i

.q2y/i

.�qIq/i

X
j

"
i

2j

#
q2j 2�j

C

X
i�0

.x=yIq/i

.qIq/i

.qy/i

.�qIq/i

X
j

"
i

2j C1

#
q2j 2Cj :

Writing the Gaussian binomial coefficients in terms of shifted factorials, we get the
following two bivariate series identities.

Theorem 6 (Two parameter generalization of Proposition 2).

.qxIq/1

.qyIq/1
D

X
i;j�0

yi .x=yIq/iq
2j 2Ci�j

.�qIq/i .qIq/2j .qIq/i�2j
(3.4a)

C

X
i;j�0

yi .x=yIq/iq
2j 2C2iCj

.�qIq/i .qIq/2jC1.qIq/i�2j�1
; (3.4b)

.qxIq/1

.qyIq/1
D

X
i;j�0

yi .x=yIq/iq
2j 2C2i�j

.�qIq/i .qIq/2j .qIq/i�2j
(3.4c)

C

X
i;j�0

yi .x=yIq/iq
2j 2CiCj

.�qIq/i .qIq/2jC1.qIq/i�2j�1
: (3.4d)

When x D 0, this theorem gives the identities displayed in Proposition 2.

Open Problem: It would be interesting to find combinatorial interpretations via
partitions for the two variable identities displayed in Theorems 9 and 10.
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