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Abstract. As an application of the so-called "optimal measure" we attempt to seek sets
whose power sets are equinumerous with o-algebras, which seems to be new information
about o-algebras.
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1. Introduction

Some new information about o-algebras is investigated, consisting of mapping bijec-
tively o-algebras onto power sets. Such o-algebras, in fact, form a rather broad class.
A special grouping of the so-called optimal measures is used in our investigation (for
more about optimal measures cf. [1-4]. We provide constructively a bijective map-
ping that will serve the purpose. In the proof we first characterize set-inclusion as
well as some asymptotic behaviors of sequences of measurable sets. Without loss of
generality we shall restrict ourselves to infinite o-algebras, since the opposite case can
be easily done.

Throughout this communication (€2, F) will stand for an arbitrary measurable
space, with both Q and F being infinite sets (where, as usual, the elements of F are
referred to as measurable sets).

By an optimal measure we mean a set function p* : F — [0, 1] which fulfills the
following axioms:

P1. p*(0) =0 and p* () =
P2. p* (BUUE) =p*(B)Vp* ( ) for all measurable sets B and E (where \/ stands
for the maximum).

P3. p*< ) hm p*(E,) = /\ p* (E,), for every decreasing sequence of

measurable sets (E,), where )\ stands for the minimum.
In [2] we have obtained the following results for all optimal measures p*.
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By (p*)-atom we mean a measurable set H, p* (H) > 0 such that whenever B € F,
B C H, then p* (B) = p* (H) or p* (B) = 0.

A p*-atom H is decomposable if there exists a subatom B C H such that p* (B) =
p* (H) = p* (H\B) . If no such subatom exists, we shall say that H is indecomposable.

Fundamental Optimal Measure Theorem. Let (2, F) be a measurable space and
p* an optimal measure on it. Then there exists a collection H (p*) = {H, :n € J} of
disjoint indecomposable p*-atoms, where J is some countable (i.e. finite or countably
infinite) index-set such that for any measurable set B, with p* (B) > 0, we have that

p* (B) :max{p* (BmHn) 'n € J}.

Moreover, the only limit point of the set {p* (H,) :n € J} is 0 provided that J is a
countably infinite set. (H (p*) is referred to as a p*-generating countable system.)

NOTATIONS.
1. P will denote the set of all optimal measures defined on (€2, F).
2. Poo is the set of all optimal measures whose generating systems are countably
infinite.
For every A € F, we write A for the complement of A.
N stands for the set of counting numbers (or positive integers).
A C B means set A is a proper subset of set B.
A C B means set A is a subset of set B.
P (A) stands for the power set of set A.

N oUW

2. Main results

Definition 2.1. We say that an optimal measure p* € P, is of order-one if there is
a unique indecomposable p*-atom H such that p* (H) = 1. (Any such atom will be
referred to as an order-one-atom and the set of all order-one optimal measures will

be denoted by 7/%;)

Example 1. Fix a sequence (wy,) C Q and define pf € P by
1
v} (B) zmax{— twp € B}.
n

Then p, € PL .

In fact, via the Structure Theorem, there is an indecomposable pj-atom H such
that p§ (H) = 1. This is possible if and only if w; € H. We note that there is no
other indecomposable p§-atom H* with H* N H = () such that p§ (H*) = 1, otherwise

necessarily it would ensue that wy € H*, which is absurd. Hence pj§ € PL..
FURTHER NOTATIONS.
If H is the order-one-atom of some p* € 73,1:, we write p = {q* € /?%: (q* (H) = 1}.

We then refer to the elements of the class p as representing members of the class, and
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call H the unitary atom of the class. (If the unitary atom of a class is the order-one-
atom of a representing member, we shall speak of representation.)

We further denote by PL. the set of all p classes.

If A is a nonempty measurable set and p € PL | the identity p (A) = 1 (resp. the
inequality p (4) < 1) will simply mean that p* (4) = 1 (resp. p*(A) < 1) for any
representing member p* € p. We shall also write p (4) = 0 to mean that p* (A) =0
whenever p* € p.

Write v for the set of all unitary atoms on the measurable space (Q, F).

Lemma 2.1. Let A, B € F and p € P be arbitrary. In order that p(ANB) =1 it
is necessary and sufficient that p (A) =1 and p(B) = 1.

Proof. As the necessity is obvious, we only have to show the sufficiency. In fact,
assume that p(A) =1 and p(B) = 1. Let H be the unitary atom of class p, and let
p* denote an arbitrary but fixed representing member in the class. Without loss of
generality we may assume that p* is a representation of p (i.e. H is the order-one
atom of p*). Then p* (H) = 1. Clearly, p* (AN H) =1 and p* (BN H) = 1. Hence
p* (Z NHN E) = 0. It is enough to prove that both identities p* (A NHN E) = 0 and
p* (Z NHN B) = 0 are valid. On the contrary, assume that at least one of these iden-
tities fails to hold: p* (A NnNH OE) =0, say. Then p* (A NH ﬂﬁ) = 1. Now, since
p*(HNB) = 1, it ensues that either p* (ANHNB) =1 or p* (ANHNB) = 1.
Then combining each of these last identities with p* (Aﬁ H OE) = 1, we have
that p* (ADHDE) = 1and p*(ANHNB) = 1, or p* (AQHQE) = 1 and
p* (Zﬂ HnN B) = 1. This violates that H is an order-one-atom (because the sets
ANHNB,ANHNB and AN H N B are pairwise disjoint). q.e.d.

Remark 2.0. Let p € PL be arbitrary. Then the identity p (#) = 0 holds.

Remark 2.1. Let A € F and p € P, be arbitrary. Then the identities p (A) = 1 and
P (A) = 1 cannot hold simultaneously, i.e., for no representing member p* of class p
the identities p* (A) = 1 and p* (A) =1 hold at the same time.

In fact, assume the contrary. Then Lemma 2.1 would imply that
p(A)=p(A) =1=p(AnA)=p®) =0
which is absurd, indeed. q.e.d.

Definition 2.2. For any A € F define the set A (A) by
1. A(A) CPL.
2. Ifpe A(A), then p(A) = 1.

Remark 2.2. Let A € F. Then A (A) =0 if and only if A = 0.
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Remark 2.3. If H is a unitary atom (with p its corresponding class), then A (H) =

{r}.

Let A € F and denote by V 4 the set of all unitary atoms H such that p(A) =1,
where A (H) = {p}. It is clear that V4V = 0 and V4 |JVy = V. From this
observation the following lemma is straightforward:

Lemma 2.2. For every set A € F, we have that A (A) = A (A).

Proposition 2.3. Let A, B € F be arbitrary. Then
1. A(Q) =PL.
2. A(ANB)=A(A)NA(B).
3. A(AUB)=A(A)UA(B).

Proof. Part 1 is an easy task. Let us show Part 2. In fact, let p € A(A B).
Then p (AN B) = 1. Hence Lemma 2.1 implies that p(4) = 1 and p(B) = 1, so
that p € A(A) and p € A(B), i.e. p € A(A)NA(B). Consequently A (AN ) C
A (A)N A (B). To show the reverse inclusion, pick an arbitrary p € A (A)NA(B).
Then p(A) = 1 and p(B) = 1. Via Lemma 2.1, we have that p(ANB) = 1, ie.

pEA(ANB).So A(A)NA(B)CA(ANB).

To end the proof, let us show the third part. In fact, let A and B € F be
arbitrary. Then making use of the second part of this proposition, it ensues that
A (Z HF) =A (Z) NA (F) . By applying Lemma 2.2 and De Morgan identities, we
obtain that

A(AUB) = A(AUB)=A(ANB)=A(A)NA(B)

Il
>
=
C
>
=
=
C
>
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> b
E
C
>
E

This was to be proven. q.e.d.

Lemma 2.4. Let A and B € F be arbitrary nonempty sets. In order that A C B, it
is necessary and sufficient that A (A) C A(B).

Proof. As the necessity is trivial, we need only show the sufficiency. In fact, assume
that A\ B is not an empty set. Then because of Remark 2.2, A (A\B) is neither empty.
Fix some p € A (A\B), i.e. p(A\B) = 1. This implies that p (B) < 1. (Otherwise we
would obtain via Lemma 2.1 that 1 = p((A\B) N B) = p(#) = 0, which is absurd.)
Then p(A) =1 and p(B) <1, ie. p€ A(A)\A(B). So the set A (A)\A (B) is not
empty. q.e.d.

Lemma 2.5. Let A and B € F be arbitrary nonempty sets. In order that ANB =0,
it is necessary and sufficient that A (A)NA(B) = 0.
(The proof follows from Proposition 2.3/2 and Remark 2.2.)

Lemma 2.6. Let A and B € F be arbitrary nonempty sets. In order that A = B it
is necessary and sufficient that A (A) = A(B).
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Proof. As the necessity is trivial, we need only show the sufficiency. In fact, assume
that A and B € F are such that A(A) = A(B), i.e. A(4A) C A(B) and A(B) C
A (A). By applying twice Lemma 2.4 it ensues that A C B and B C A. Therefore
A=B. q.ed.

Lemma 2.7. Let A and B € F be arbitrary nonempty sets. Then A(A\B) =
A(A)\A(B).
Proof. We simply note that Proposition 2.3/2 and Lemma 2.2 entail that
A(A\B) = A(ANB)=A(4A)NA(B)
= AN (AB)) =AAN\A(B),
which completes the proof. q.e.d.

Proposition 2.8. Let (4,) C F and A € F be arbitrary. Then (A,) converges
increasingly to A if and only if (A (A;)) converges increasingly to A (A).

Proof. Assume that (A,,) converges increasingly to A. Then by applying repeatedly
Lemma 2.4, we have for every n € N that

A(An) € A(Anir) C A(A).
We need to prove that A (A) = U A (A;) . To do this, it will be enough to show

that A (A) C U A(A,) and U A (A4,) C A(A). In fact, we note that the second

inclusion is tr1V1a1 To prove the first one, let us pick an arbitrary class p € A (A)
and fix any representing member p* of class p. We note that following the proof of
Lemma 0.1 (cf. [1], page 134), there can be found a positive integer ng such that

1=p*(A) =p* (U Ak> = p*(A,), whenever n > ng. Hence p € |J A(A,) C
k=1

n=ngo

GA(An),le
A) C D A(An) C GA A

n=ngo

Conversely, assume that sequence (A (A,,)) converges increasingly to A (A). Then for
every n € N we have that A(An) C A(Ant1) € A(A), so that A, C An+1 CA

(because of Lemma 2.4 ). Hence U A, C A. Now, suppose that set A\ U Ay, is not

empty. Then via Remark 2.2 and Amom 8 there can be found some p 6 Pl a
some representing member p* of class p such that

o (008 o (a0 - Ao ao

n=1 n=1
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since sequence (A_n) is a decreasing sequence. Consequently 1 = p* (A ﬂA_n) for all
n € N. But Lemma 2.1 yields that p* (A) = 1 and p* (4,,) =1 for all n € N. Hence
Axiom 8 entails that

= A @ = (V) -5 )
n=1 n=1
Nevertheless, this contradicts Remark 2.1 q.e.d.

Proposition 2.9. Let (A,) C F and A € F be arbitrary. Then (A,) converges
decreasingly to A if and only if (A (A,)) converges decreasingly to A (A).

Proof. Assume that (A,) converges decreasingly to A. Then by applying repeatedly
Lemma 2.4, we have for every n € N that

A(A) CA(Ant1) CA(AL).
We need to prove that A (A) = 61 A (A,). To do this, it will be enough to show
that A (4) C ﬁlA (A,) and ﬁlA (A,) € A(A). In fact, we note that the first
n= n=
inclusion is trivial. To prove the second inclusion let us pick some p € ﬁl A(Ay).

Then p € A(A,) for all n € N. Hence p(A4,,) = 1 for all n € N. If we fix any
representing member p* in class p, we then obtain via Aziom & that

p*(A)=p" (ﬂ An) = A\r(4) =1,
n=1 n=1

implying that p (A) =1, i.e. p € A(A). Consequently, (| A(4,) CA(A).
1

Conversely, assume that sequence (A (A,)) converges decreasingly to A (A) . Then
for every n € N we obtain that A (A) C A (Ap4+1) C A(A,) so that A C A1 C Ay,
o0

n € N (by Lemma 2.4). Hence A C [\ A,. To show the reverse inclusion let us

n=1
assume that set < N An> \A is not empty. Then via Remark 2.2 and Aziom & there
n=1
can be found some p € PL such that for every representing member p* of class p
e ((ﬂ“‘”> \A> - (ﬂAn”Z) = A\ v (4.07),
n=1 n=1 n=1

since (Ay) is a decreasing sequence. Consequently, 1 = p* (4, N'A) for all n € N.
Hence Lemma 2.1 yields that p (A) = 1 and p(A,) = 1 for all n € N. But then

p € A(A,) for all n € N and hence p € (| A(4,) = A(A). Nevertheless, this
n=1
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is absurd since p € A (A) = A(A). We can thus conclude on the validity of the
proposition. q.e.d.

Theorem 2.10. Let (A,,) C F and A € F be arbitrary. In order that (A,) converge
to A, it is necessary and sufficient that (A (Ay)) converge to A(A).

Proof. For every counting number n € N write E, = (| Ay and B, = |J Ax. It
k=n =

= k=n
is clear that sequence (B, ) converges decreasingly to limsupA,, and sequence (E,,)
n—oo
converges increasingly to lim inf A,,. Consequently, by applying Theorems 2.8 and 2.9
n—oo

to these sequences, we can conclude on the validity of the theorem. q.e.d.

Definition 2.3. A mapping A: F — P (77;0) is said to be powering if it is defined
by:

~ 0 A=
A(A)_{ {pePl :p(A)=1} fA#0D

Remark 2.3. If H is the unitary atom of a class p € PL, then A (H) = {p}.

The following result can easily be derived from Lemma 2.6 and Remark 2.2.

Proposition 2.11. If A : F — P(P;O) 1§ a powering mapping, then it is an
mjection.

Definition 2.4. If I' C PL is a nonempty set, then the collection C of all the unitary
atoms of the classes p € T will be called unitary-atomic collection of T.

Postulate of powering. If I € P (PL)\ {0} and C denotes the governing-atomic
collection of T, then |JC is measurable and A (|JC) CT.

Theorem 2.12. The powering mapping A : F — P (73;0) is surjective if and only if
the postulate of powering is valid.

Proof. Assume that Postulate of powering is valid. Let I' € P (77;0) be arbitrarily
fixed. We note that if I' = (), then there is nothing to be proven. Suppose that T’
is a nonempty subset of PL  and denote by C its corresponding governing-atomic
collection. Then (JC is measurable and A (|JC) C T (by the postulate). Let us show
that ' € A (|JC). In fact, pick any class p € " and p* any representing member of
p, with H the unitary atom of p. Since H C [JC, it ensues from Lemma 2.2 that
A(H) C A(UC). But, via Remark 2.8 we have that {p} = A(H) and p € A(JC),
ie. T C A(UC). Therefore I' = A (|JO).

To prove the converse biconditional, let us assume that the powering mapping A is
a surjection. We note that A is a bijection, since it is also an injection (by Proposition
2.11). Let T' € P (PL) \ {0} be arbitrary and write C for the corresponding unitary-
atomic collection. Obviously we have that I' = | J{A (H) : H € C} is a subset of PL.
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Then via the bijective property it ensues that A= (I') € F. Clearly A (H) C T for
every H € C. By Lemma 2.2 together with the bijective property, we obtain that

H=A"AH)cA D)

whenever H € C. Consequently the inclusion | JC € A~1 (') follows. Now let us show
that if w € A1 (T), then there is some H € C such that w € H. Assume on the
contrary that there can be found some w; € A™! (T) such that wy ¢ H for all H € C.
We can thus define an optimal measure ¢* : F — [0, 1] so that

« = 1 if w1 €B
1 (B){ < 1 ifw ¢B.
(See Example 1) Then there is a unique indecomposable g*-atom (to be denoted by
H) such that ¢* (fl) = 1. It is clear that w; € H and ¢* (A~' (")) = 1. We further
note that

Ua@E) :Hec=T=A(AT' () ={pePL:p(A~" @) =1}.

From this fact and the identity ¢* (A™! (I")) = 1, there must exist some class py € PL,
with po (A™! (")) = 1, such that ¢* (f{ NHNA™! (F)) =1, where H is the unitary
atom of class pg. Nevertheless, this is possible only if wy; € H, which is absurd, since
we have supposed that wy ¢ H for all H € C. Therefore, if w € A= (T), then there is
some H € C such that w € H. It ensues that w € [JC for allw € A= ("), as H c JC
whenever H € C. Thus A~ (T') C |JC. Therefore, | JC = A~ (T'), which leads to the
postulate. q.e.d.

Theorem 2.12 entails that an infinite o-algebra is equinumerous with a power set
if and only if Postulate 1 is valid. This suggests that there are infinite o-algebras that
are not equinumerous with infinite power sets.
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