

Mapping bijectively σ -algebras onto power sets

N. Kwami Agbeko

MAPPING BIJECTIVELY σ -ALGEBRAS ONTO POWER SETS

N. KWAMI AGBEKO Department of Applied Mathematics, University of Miskolc 3515 Miskolc – Egyetemváros, Hungary matagbek@gold.uni-miskolc.hu

[Received February 6, 2001]

Dedicated to the memory of my Father

Abstract. As an application of the so-called "optimal measure" we attempt to seek sets whose power sets are equinumerous with σ -algebras, which seems to be new information about σ -algebras.

Mathematical Subject Classification: 28A20, 28E10 Keywords: Measurable sets

1. Introduction

Some new information about σ -algebras is investigated, consisting of mapping bijectively σ -algebras onto power sets. Such σ -algebras, in fact, form a rather broad class. A special grouping of the so-called optimal measures is used in our investigation (for more about optimal measures cf. [1-4]. We provide constructively a bijective mapping that will serve the purpose. In the proof we first characterize set-inclusion as well as some asymptotic behaviors of sequences of measurable sets. Without loss of generality we shall restrict ourselves to infinite σ -algebras, since the opposite case can be easily done.

Throughout this communication (Ω, \mathcal{F}) will stand for an arbitrary measurable space, with both Ω and \mathcal{F} being infinite sets (where, as usual, the elements of \mathcal{F} are referred to as measurable sets).

By an optimal measure we mean a set function $p^* : \mathcal{F} \to [0, 1]$ which fulfills the following axioms:

P1. $p^*(\emptyset) = 0$ and $p^*(\Omega) = 1$. P2. $p^*(B \bigcup E) = p^*(B) \bigvee p^*(E)$ for all measurable sets B and E (where \bigvee stands for the maximum).

P3. $p^*\left(\bigcap_{n=1}^{\infty} E_n\right) = \lim_{n \to \infty} p^*(E_n) = \bigwedge_{n=1}^{\infty} p^*(E_n)$, for every decreasing sequence of measurable sets (E_n) , where \bigwedge stands for the minimum.

In [2] we have obtained the following results for all optimal measures p^* .

By (p^*) -atom we mean a measurable set H, $p^*(H) > 0$ such that whenever $B \in \mathcal{F}$, $B \subset H$, then $p^*(B) = p^*(H)$ or $p^*(B) = 0$.

A p^* -atom H is decomposable if there exists a subatom $B \subset H$ such that $p^*(B) = p^*(H) = p^*(H \setminus B)$. If no such subatom exists, we shall say that H is indecomposable.

Fundamental Optimal Measure Theorem. Let (Ω, \mathcal{F}) be a measurable space and p^* an optimal measure on it. Then there exists a collection $\mathcal{H}(p^*) = \{H_n : n \in J\}$ of disjoint indecomposable p^* -atoms, where J is some countable (i.e. finite or countably infinite) index-set such that for any measurable set B, with $p^*(B) > 0$, we have that

$$p^*(B) = \max\left\{p^*\left(B\bigcap H_n\right): n \in J\right\}.$$

Moreover, the only limit point of the set $\{p^*(H_n) : n \in J\}$ is 0 provided that J is a countably infinite set. $(\mathcal{H}(p^*))$ is referred to as a p^* -generating countable system.)

NOTATIONS.

- 1. \mathcal{P} will denote the set of all optimal measures defined on (Ω, \mathcal{F}) .
- 2. \mathcal{P}_{∞} is the set of all optimal measures whose generating systems are countably infinite.
- 3. For every $A \in \mathcal{F}$, we write \overline{A} for the complement of A.
- 4. \mathbb{N} stands for the set of counting numbers (or positive integers).
- 5. $A \subset B$ means set A is a proper subset of set B.
- 6. $A \subseteq B$ means set A is a subset of set B.
- 7. $\mathbb{P}(A)$ stands for the power set of set A.

2. Main results

Definition 2.1. We say that an optimal measure $p^* \in \mathcal{P}_{\infty}$ is of order-one if there is a unique indecomposable p^* -atom H such that $p^*(H) = 1$. (Any such atom will be referred to as an order-one-atom and the set of all order-one optimal measures will be denoted by $\widetilde{\mathcal{P}_{\infty}^1}$.)

Example 1. Fix a sequence $(\omega_n) \subset \Omega$ and define $p_0^* \in \mathcal{P}_{\infty}$ by

$$p_0^*(B) = \max\left\{\frac{1}{n} : \omega_n \in B\right\}.$$

Then $p_0^* \in \widetilde{\mathcal{P}_\infty^1}$.

In fact, via the Structure Theorem, there is an indecomposable p_0^* -atom H such that $p_0^*(H) = 1$. This is possible if and only if $\omega_1 \in H$. We note that there is no other indecomposable p_0^* -atom H^* with $H^* \cap H = \emptyset$ such that $p_0^*(H^*) = 1$, otherwise necessarily it would ensue that $\omega_1 \in H^*$, which is absurd. Hence $p_0^* \in \widetilde{\mathcal{P}_{\infty}^1}$.

FURTHER NOTATIONS.

If *H* is the order-one-atom of some $p^* \in \widetilde{\mathcal{P}_{\infty}^1}$, we write $p = \left\{q^* \in \widetilde{\mathcal{P}_{\infty}^1} : q^*(H) = 1\right\}$. We then refer to the elements of the class *p* as representing members of the class, and call H the unitary atom of the class. (If the unitary atom of a class is the order-oneatom of a representing member, we shall speak of representation.)

We further denote by \mathcal{P}^1_{∞} the set of all p classes.

If A is a nonempty measurable set and $p \in \mathcal{P}^1_{\infty}$, the identity p(A) = 1 (resp. the inequality p(A) < 1) will simply mean that $p^*(A) = 1$ (resp. $p^*(A) < 1$) for any representing member $p^* \in p$. We shall also write p(A) = 0 to mean that $p^*(A) = 0$ whenever $p^* \in p$.

Write ∇ for the set of all unitary atoms on the measurable space (Ω, \mathcal{F}) .

Lemma 2.1. Let $A, B \in \mathcal{F}$ and $p \in \mathcal{P}^1_{\infty}$ be arbitrary. In order that $p(A \cap B) = 1$ it is necessary and sufficient that p(A) = 1 and p(B) = 1.

Proof. As the necessity is obvious, we only have to show the sufficiency. In fact, assume that p(A) = 1 and p(B) = 1. Let H be the unitary atom of class p, and let p^* denote an arbitrary but fixed representing member in the class. Without loss of generality we may assume that p^* is a representation of p (i.e. H is the order-one atom of p^*). Then $p^*(H) = 1$. Clearly, $p^*(A \cap H) = 1$ and $p^*(B \cap H) = 1$. Hence $p^*(\overline{A} \cap H \cap \overline{B}) = 0$. It is enough to prove that both identities $p^*(A \cap H \cap \overline{B}) = 0$ and $p^*(\overline{A} \cap H \cap \overline{B}) = 0$ are valid. On the contrary, assume that at least one of these identities fails to hold: $p^*(A \cap H \cap \overline{B}) = 0$, say. Then $p^*(A \cap H \cap \overline{B}) = 1$. Now, since $p^*(H \cap B) = 1$, it ensues that either $p^*(A \cap H \cap B) = 1$ or $p^*(\overline{A} \cap H \cap B) = 1$. Then combining each of these last identities with $p^*(A \cap H \cap \overline{B}) = 1$, we have that $p^*(A \cap H \cap \overline{B}) = 1$ and $p^*(A \cap H \cap B) = 1$, or $p^*(A \cap H \cap \overline{B}) = 1$ and $p^*(\overline{A} \cap H \cap B) = 1$. This violates that H is an order-one-atom (because the sets $A \cap H \cap B$, $A \cap H \cap \overline{B}$ and $\overline{A} \cap H \cap B$ are pairwise disjoint). **q.e.d.**

Remark 2.0. Let $p \in \mathcal{P}^{1}_{\infty}$ be arbitrary. Then the identity $p(\emptyset) = 0$ holds.

Remark 2.1. Let $A \in \mathcal{F}$ and $p \in \mathcal{P}^1_{\infty}$ be arbitrary. Then the identities p(A) = 1 and $p(\overline{A}) = 1$ cannot hold simultaneously, i.e., for no representing member p^* of class p the identities $p^*(A) = 1$ and $p^*(\overline{A}) = 1$ hold at the same time.

In fact, assume the contrary. Then Lemma 2.1 would imply that

$$p(A) = p(\overline{A}) = 1 = p(A \cap \overline{A}) = p(\emptyset) = 0$$

which is absurd, indeed. q.e.d.

Definition 2.2. For any $A \in \mathcal{F}$ define the set $\Delta(A)$ by

1. $\Delta(A) \subseteq \mathcal{P}^{1}_{\infty}$. 2. If $p \in \Delta(A)$, then p(A) = 1.

Remark 2.2. Let $A \in \mathcal{F}$. Then $\Delta(A) = \emptyset$ if and only if $A = \emptyset$.

Remark 2.3. If *H* is a unitary atom (with *p* its corresponding class), then $\Delta(H) = \{p\}$.

Let $A \in \mathcal{F}$ and denote by ∇_A the set of all unitary atoms H such that p(A) = 1, where $\Delta(H) = \{p\}$. It is clear that $\nabla_A \bigcap \nabla_{\overline{A}} = \emptyset$ and $\nabla_A \bigcup \nabla_{\overline{A}} = \nabla$. From this observation the following lemma is straightforward:

Lemma 2.2. For every set $A \in \mathcal{F}$, we have that $\Delta(\overline{A}) = \overline{\Delta(A)}$.

Proposition 2.3. Let $A, B \in \mathcal{F}$ be arbitrary. Then

1. $\Delta(\Omega) = \mathcal{P}^{1}_{\infty}$. 2. $\Delta(A \cap B) = \Delta(A) \cap \Delta(B)$. 3. $\Delta(A \cup B) = \Delta(A) \cup \Delta(B)$.

Proof. Part 1 is an easy task. Let us show Part 2. In fact, let $p \in \Delta(A \cap B)$. Then $p(A \cap B) = 1$. Hence Lemma 2.1 implies that p(A) = 1 and p(B) = 1, so that $p \in \Delta(A)$ and $p \in \Delta(B)$, i.e. $p \in \Delta(A) \cap \Delta(B)$. Consequently $\Delta(A \cap B) \subseteq \Delta(A) \cap \Delta(B)$. To show the reverse inclusion, pick an arbitrary $p \in \Delta(A) \cap \Delta(B)$. Then p(A) = 1 and p(B) = 1. Via Lemma 2.1, we have that $p(A \cap B) = 1$, i.e. $p \in \Delta(A \cap B)$. So $\Delta(A) \cap \Delta(B) \subseteq \Delta(A \cap B)$.

To end the proof, let us show the third part. In fact, let A and $B \in \mathcal{F}$ be arbitrary. Then making use of the second part of this proposition, it ensues that $\Delta(\overline{A} \cap \overline{B}) = \Delta(\overline{A}) \cap \Delta(\overline{B})$. By applying Lemma 2.2 and De Morgan identities, we obtain that

$$\Delta(A \cup B) = \overline{\Delta(A \cup B)} = \overline{\Delta(\overline{A} \cap \overline{B})} = \overline{\Delta(\overline{A}) \cap \Delta(\overline{B})}$$
$$= \overline{\Delta(\overline{A})} \cup \overline{\Delta(\overline{B})} = \overline{\overline{\Delta(A)}} \cup \overline{\overline{\Delta(B)}} = \Delta(A) \cup \Delta(B)$$

This was to be proven. q.e.d.

Lemma 2.4. Let A and $B \in \mathcal{F}$ be arbitrary nonempty sets. In order that $A \subset B$, it is necessary and sufficient that $\Delta(A) \subset \Delta(B)$.

Proof. As the necessity is trivial, we need only show the sufficiency. In fact, assume that $A \setminus B$ is not an empty set. Then because of *Remark 2.2*, $\Delta(A \setminus B)$ is neither empty. Fix some $p \in \Delta(A \setminus B)$, i.e. $p(A \setminus B) = 1$. This implies that p(B) < 1. (Otherwise we would obtain via *Lemma 2.1* that $1 = p((A \setminus B) \cap B) = p(\emptyset) = 0$, which is absurd.) Then p(A) = 1 and p(B) < 1, i.e. $p \in \Delta(A) \setminus \Delta(B)$. So the set $\Delta(A) \setminus \Delta(B)$ is not empty. **q.e.d.**

Lemma 2.5. Let A and $B \in \mathcal{F}$ be arbitrary nonempty sets. In order that $A \cap B = \emptyset$, it is necessary and sufficient that $\Delta(A) \cap \Delta(B) = \emptyset$.

(The proof follows from *Proposition 2.3/2* and *Remark 2.2.*)

Lemma 2.6. Let A and $B \in \mathcal{F}$ be arbitrary nonempty sets. In order that A = B it is necessary and sufficient that $\Delta(A) = \Delta(B)$.

Proof. As the necessity is trivial, we need only show the sufficiency. In fact, assume that A and $B \in \mathcal{F}$ are such that $\Delta(A) = \Delta(B)$, i.e. $\Delta(A) \subseteq \Delta(B)$ and $\Delta(B) \subseteq \Delta(A)$. By applying twice Lemma 2.4 it ensues that $A \subseteq B$ and $B \subseteq A$. Therefore A = B. **q.e.d.**

Lemma 2.7. Let A and $B \in \mathcal{F}$ be arbitrary nonempty sets. Then $\Delta(A \setminus B) = \Delta(A) \setminus \Delta(B)$.

Proof. We simply note that *Proposition 2.3/2* and *Lemma 2.2* entail that

$$\Delta(A \setminus B) = \Delta(A \cap \overline{B}) = \Delta(A) \cap \Delta(\overline{B})$$
$$= \Delta(A) \cap \left(\overline{\Delta(B)}\right) = \Delta(A) \setminus \Delta(B),$$

which completes the proof. q.e.d.

Proposition 2.8. Let $(A_n) \subset \mathcal{F}$ and $A \in \mathcal{F}$ be arbitrary. Then (A_n) converges increasingly to A if and only if $(\Delta(A_n))$ converges increasingly to $\Delta(A)$.

Proof. Assume that (A_n) converges increasingly to A. Then by applying repeatedly Lemma 2.4, we have for every $n \in \mathbb{N}$ that

$$\Delta(A_n) \subset \Delta(A_{n+1}) \subset \Delta(A).$$

We need to prove that $\Delta(A) = \bigcup_{n=1}^{\infty} \Delta(A_n)$. To do this, it will be enough to show that $\Delta(A) \subseteq \bigcup_{n=1}^{\infty} \Delta(A_n)$ and $\bigcup_{n=1}^{\infty} \Delta(A_n) \subseteq \Delta(A)$. In fact, we note that the second inclusion is trivial. To prove the first one, let us pick an arbitrary class $p \in \Delta(A)$ and fix any representing member p^* of class p. We note that following the proof of *Lemma 0.1* (cf. [1], page 134), there can be found a positive integer n_0 such that $1 = p^*(A) = p^*\left(\bigcup_{k=1}^{\infty} A_k\right) = p^*(A_n)$, whenever $n \ge n_0$. Hence $p \in \bigcup_{n=n_0}^{\infty} \Delta(A_n) \subseteq \bigcup_{n=1}^{\infty} \Delta(A_n)$, i.e. $\Delta(A) \subseteq \bigcup_{n=1}^{\infty} \Delta(A_n) \subseteq \bigcup_{n=1}^{\infty} \Delta(A_n)$.

Conversely, assume that sequence $(\Delta(A_n))$ converges increasingly to $\Delta(A)$. Then for every $n \in \mathbb{N}$ we have that $\Delta(A_n) \subseteq \Delta(A_{n+1}) \subseteq \Delta(A)$, so that $A_n \subseteq A_{n+1} \subseteq A$ (because of Lemma 2.4). Hence $\bigcup_{n=1}^{\infty} A_n \subseteq A$. Now, suppose that set $A \setminus \bigcup_{n=1}^{\infty} A_n$ is not empty. Then via Remark 2.2 and Axiom 3 there can be found some $p \in \mathcal{P}^1_{\infty}$ and some representing member p^* of class p such that

$$1 = p^* \left(A \setminus \bigcup_{n=1}^{\infty} A_n \right) = p^* \left(\bigcap_{n=1}^{\infty} A \cap \overline{A_n} \right) = \bigwedge_{n=1}^{\infty} p^* \left(A \cap \overline{A_n} \right),.$$

since sequence $(\overline{A_n})$ is a decreasing sequence. Consequently $1 = p^* (A \cap \overline{A_n})$ for all $n \in \mathbb{N}$. But Lemma 2.1 yields that $p^* (A) = 1$ and $p^* (\overline{A_n}) = 1$ for all $n \in \mathbb{N}$. Hence Axiom 3 entails that

$$1 = \bigwedge_{n=1}^{\infty} p^* \left(\overline{A_n}\right) = p^* \left(\bigcap_{n=1}^{\infty} \overline{A_n}\right) = p^* \left(\overline{A}\right).$$

Nevertheless, this contradicts Remark 2.1 q.e.d.

Proposition 2.9. Let $(A_n) \subset \mathcal{F}$ and $A \in \mathcal{F}$ be arbitrary. Then (A_n) converges decreasingly to A if and only if $(\Delta(A_n))$ converges decreasingly to $\Delta(A)$.

Proof. Assume that (A_n) converges decreasingly to A. Then by applying repeatedly Lemma 2.4, we have for every $n \in \mathbb{N}$ that

$$\Delta(A) \subset \Delta(A_{n+1}) \subset \Delta(A_n)$$

We need to prove that $\Delta(A) = \bigcap_{n=1}^{\infty} \Delta(A_n)$. To do this, it will be enough to show that $\Delta(A) \subseteq \bigcap_{n=1}^{\infty} \Delta(A_n)$ and $\bigcap_{n=1}^{\infty} \Delta(A_n) \subseteq \Delta(A)$. In fact, we note that the first inclusion is trivial. To prove the second inclusion let us pick some $p \in \bigcap_{n=1}^{\infty} \Delta(A_n)$. Then $p \in \Delta(A_n)$ for all $n \in \mathbb{N}$. Hence $p(A_n) = 1$ for all $n \in \mathbb{N}$. If we fix any representing member p^* in class p, we then obtain via Axiom 3 that

$$p^{*}(A) = p^{*}\left(\bigcap_{n=1}^{\infty} A_{n}\right) = \bigwedge_{n=1}^{\infty} p^{*}(A_{n}) = 1$$

implying that p(A) = 1, i.e. $p \in \Delta(A)$. Consequently, $\bigcap_{n=1}^{\infty} \Delta(A_n) \subseteq \Delta(A)$.

Conversely, assume that sequence $(\Delta(A_n))$ converges decreasingly to $\Delta(A)$. Then for every $n \in \mathbb{N}$ we obtain that $\Delta(A) \subset \Delta(A_{n+1}) \subset \Delta(A_n)$ so that $A \subset A_{n+1} \subset A_n$, $n \in \mathbb{N}$ (by Lemma 2.4). Hence $A \subseteq \bigcap_{n=1}^{\infty} A_n$. To show the reverse inclusion let us assume that set $\left(\bigcap_{n=1}^{\infty} A_n\right) \setminus A$ is not empty. Then via Remark 2.2 and Axiom 3 there can be found some $p \in \mathcal{P}^1_{\infty}$ such that for every representing member p^* of class p

$$1 = p^* \left(\left(\bigcap_{n=1}^{\infty} A_n \right) \setminus A \right) = p^* \left(\bigcap_{n=1}^{\infty} A_n \cap \overline{A} \right) = \bigwedge_{n=1}^{\infty} p^* \left(A_n \cap \overline{A} \right),$$

since (A_n) is a decreasing sequence. Consequently, $1 = p^* (A_n \cap \overline{A})$ for all $n \in \mathbb{N}$. Hence Lemma 2.1 yields that $p(\overline{A}) = 1$ and $p(A_n) = 1$ for all $n \in \mathbb{N}$. But then $p \in \Delta(A_n)$ for all $n \in \mathbb{N}$ and hence $p \in \bigcap_{n=1}^{\infty} \Delta(A_n) = \Delta(A)$. Nevertheless, this is absurd since $p \in \Delta(\overline{A}) = \overline{\Delta(A)}$. We can thus conclude on the validity of the proposition. **q.e.d.**

Theorem 2.10. Let $(A_n) \subset \mathcal{F}$ and $A \in \mathcal{F}$ be arbitrary. In order that (A_n) converge to A, it is necessary and sufficient that $(\Delta(A_n))$ converge to $\Delta(A)$.

Proof. For every counting number $n \in \mathbb{N}$ write $E_n = \bigcap_{k=n}^{\infty} A_k$ and $B_n = \bigcup_{k=n}^{\infty} A_k$. It is clear that sequence (B_n) converges decreasingly to $\limsup_{n \to \infty} A_n$ and sequence (E_n) converges increasingly to $\liminf_{n \to \infty} A_n$. Consequently, by applying *Theorems 2.8* and *2.9* to these sequences, we can conclude on the validity of the theorem. **q.e.d.**

Definition 2.3. A mapping $\Delta : \mathcal{F} \to \mathbb{P}(\mathcal{P}^1_{\infty})$ is said to be *powering* if it is defined by:

$$\Delta(A) = \begin{cases} \emptyset & \text{if } A = \emptyset \\ \left\{ p \in \mathcal{P}^{1}_{\infty} : p(A) = 1 \right\} & \text{if } A \neq \emptyset \end{cases}$$

Remark 2.3. If *H* is the unitary atom of a class $p \in \mathcal{P}^1_{\infty}$, then $\Delta(H) = \{p\}$.

The following result can easily be derived from Lemma 2.6 and Remark 2.2.

Proposition 2.11. If $\Delta : \mathcal{F} \to \mathbb{P}(\mathcal{P}^1_{\infty})$ is a powering mapping, then it is an injection.

Definition 2.4. If $\Gamma \subseteq \mathcal{P}^1_{\infty}$ is a nonempty set, then the collection \mathcal{C} of all the unitary atoms of the classes $p \in \Gamma$ will be called unitary-atomic collection of Γ .

Postulate of powering. If $\Gamma \in \mathbb{P}(\mathcal{P}^1_{\infty}) \setminus \{\emptyset\}$ and \mathcal{C} denotes the governing-atomic collection of Γ , then $\bigcup \mathcal{C}$ is measurable and $\Delta(\bigcup \mathcal{C}) \subseteq \Gamma$.

Theorem 2.12. The powering mapping $\Delta : \mathcal{F} \to \mathbb{P}(\mathcal{P}^1_{\infty})$ is surjective if and only if the postulate of powering is valid.

Proof. Assume that Postulate of powering is valid. Let $\Gamma \in \mathbb{P}(\mathcal{P}^1_{\infty})$ be arbitrarily fixed. We note that if $\Gamma = \emptyset$, then there is nothing to be proven. Suppose that Γ is a nonempty subset of \mathcal{P}^1_{∞} , and denote by \mathcal{C} its corresponding governing-atomic collection. Then $\bigcup \mathcal{C}$ is measurable and $\Delta(\bigcup \mathcal{C}) \subseteq \Gamma$ (by the postulate). Let us show that $\Gamma \subseteq \Delta(\bigcup \mathcal{C})$. In fact, pick any class $p \in \Gamma$ and p^* any representing member of p, with H the unitary atom of p. Since $H \subseteq \bigcup \mathcal{C}$, it ensues from Lemma 2.2 that $\Delta(H) \subseteq \Delta(\bigcup \mathcal{C})$. But, via Remark 2.3 we have that $\{p\} = \Delta(H)$ and $p \in \Delta(\bigcup \mathcal{C})$, i.e. $\Gamma \subseteq \Delta(\bigcup \mathcal{C})$.

To prove the converse biconditional, let us assume that the powering mapping Δ is a surjection. We note that Δ is a bijection, since it is also an injection (by *Proposition* 2.11). Let $\Gamma \in \mathbb{P}(\mathcal{P}^1_{\infty}) \setminus \{\emptyset\}$ be arbitrary and write \mathcal{C} for the corresponding unitaryatomic collection. Obviously we have that $\Gamma = \bigcup \{\Delta(H) : H \in \mathcal{C}\}$ is a subset of \mathcal{P}^1_{∞} . Then via the bijective property it ensues that $\Delta^{-1}(\Gamma) \in \mathcal{F}$. Clearly $\Delta(H) \subset \Gamma$ for every $H \in \mathcal{C}$. By Lemma 2.2 together with the bijective property, we obtain that

$$H = \Delta^{-1} \left(\Delta \left(H \right) \right) \subset \Delta^{-1} \left(\Gamma \right)$$

whenever $H \in \mathcal{C}$. Consequently the inclusion $\bigcup \mathcal{C} \subseteq \Delta^{-1}(\Gamma)$ follows. Now let us show that if $\omega \in \Delta^{-1}(\Gamma)$, then there is some $H \in \mathcal{C}$ such that $\omega \in H$. Assume on the contrary that there can be found some $\omega_1 \in \Delta^{-1}(\Gamma)$ such that $\omega_1 \notin H$ for all $H \in \mathcal{C}$. We can thus define an optimal measure $q^* : \mathcal{F} \to [0, 1]$ so that

$$q^{*}(B) \begin{cases} = 1 & \text{if } \omega_{1} \in B \\ < 1 & \text{if } \omega_{1} \notin B \end{cases}$$

(See *Example 1*) Then there is a unique indecomposable q^* -atom (to be denoted by \widetilde{H}) such that $q^*\left(\widetilde{H}\right) = 1$. It is clear that $\omega_1 \in \widetilde{H}$ and $q^*\left(\Delta^{-1}(\Gamma)\right) = 1$. We further note that

$$\bigcup \left\{ \Delta \left(H \right) : H \in \mathcal{C} \right\} = \Gamma = \Delta \left(\Delta^{-1} \left(\Gamma \right) \right) = \left\{ p \in \mathcal{P}_{\infty}^{1} : p \left(\Delta^{-1} \left(\Gamma \right) \right) = 1 \right\}.$$

From this fact and the identity $q^* \left(\Delta^{-1} (\Gamma) \right) = 1$, there must exist some class $p_0 \in \mathcal{P}^1_{\infty}$ with $p_0 \left(\Delta^{-1} (\Gamma) \right) = 1$, such that $q^* \left(\widetilde{H} \cap H \cap \Delta^{-1} (\Gamma) \right) = 1$, where H is the unitary atom of class p_0 . Nevertheless, this is possible only if $\omega_1 \in H$, which is absurd, since we have supposed that $\omega_1 \notin H$ for all $H \in \mathcal{C}$. Therefore, if $\omega \in \Delta^{-1} (\Gamma)$, then there is some $H \in \mathcal{C}$ such that $\omega \in H$. It ensues that $\omega \in \bigcup \mathcal{C}$ for all $\omega \in \Delta^{-1} (\Gamma)$, as $H \subset \bigcup \mathcal{C}$ whenever $H \in \mathcal{C}$. Thus $\Delta^{-1} (\Gamma) \subseteq \bigcup \mathcal{C}$. Therefore, $\bigcup \mathcal{C} = \Delta^{-1} (\Gamma)$, which leads to the postulate. **q.e.d.**

Theorem 2.12 entails that an infinite σ -algebra is equinumerous with a power set if and only if *Postulate 1* is valid. This suggests that there are infinite σ -algebras that are not equinumerous with infinite power sets.

REFERENCES

- [1] AGBEKO, N. K.: On optimal averages, Acta Math. Hung. 63 (1994) 1-15.
- [2] AGBEKO, N. K.: On the structure of optimal measures and some of its applications, Publ. Math. Debrecen 46 (1995) 79–87.
- [3] AGBEKO, N. K.: How to characterize some properties of measurable functions, Mathematical Notes, Miskolc 2 (2000) 87–98.
- [4] FAZEKAS, I.: A note on 'optimal measures', Publ. Math. Debrecen 51/3-4 (1997) 273-277.