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Abstract. In this paper we shall establish sufficient conditions for the existence of solutions of the
integral equation of Volterra type and for its solvability in Banach space and CL: The main tools
used in our study are the nonexpansive operator technique, contraction principle and Schaefer’s
fixed point theorem.

2000 Mathematics Subject Classification: 45B05; 45D05; 47H10

Keywords: nonlinear integral equation, existence of solutions, nonexpansiv mapping

1. INTRODUCTION

The theory of integral equations has many applications in describing numerous
events and problems of the real world. For example, integral equations are often
applicable in engineering, mathematical physics, economics and biology. It is a well
known fact that the nonlinear quadric equations are often encountered in various
applications.

Fixed point theorems used in nonlinear functional analysis allows us, in general, to
obtain existence theorems concerning the investigated functional-operator equations.
In this paper we study the existence of solutions of nonlinear integral equation of
Volterra type by using the concepts of nonexpansive operators, contraction principles
and the Schaefer’s fixed point theorem. The result generalize previous results of
[1–3, 6, 7].

2. PRELIMINARIES

In this section, we introduce notations, definitions and preliminary facts which are
used throughout this paper. ByC.J;R/we denote the Banach space of all continuous
functions from J to R with norm

kyk WD supfjy.t/j W t 2 J g

We can now formulate one of the most important fixed point theorems that will used
throughout the paper. These theorems can be found in papers such as [3, 5, 8].
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Definition 1 ([3]). Let .X;d/ be a metric space and B �C.X;R/. B is a equicon-
tinuous means if for all " > 0 there exists ı > 0 such that for all f 2 B , x;a 2X ,

d.x;a/ < ı) jf .x/�f .a/j< ":

Theorem 1 (Arzelá-Ascoli, [5]). Let .X;d/ be a compact metric space and let
B � C.X;R/. Then B is compact if and only if B is closed, bounded and equicon-
tinuous.

Theorem 2 (Schaefer, [5]). Let X be a normed linear space. If A W X ! X is a
completly continuous map, then either the subset

fx 2X W x D �Ax, for some 0� �� 1g

is bounded or A has a fixed point.

Theorem 3 (Schaefer, [5]). Let X be a Banach space and K � X a nonempty,
convex, compact subset of X . If T WK!K is a continuous operator, then T has at
least one fixed point in K.

3. MAIN RESULTS

Consider the following nonlinear functional-integral equation

x.t/D g.t;x.t//Ch.t;x.t//

TZ
0

f .t; s;x.s//ds, T � 0: (3.1)

Let J D Œ0;T � and

CL D fx 2 C.J;J / j jx.t1/�x.t2/j � L � jt1� t2j ;

.8/t1; t2 2 RCg;L > 0 (3.2)

Our first result is based on the Banach fixed point theorem.

Theorem 4. Assume that

(H1) f WRC�RC�R!R g;h WRC�R!R are given continuous functions.
(H2) There exists a constant L1 > 0 such that

jg.t;x/�g.t;y/j � L1 � jx�yj , .8/ t 2 J; x;y 2 R:

(H3) There exists a constant L2 > 0 such that

jh.t;x/�h.t;y/j � L2 � jx�yj , .8/ t 2 J; x;y 2 R:

(H4) Then exists a constant L3 > 0 such that

jf .t; s;x/�f .t; s;y/j � L3 � jx�yj , .8/ t; s 2 J; x;y 2 R:
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If

sup
t�0

8<:L1CL2 �
TZ
0

jf .t; s;x.s//jdsCL3 �T � jh.t;x.t//j

9=;� k < 1, .8/t 2 J.�/

then equation 3.1 has a unique solution on J D Œ0;T �.

Proof. Transform the equation 3.1 into a fixed point problem.
Consider the operator

F W C.J;R/! C.J;R/

defined by

F.x/.t/D g.t;x.t//Ch.t;x.t//

TZ
0

f .t; s;x.s//ds:

The fixed point of the operator F are solution of equation 3.1. We shall use the
Banach contraction principle to prove that F has a fixed point.

Let x;y 2 C.J;R/: We have

j.F x/.t/� .Fy/.t/j � jg.t;x.t//�g.t;y.t//jCˇ̌̌̌
ˇ̌h.t;x.t//

TZ
0

f .t; s;x.s//ds�h.t;y.t//

TZ
0

f .t; s;y.s//dsC

C h.t;x.t//

TZ
0

f .t; s;y.s//ds�h.t;x.t//

TZ
0

f .t; s;y.s//ds

ˇ̌̌̌
ˇ̌�

� L1 jx.t/�y.t/jC jh.t;x.t//j �

TZ
0

jf .t; s;x.s//ds�f .t; s;y.s//jdsC

Cjh.t;x.t//�h.t;y.t//j �

TZ
0

f .t; s;y.s//ds � L1 jx.t/�y.t/jC

CL3 � jh.t;x.t//j �

tZ
0

jx.s/�y.s/jdsCL2 � jx.t/�y.t/j �

TZ
0

jf .t; s;y.s//jds:

Thus

kFx�Fyk �

0@L1CL2 � TZ
0

jf .t; s;y.s//jdsCL3 �T � jh.t;x.t//j

1A � kx�yk :
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Consequently F is a contraction. As a consequence of the Banach fixed point the-
orem, we deduce that F has a fixed point which is a solution of equation 3.1. �

The second result is based on Schaefer’s fixed point theorem.

Theorem 5. Assume the following conditions in equation 3.1:
(H1). The functions

g W RC�R! R

h W RC�R! R

f W RC�RC�R! R

are continuous.
(H2). If L is the Lipschitz constant involved in 3.2, thenˇ̌̌̌

ˇ̌
TZ
0

f .t1; s;x.s//ds�

TZ
0

f .t2; s;x.s//ds

ˇ̌̌̌
ˇ̌� L � jt1� t2j ;

for each .8/t1; t2; s 2 J and x 2 R and

QDmax
t2J

8<:
ˇ̌̌̌
ˇ̌h.t;x.t//

TZ
0

f .t; s;x.s//ds

ˇ̌̌̌
ˇ̌
9=; , .8/ t; s 2 J and x 2 R:

(H3). There exists the constants m;M;p 2 R such that

jg.t;x/�g.t;y/j �m � jx�yj for each x;y 2 R and t 2 J;

jg.t;x/�g.s;x/j �M �L � jt � sj and .8/ t; s 2 J , x 2 R;

jg.t;x.t//j � p;.8/ t; s 2 J;x 2 R:

(H4). There exists the constants n;N 2 R such that

jh.t;x/�h.t;y/j � n � jx�yj .8/ x;y 2 R and t 2 J;

jh.t;x/�h.s;x/j �N �L � jt � sj .8/ t; s 2 J and x 2 R

(H5). There exist the constant k 2 .0;1� such that

sup
t2J

8<:mCM C .nCN/
TZ
0

jf .t; ; s;x.t//jdsCjh.t;x.t//j

9=;� k:
Then the equation 3.1 has at least one solution on CL.

Proof. It is known, (see Lemma 1 in [4]), thatCL is nonempty and convex, moreover,
it is a compact subset of the Banach space .C Œa;b�;k�k/, where k�k is the usual su-
premum norm.

Now we transform equation 3.1 into a fixed point problem.
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Consider the integral operator

F W CL! C.J;R/

.F x/.t/D g.t;x.t//Ch.t;x.t//

TZ
0

f .t; s;x.s//ds:

Clearly, the fixed points of the operator F are solutions of equation 3.1. We shall use
Schaefer’s fixed point theorem to prove that F has a fixed point.

Step 1. F is continuous
Let fxng be o sequence such that xn! x in C.J;R/. Then for each t 2 J

jF.xn/.t/�F.x/.t/j

� jg.t;xn.t//�g.t;x.t//jC jh.t;xn.t//j �

TZ
0

jf .t; s;xn.s//�f .t; s;x.s//dsC

Cjh.t;xn.t//�h.t;x.t//j �

TZ
0

jf .t; s;x.s/jds:

Since f;g and h are continuous functions, we have

kFxn�Fxk! 0, as n!1:

Step 2. F maps bounded sets in CL into bounded sets in C.J;R/:
Indeed, it is enough to show for any � > 0, there exists a positive constant l such

that for each x 2 B� D fx 2 CL W kxk � �g, we have kFxk � l .
By (H3/ - (H4/ we have for each t 2 J

j.F x/.t/j � jg.t;x.t//jC

ˇ̌̌̌
ˇ̌h.t;x.t//

TZ
0

f .t; s;x.s//ds

ˇ̌̌̌
ˇ̌� pCQ:

Thus
kFxk � pCQ WD l:

Step 3. F maps bounded sets into equicontinuous sets of CL.

j.F x/.t1/� .F x/.t2/j � jg.t1;x.t1/�g.t2;x.t2//jC

C

ˇ̌̌̌
ˇ̌h.t1;x.t1//

TZ
0

f .t1; s;x.s//ds�h.t2;x.t2//

TZ
0

f .t2; s;x.s//ds

ˇ̌̌̌
ˇ̌�

� jg.t1;x.t1//�g.t2;x.t1//jC jg.t2;x.t1//�g.t2;x.t2//jC
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Cjh.t1;x.t2//�h.t2;x.t1//j �

TZ
0

jf .t1; s;x.s//jdsC

Cjh.t2;x.t1//j �

ˇ̌̌̌
ˇ̌
TZ
0

f .t1; s;x.s//ds�

TZ
0

f .t2; s;x.s//ds

ˇ̌̌̌
ˇ̌�

�M �L � jt1� t2jCm � jx.t1/�x.t2/jC

Cjh.t1;x.t2/�h.t1;x.t1/j �

TZ
0

jf .t1; s;x.s//jdsC

Cjh.t1;x.t1//�h.t2;x.t1//j �

TZ
0

jf .t1; s;x.s//jdsC

Cjh.t2;x.t1//j �

ˇ̌̌̌
ˇ̌
TZ
0

f .t1; s;x/ds�

TZ
0

f .t2; s;x/ds

ˇ̌̌̌
ˇ̌�

�M �L � jt1� t2jCm �L � jt1� t2jC

C.N �LCn �L/ � jt1� t2j �

TZ
0

jf .t1; s;x/jdsC

Cjh.t2;x.t1//j �L � jt1� t2j D

D L � jt1� t2j

24mCM C .nCN/ TZ
0

jf .t1; s;x/jdsCjh.t2;x.t1//j

35�
� L � jt1� t2j

So Fx 2 CL, .8/x 2 CL. Therefore T W CL! CL.
As t1! t2, the right-hand side of the above inequality tends to zero. As a con-

sequence of steps 1 ot 3, by using the Arzelá-Ascoli theorem, we can conclude that
F W CL! CL is continuous and completely continuous.

Step 4. A priori bounds.
Now it remains to show that the set

"D fx 2 CL W x D �Fx for some 0� �� 1g

is bounded.
Let x 2 " then x D �Fx for some 0� �� 1
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jx.t/j � jg.t;x.t//jC

ˇ̌̌̌
ˇ̌h.t;x.t//

TZ
0

f .t; s;x.s//ds

ˇ̌̌̌
ˇ̌� pCQ WDR

As a consequence of Schaefer’s fixed point theorem we deduce that F has a fixed
point which is a solution of equation 3.1. �

In the following theorem we shall give an existence result for equation 3.1 by
means of Schauder’s fixed point theorem.

Theorem 6. Assume that (H1), (H3), (H4) in theorem 5 hold and
(H02) There exists a constant L0 such that

jf .t; s;u/�f .t; s;v/j � L0 � ju�vj , for each t; s 2 J; u;v 2 R.

If

sup
t�0

8<:mCn
tZ
0

jf .t; s;x.s/jdsC t �L0 � jh.t;x.t//j

9=;� 1
or

lim
t!1

t � jh.t;x.t//j D 0 uniformly with respect to x 2 CL;

then the equation 3.1 has at least one solution in CL.

Proof. Using the proof of theorem 4 and theorem 5, one can prove that F is non-
expansive. Applying the Schauder’s fixed point theorem, we deduce that F has at
least one fixed point which is a solution of equation 3.1. �

4. AN EXAMPLE

In this section we give an example to illustrate the usefulness of our main results.
Let us consider the following nonlinear integral equation

x.t/D
1

t2C9
�x.t/C cos.tx.t//

TZ
0

e�t

1C et
�
jx.s/j

1Cjx.s/j
ds (4.1)

In this case we have

g W RC! R; g.t;x.t//D
1

t2C9
�x.t/, for all t 2 J;

h W RC! R; h.t;x.t//D cos.tx.t//, for all t 2 J;

and

f W RC�RC�R! R; f .t; s;x.s//D
e�t

1C et
�
jx.s/j

1Cjx.s/j
, for all t; s 2 J:
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We are interested to study the solution x.t/ belonging to

C1 D fx 2 C.J;J / W jx.t1/�x.t2/j � jt1� t2j ; .8/ t1; t2 2 J g;

which means LD 1. We have L1 D
1

9
;L2 D

1

2
;L3 D

1

2
in Theorem 4.

If L1 < k < 1 in 4, the equation 4.1 has a unique solution in J D Œ0;T �.

For T , it is especially convenient to set mD
1

9
, M D

1

36
, QD

1

2
, nD

1

2
, N D

1

2

and L0 D
1

2
in theorem 6. Then equation 4.1 has at least one solution in C1.
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