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Abstract. As an application of the so-called "optimal measure" we attempt to seek sets
whose power sets are equinumerous with σ-algebras, which seems to be new information
about σ-algebras.

Mathematical Subject Classification: 28A20, 28E10
Keywords : Measurable sets

1. Introduction

Some new information about σ-algebras is investigated, consisting of mapping bijec-
tively σ-algebras onto power sets. Such σ-algebras, in fact, form a rather broad class.
A special grouping of the so-called optimal measures is used in our investigation (for
more about optimal measures cf. [1-4]. We provide constructively a bijective map-
ping that will serve the purpose. In the proof we first characterize set-inclusion as
well as some asymptotic behaviors of sequences of measurable sets. Without loss of
generality we shall restrict ourselves to infinite σ-algebras, since the opposite case can
be easily done.

Throughout this communication (Ω,F) will stand for an arbitrary measurable
space, with both Ω and F being infinite sets (where, as usual, the elements of F are
referred to as measurable sets).

By an optimal measure we mean a set function p∗ : F → [0, 1] which fulfills the
following axioms:

P1. p∗ (∅) = 0 and p∗ (Ω) = 1.
P2. p∗ (B

S
E) = p∗ (B)

W
p∗ (E) for all measurable sets B and E (where

W
stands

for the maximum).

P3. p∗
µ ∞T
n=1

En

¶
= lim

n→∞ p∗ (En) =
∞V
n=1

p∗ (En), for every decreasing sequence of

measurable sets (En), where
V
stands for the minimum.

In [2] we have obtained the following results for all optimal measures p∗.
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By (p∗)-atom we mean a measurable setH, p∗ (H) > 0 such that whenever B ∈ F ,
B ⊂ H, then p∗ (B) = p∗ (H) or p∗ (B) = 0.

A p∗-atom H is decomposable if there exists a subatom B ⊂ H such that p∗ (B) =
p∗ (H) = p∗ (H\B) . If no such subatom exists, we shall say that H is indecomposable.

Fundamental Optimal Measure Theorem. Let (Ω, F) be a measurable space and
p∗ an optimal measure on it. Then there exists a collection H (p∗) = {Hn : n ∈ J} of
disjoint indecomposable p∗-atoms, where J is some countable (i.e. finite or countably
infinite) index-set such that for any measurable set B, with p∗ (B) > 0, we have that

p∗ (B) = max
n
p∗
³
B
\

Hn

´
: n ∈ J

o
.

Moreover, the only limit point of the set {p∗ (Hn) : n ∈ J} is 0 provided that J is a
countably infinite set. (H (p∗) is referred to as a p∗-generating countable system.)
NOTATIONS.
1. P will denote the set of all optimal measures defined on (Ω, F).
2. P∞ is the set of all optimal measures whose generating systems are countably
infinite.

3. For every A ∈ F , we write A for the complement of A.
4. N stands for the set of counting numbers (or positive integers).
5. A ⊂ B means set A is a proper subset of set B.
6. A ⊆ B means set A is a subset of set B.
7. P (A) stands for the power set of set A.

2. Main results

Definition 2.1. We say that an optimal measure p∗ ∈ P∞ is of order-one if there is
a unique indecomposable p∗-atom H such that p∗ (H) = 1. (Any such atom will be
referred to as an order-one-atom and the set of all order-one optimal measures will
be denoted by gP1∞.)
Example 1. Fix a sequence (ωn) ⊂ Ω and define p∗0 ∈ P∞ by

p∗0 (B) = max
½
1

n
: ωn ∈ B

¾
.

Then p∗0 ∈gP1∞.
In fact, via the Structure Theorem, there is an indecomposable p∗0-atom H such

that p∗0 (H) = 1. This is possible if and only if ω1 ∈ H. We note that there is no
other indecomposable p∗0-atom H∗ with H∗∩H = ∅ such that p∗0 (H∗) = 1, otherwise
necessarily it would ensue that ω1 ∈ H∗, which is absurd. Hence p∗0 ∈gP1∞.
FURTHER NOTATIONS.

IfH is the order-one-atom of some p∗ ∈gP1∞, we write p = nq∗ ∈gP1∞ : q∗ (H) = 1o.
We then refer to the elements of the class p as representing members of the class, and
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call H the unitary atom of the class. (If the unitary atom of a class is the order-one-
atom of a representing member, we shall speak of representation.)

We further denote by P1∞ the set of all p classes.

If A is a nonempty measurable set and p ∈ P1∞, the identity p (A) = 1 (resp. the
inequality p (A) < 1) will simply mean that p∗ (A) = 1 (resp. p∗ (A) < 1) for any
representing member p∗ ∈ p. We shall also write p (A) = 0 to mean that p∗ (A) = 0
whenever p∗ ∈ p.

Write O for the set of all unitary atoms on the measurable space (Ω, F) .

Lemma 2.1. Let A, B ∈ F and p ∈ P1∞ be arbitrary. In order that p (A ∩B) = 1 it
is necessary and sufficient that p (A) = 1 and p (B) = 1.

Proof. As the necessity is obvious, we only have to show the sufficiency. In fact,
assume that p (A) = 1 and p (B) = 1. Let H be the unitary atom of class p, and let
p∗ denote an arbitrary but fixed representing member in the class. Without loss of
generality we may assume that p∗ is a representation of p (i.e. H is the order-one
atom of p∗). Then p∗ (H) = 1. Clearly, p∗ (A ∩H) = 1 and p∗ (B ∩H) = 1. Hence
p∗
¡
A ∩H ∩B¢ = 0. It is enough to prove that both identities p∗ ¡A ∩H ∩B¢ = 0 and

p∗
¡
A ∩H ∩B¢ = 0 are valid. On the contrary, assume that at least one of these iden-

tities fails to hold: p∗
¡
A ∩H ∩B¢ = 0, say. Then p∗

¡
A ∩H ∩B¢ = 1. Now, since

p∗ (H ∩B) = 1, it ensues that either p∗ (A ∩H ∩B) = 1 or p∗
¡
A ∩H ∩B¢ = 1.

Then combining each of these last identities with p∗
¡
A ∩H ∩B¢ = 1, we have

that p∗
¡
A ∩H ∩B¢ = 1 and p∗ (A ∩H ∩B) = 1, or p∗

¡
A ∩H ∩B¢ = 1 and

p∗
¡
A ∩H ∩B¢ = 1. This violates that H is an order-one-atom (because the sets

A ∩H ∩B, A ∩H ∩B and A ∩H ∩B are pairwise disjoint). q.e.d.

Remark 2.0. Let p ∈ P1∞ be arbitrary. Then the identity p (∅) = 0 holds.

Remark 2.1. Let A ∈ F and p ∈ P1∞ be arbitrary. Then the identities p (A) = 1 and
p
¡
A
¢
= 1 cannot hold simultaneously, i.e., for no representing member p∗ of class p

the identities p∗ (A) = 1 and p∗
¡
A
¢
= 1 hold at the same time.

In fact, assume the contrary. Then Lemma 2.1 would imply that

p (A) = p
¡
A
¢
= 1 = p

¡
A ∩A¢ = p (∅) = 0

which is absurd, indeed. q.e.d.

Definition 2.2. For any A ∈ F define the set ∆ (A) by

1. ∆ (A) ⊆ P1∞.
2. If p ∈ ∆ (A) , then p (A) = 1.

Remark 2.2. Let A ∈ F . Then ∆ (A) = ∅ if and only if A = ∅.
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Remark 2.3. If H is a unitary atom (with p its corresponding class), then ∆ (H) =
{p} .
Let A ∈ F and denote by OA the set of all unitary atoms H such that p (A) = 1,

where ∆ (H) = {p} . It is clear that OA
T
OA = ∅ and OA

S
OA = O. From this

observation the following lemma is straightforward:

Lemma 2.2. For every set A ∈ F , we have that ∆ ¡A¢ = ∆ (A).
Proposition 2.3. Let A, B ∈ F be arbitrary. Then

1. ∆ (Ω) = P1∞.
2. ∆ (A ∩B) = ∆ (A) ∩∆ (B) .
3. ∆ (A ∪B) = ∆ (A) ∪∆ (B) .

Proof. Part 1 is an easy task. Let us show Part 2. In fact, let p ∈ ∆ (A ∩B) .
Then p (A ∩B) = 1. Hence Lemma 2.1 implies that p (A) = 1 and p (B) = 1, so
that p ∈ ∆ (A) and p ∈ ∆ (B) , i.e. p ∈ ∆ (A) ∩ ∆ (B) . Consequently ∆ (A ∩B) ⊆
∆ (A) ∩∆ (B) . To show the reverse inclusion, pick an arbitrary p ∈ ∆ (A) ∩∆ (B) .
Then p (A) = 1 and p (B) = 1. Via Lemma 2.1, we have that p (A ∩B) = 1, i.e.
p ∈ ∆ (A ∩B) . So ∆ (A) ∩∆ (B) ⊆ ∆ (A ∩B) .
To end the proof, let us show the third part. In fact, let A and B ∈ F be

arbitrary. Then making use of the second part of this proposition, it ensues that
∆
¡
A ∩B¢ = ∆ ¡A¢ ∩∆ ¡B¢ . By applying Lemma 2.2 and De Morgan identities, we

obtain that

∆ (A ∪B) = ∆ (A ∪B) = ∆ ¡A ∩B¢ = ∆ ¡A¢ ∩∆ ¡B¢
= ∆

¡
A
¢ ∪∆ ¡B¢ = ∆ (A) ∪∆ (B) = ∆ (A) ∪∆ (B) .

This was to be proven. q.e.d.

Lemma 2.4. Let A and B ∈ F be arbitrary nonempty sets. In order that A ⊂ B, it
is necessary and sufficient that ∆ (A) ⊂ ∆ (B) .
Proof. As the necessity is trivial, we need only show the sufficiency. In fact, assume
that A\B is not an empty set. Then because of Remark 2.2, ∆ (A\B) is neither empty.
Fix some p ∈ ∆ (A\B) , i.e. p (A\B) = 1. This implies that p (B) < 1. (Otherwise we
would obtain via Lemma 2.1 that 1 = p ((A\B) ∩B) = p (∅) = 0, which is absurd.)
Then p (A) = 1 and p (B) < 1, i.e. p ∈ ∆ (A) \∆ (B) . So the set ∆ (A) \∆ (B) is not
empty. q.e.d.

Lemma 2.5. Let A and B ∈ F be arbitrary nonempty sets. In order that A∩B = ∅,
it is necessary and sufficient that ∆ (A) ∩∆ (B) = ∅.
(The proof follows from Proposition 2.3/2 and Remark 2.2.)

Lemma 2.6. Let A and B ∈ F be arbitrary nonempty sets. In order that A = B it
is necessary and sufficient that ∆ (A) = ∆ (B) .
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Proof. As the necessity is trivial, we need only show the sufficiency. In fact, assume
that A and B ∈ F are such that ∆ (A) = ∆ (B), i.e. ∆ (A) ⊆ ∆ (B) and ∆ (B) ⊆
∆ (A) . By applying twice Lemma 2.4 it ensues that A ⊆ B and B ⊆ A. Therefore
A = B. q.e.d.

Lemma 2.7. Let A and B ∈ F be arbitrary nonempty sets. Then ∆ (A\B) =
∆ (A) \∆ (B) .

Proof. We simply note that Proposition 2.3/2 and Lemma 2.2 entail that

∆ (A\B) = ∆
¡
A ∩B¢ = ∆ (A) ∩∆ ¡B¢

= ∆ (A) ∩
³
∆ (B)

´
= ∆ (A) \∆ (B) ,

which completes the proof. q.e.d.

Proposition 2.8. Let (An) ⊂ F and A ∈ F be arbitrary. Then (An) converges
increasingly to A if and only if (∆ (An)) converges increasingly to ∆ (A) .

Proof. Assume that (An) converges increasingly to A. Then by applying repeatedly
Lemma 2.4, we have for every n ∈ N that

∆ (An) ⊂ ∆ (An+1) ⊂ ∆ (A) .

We need to prove that ∆ (A) =
∞S
n=1
∆ (An) . To do this, it will be enough to show

that ∆ (A) ⊆
∞S
n=1
∆ (An) and

∞S
n=1
∆ (An) ⊆ ∆ (A) . In fact, we note that the second

inclusion is trivial. To prove the first one, let us pick an arbitrary class p ∈ ∆ (A)
and fix any representing member p∗ of class p. We note that following the proof of
Lemma 0.1 (cf. [1], page 134), there can be found a positive integer n0 such that

1 = p∗ (A) = p∗
µ ∞S
k=1

Ak

¶
= p∗ (An) , whenever n ≥ n0. Hence p ∈

∞S
n=n0

∆ (An) ⊆
∞S
n=1
∆ (An) , i.e.

∆ (A) ⊆
∞[

n=n0

∆ (An) ⊆
∞[
n=1

∆ (An) .

Conversely, assume that sequence (∆ (An)) converges increasingly to ∆ (A) . Then for
every n ∈ N we have that ∆ (An) ⊆ ∆ (An+1) ⊆ ∆ (A) , so that An ⊆ An+1 ⊆ A

(because of Lemma 2.4 ). Hence
∞S
n=1

An ⊆ A. Now, suppose that set A\
∞S
n=1

An is not

empty. Then via Remark 2.2 and Axiom 3 there can be found some p ∈ P1∞ and
some representing member p∗ of class p such that

1 = p∗
Ã
A\

∞[
n=1

An

!
= p∗

Ã ∞\
n=1

A ∩An

!
=
∞̂

n=1

p∗
¡
A ∩An

¢
, .
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since sequence
¡
An

¢
is a decreasing sequence. Consequently 1 = p∗

¡
A ∩An

¢
for all

n ∈ N. But Lemma 2.1 yields that p∗ (A) = 1 and p∗
¡
An

¢
= 1 for all n ∈ N. Hence

Axiom 3 entails that

1 =
∞̂

n=1

p∗
¡
An

¢
= p∗

Ã ∞\
n=1

An

!
= p∗

¡
A
¢
.

Nevertheless, this contradicts Remark 2.1 q.e.d.

Proposition 2.9. Let (An) ⊂ F and A ∈ F be arbitrary. Then (An) converges
decreasingly to A if and only if (∆ (An)) converges decreasingly to ∆ (A) .

Proof. Assume that (An) converges decreasingly to A. Then by applying repeatedly
Lemma 2.4, we have for every n ∈ N that

∆ (A) ⊂ ∆ (An+1) ⊂ ∆ (An) .

We need to prove that ∆ (A) =
∞T
n=1
∆ (An) . To do this, it will be enough to show

that ∆ (A) ⊆
∞T
n=1
∆ (An) and

∞T
n=1
∆ (An) ⊆ ∆ (A) . In fact, we note that the first

inclusion is trivial. To prove the second inclusion let us pick some p ∈
∞T
n=1
∆ (An) .

Then p ∈ ∆ (An) for all n ∈ N. Hence p (An) = 1 for all n ∈ N. If we fix any
representing member p∗ in class p, we then obtain via Axiom 3 that

p∗ (A) = p∗
Ã ∞\
n=1

An

!
=
∞̂

n=1

p∗ (An) = 1,

implying that p (A) = 1, i.e. p ∈ ∆ (A) . Consequently,
∞T
n=1
∆ (An) ⊆ ∆ (A) .

Conversely, assume that sequence (∆ (An)) converges decreasingly to ∆ (A) . Then
for every n ∈ N we obtain that ∆ (A) ⊂ ∆ (An+1) ⊂ ∆ (An) so that A ⊂ An+1 ⊂ An,

n ∈ N (by Lemma 2.4 ). Hence A ⊆
∞T
n=1

An. To show the reverse inclusion let us

assume that set
µ ∞T
n=1

An

¶
\A is not empty. Then via Remark 2.2 and Axiom 3 there

can be found some p ∈ P1∞ such that for every representing member p∗ of class p

1 = p∗
ÃÃ ∞\

n=1

An

!
\A
!
= p∗

Ã ∞\
n=1

An ∩A
!
=
∞̂

n=1

p∗
¡
An ∩A

¢
,

since (An) is a decreasing sequence. Consequently, 1 = p∗
¡
An ∩A

¢
for all n ∈ N.

Hence Lemma 2.1 yields that p
¡
A
¢
= 1 and p (An) = 1 for all n ∈ N. But then

p ∈ ∆ (An) for all n ∈ N and hence p ∈
∞T
n=1
∆ (An) = ∆ (A) . Nevertheless, this
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is absurd since p ∈ ∆ ¡A¢ = ∆ (A). We can thus conclude on the validity of the
proposition. q.e.d.

Theorem 2.10. Let (An) ⊂ F and A ∈ F be arbitrary. In order that (An) converge
to A, it is necessary and sufficient that (∆ (An)) converge to ∆ (A) .

Proof. For every counting number n ∈ N write En =
∞T
k=n

Ak and Bn =
∞S
k=n

Ak. It

is clear that sequence (Bn) converges decreasingly to lim sup
n→∞

An and sequence (En)

converges increasingly to lim inf
n→∞ An. Consequently, by applying Theorems 2.8 and 2.9

to these sequences, we can conclude on the validity of the theorem. q.e.d.

Definition 2.3. A mapping ∆ : F → P
¡P1∞¢ is said to be powering if it is defined

by:

∆ (A) =

½ ∅ if A = ∅©
p ∈ P1∞ : p (A) = 1

ª
if A 6= ∅

Remark 2.3. If H is the unitary atom of a class p ∈ P1∞, then ∆ (H) = {p}.

The following result can easily be derived from Lemma 2.6 and Remark 2.2.

Proposition 2.11. If ∆ : F → P
¡P1∞¢ is a powering mapping, then it is an

injection.

Definition 2.4. If Γ ⊆ P1∞ is a nonempty set, then the collection C of all the unitary
atoms of the classes p ∈ Γ will be called unitary-atomic collection of Γ.

Postulate of powering. If Γ ∈ P ¡P1∞¢ \ {∅} and C denotes the governing-atomic
collection of Γ, then

S C is measurable and ∆ (S C) ⊆ Γ.
Theorem 2.12. The powering mapping ∆ : F → P

¡P1∞¢ is surjective if and only if
the postulate of powering is valid.

Proof. Assume that Postulate of powering is valid. Let Γ ∈ P ¡P1∞¢ be arbitrarily
fixed. We note that if Γ = ∅, then there is nothing to be proven. Suppose that Γ
is a nonempty subset of P1∞, and denote by C its corresponding governing-atomic
collection. Then

S C is measurable and ∆ (S C) ⊆ Γ (by the postulate). Let us show
that Γ ⊆ ∆ (S C). In fact, pick any class p ∈ Γ and p∗ any representing member of
p, with H the unitary atom of p. Since H ⊆ S C, it ensues from Lemma 2.2 that
∆ (H) ⊆ ∆ (S C) . But, via Remark 2.3 we have that {p} = ∆ (H) and p ∈ ∆ (S C),
i.e. Γ ⊆ ∆ (S C). Therefore Γ = ∆ (S C).
To prove the converse biconditional, let us assume that the powering mapping ∆ is

a surjection. We note that ∆ is a bijection, since it is also an injection (by Proposition
2.11 ). Let Γ ∈ P ¡P1∞¢ \ {∅} be arbitrary and write C for the corresponding unitary-
atomic collection. Obviously we have that Γ =

S {∆ (H) : H ∈ C} is a subset of P1∞.
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Then via the bijective property it ensues that ∆−1 (Γ) ∈ F . Clearly ∆ (H) ⊂ Γ for
every H ∈ C. By Lemma 2.2 together with the bijective property, we obtain that

H = ∆−1 (∆ (H)) ⊂ ∆−1 (Γ)

whenever H ∈ C. Consequently the inclusion S C ⊆ ∆−1 (Γ) follows. Now let us show
that if ω ∈ ∆−1 (Γ), then there is some H ∈ C such that ω ∈ H. Assume on the
contrary that there can be found some ω1 ∈ ∆−1 (Γ) such that ω1 /∈ H for all H ∈ C.
We can thus define an optimal measure q∗ : F → [0, 1] so that

q∗ (B)
½
= 1 if ω1 ∈ B
< 1 if ω1 /∈ B.

(See Example 1 ) Then there is a unique indecomposable q∗-atom (to be denoted byeH) such that q∗ ³ eH´ = 1. It is clear that ω1 ∈ eH and q∗
¡
∆−1 (Γ)

¢
= 1. We further

note that[
{∆ (H) : H ∈ C} = Γ = ∆ ¡∆−1 (Γ)¢ = ©p ∈ P1∞ : p ¡∆−1 (Γ)¢ = 1ª .

From this fact and the identity q∗
¡
∆−1 (Γ)

¢
= 1, there must exist some class p0 ∈ P1∞

with p0
¡
∆−1 (Γ)

¢
= 1, such that q∗

³ eH ∩H ∩∆−1 (Γ)´ = 1, where H is the unitary

atom of class p0. Nevertheless, this is possible only if ω1 ∈ H, which is absurd, since
we have supposed that ω1 /∈ H for all H ∈ C. Therefore, if ω ∈ ∆−1 (Γ), then there is
some H ∈ C such that ω ∈ H. It ensues that ω ∈ S C for all ω ∈ ∆−1 (Γ), as H ⊂ S C
whenever H ∈ C. Thus ∆−1 (Γ) ⊆ S C. Therefore, S C = ∆−1 (Γ), which leads to the
postulate. q.e.d.

Theorem 2.12 entails that an infinite σ-algebra is equinumerous with a power set
if and only if Postulate 1 is valid. This suggests that there are infinite σ-algebras that
are not equinumerous with infinite power sets.
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