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1. Introduction

The existence of solutions on compact intervals for three-point and multi-point bound-
ary value problems for second order differential equations has received much attention
in the last decade, we refer for instance to the papers of Boucherif and Bouguima [1],
Gupta [2-5], Gupta et al [6-8], Gupta and Trofimchuk [9-10] and Marano [11]. The
study of multi-point boundary value problems for second order ordinary differential
equations was initiated by Il’In and Moiseev in [12-13], motivated by the work of
Bitsadze and Samarskii on nonlocal elliptic boundary value problems [14-16]. The
methods used are usually the topological transversality of Granas or the degree the-
ory methods combined with Wirtinger type inequalities.

Very recently, by means of a fixed point theorem for condensing multivalued maps
due to Martelli, an extension of three and four-point boundary value problems for
second order differential equations to the multivalued case has been done by the
authors in [17-18]. However, in these problems the right-hand side was assumed to be
convex valued. Here we drop this restriction and consider problems with a nonconvex
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valued right-hand side.

In Section 3 of this paper we shall prove a theorem which ensures the existence
of solutions defined on a compact real interval for the three-point boundary value
problem (BVP for short) of the second order differential inclusion

y00 ∈ F (t, y), t ∈ J = [0, 1], (1.1)

y(0) = 0, y(η) = y(1), (1.2)

where F : J × IR −→ P(IR) is a multivalued map, η ∈ (0, 1), and P(E) is the family
of all subsets of IR.

Section 4 is devoted to the study of the following four-point boundary value prob-
lem

y00 ∈ F (t, y), t ∈ J = [0, 1], (1.3)

y(0) = y0(η), y(1) = y(τ), (1.4)

where F, η are as in the problem (1.1)-(1.2) and τ ∈ (0, 1). The method we are going
to use is to reduce the existence of solutions to problems (1.1)-(1.2) and (1.3)-(1.4)
to the search for fixed points of a suitable multivalued map on the Banach space
C(J, IR). In order to prove the existence of fixed points, we shall rely on a fixed point
theorem for contraction multivalued maps, due to Covitz and Nadler [19].

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts from
multivalued analysis which are used throughout this paper.

Let (X, d) be a metric space. We use the notations:

P (X) = {Y ∈ P(X) : Y 6= ∅}, Pcl(X) = {Y ∈ P (X) : Y closed}, Pb(X) =
{Y ∈ P (X) : Y bounded}.
Consider Hd : P (X)× P (X) −→ IR+ ∪ {∞}, given by

Hd(A,B) = max

½
sup
a∈A

d(a,B), sup
b∈B

d(A, b)

¾
,

where d(A, b) = infa∈A d(a, b), d(a,B) = infb∈B d(a, b).

Then (Pb,cl(X),Hd) is a metric space and (Pcl(X),Hd) is a generalized metric
space.

A multivalued map N : J −→ Pcl(X) is said to be measurable if, for each x ∈ X,
the function Y : J −→ IR, defined by

Y (t) = d(x,N(t)) = inf{|x− z| : z ∈ N(t)},
is measurable.

Definition 1 A multivalued operator N : X → Pcl(X) is called
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a) γ-Lipschitz if and only if there exists γ > 0 such that

Hd(N(x), N(y)) ≤ γd(x, y), for each x, y ∈ X,

b) contraction if and only if it is γ-Lipschitz with γ < 1.

N has a fixed point if there is x ∈ X such that x ∈ N(x). The fixed point set of
the multivalued operator N will be denoted by FixN .

For more details on multivalued maps we refer to the books by Deimling [20],
Gorniewicz [21] and Hu and Papageorgiou [22].

Our considerations are based on the following fixed point theorem for contraction
multivalued operators given by Covitz and Nadler in 1970 [19] (see also Deimling, [20]
Theorem 11.1).

Lemma 2 Let (X, d) be a complete metric space. If N : X → Pcl(X) is a contraction,
then FixN 6= ∅.

3. Three-Point BVPs

The main result of this section concerns the three-point BVP (1.1)—(1.2). Before
we state and prove this result, we give the definition of a solution of the three-point
BVP (1.1)—(1.2).

Definition 3 A function y : J −→ IR is called a solution for the BVP (1.1)-(1.2)
if y and its first derivative are absolutely continuous and y00 (which exists almost
everywhere) satisfies the differential inclusion (1.1) a.e. on J and the condition (1.2).

Theorem 4 Assume that:

(H1) F : J × IR → Pcl(IR) has the property that F (·, y) : J → Pcl(IR) is measurable
for each y ∈ IR.

(H2) Hd(F (t, y), F (t, y)) ≤ l(t)|y − y|, for a.e. t ∈ J and y, y ∈ IR, where l ∈
L1(J, IR).

Let L(t) =
R t
0
l(s)ds, and µ > 1. If

1

µ
+

L(η) + L(1)

1− η
< 1,

then the BVP (1.1)-(1.2) has at least one solution on J.
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Proof. Let the Bielecki-type norm k · kB on C(J, IR) be defined by

kykB = max
t∈J

{|y(t)|e−µL(t)}.

Transform the problem into a fixed point problem. Consider the multivalued map,
N : C(J, IR) −→ P(C(J, IR)) defined by:

N(y) =

½
h ∈ C(J, IR) : h(t) =

Z t

0

(t− s)g(s)ds+
t

1− η

Z η

0

(η − s)g(s)ds

− t

1− η

Z 1

0

(1− s)g(s)ds

¾
where

g ∈ SF,y =
©
g ∈ L1(J, IR) : g(t) ∈ F (t, y(t)) for a.e. t ∈ J

ª
.

Remark 5 (i) It is clear that the fixed points of N are solutions to (1.1)-(1.2).

(ii) For each y ∈ C(J, IR) the set SF,y is nonempty, since by (H1), F has a
measurable selection (see [23], Theorem III.6).

We shall show that N satisfies the assumptions of Lemma 2. The proof will be
given in two steps.

Step 1: N(y) ∈ Pcl(CJ, IR) for each y ∈ C(J, IR).

Indeed, let (yn)n≥0 ∈ N(y) such that yn → ỹ in C(J, IR). Then ỹ ∈ C(J, IR) and
for each t ∈ J

yn(t) ∈
Z t

0

(t− s)F (s, y(s))ds+
t

1− η

Z η

0

(η − s)F (s, y(s))ds

− t

1− η

Z 1

0

(1− s)F (s, y(s))ds.

Because the setsZ t

0

(t−s)F (s, y(s))ds, t

1− η

Z η

0

(η−s)F (s, y(s))ds and
t

1− η

Z 1

0

(1−s)F (s, y(s))ds

are closed for each t ∈ J , then for each t ∈ J

yn(t)→ ỹ(t) ∈
Z t

0

(t− s)F (s, y(s))ds+
t

1− η

Z η

0

(η − s)F (s, y(s))ds

− t

1− η

Z 1

0

(1− s)F (s, y(s))ds.

Therefore ỹ ∈ N(y).
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Step 2: Hd(N(y1), N(y2)) ≤ γ|y1 − y2| for each y1, y2 ∈ C(J, IR) (where γ < 1).

Let y1, y2 ∈ C(J, IR) and h1 ∈ N(y1). Then there exists g1(t) ∈ F (t, y1(t)) such
that, for each t ∈ J,

h1(t) =

Z t

0

(t− s)g1(s)ds+
t

1− η

Z η

0

(η − s)g1(s)ds− t

1− η

Z 1

0

(1− s)g1(s)ds.

From (H2) it follows that

Hd(F (t, y1(t)), F (t, y2(t))) ≤ l(t)|y1(t)− y2(t)|.

Hence, there is w ∈ F (t, y2(t)), such that

|g1(t)− w| ≤ l(t)|y1(t)− y2(t)|, t ∈ J.

Consider U : J → P(IR), given by

U(t) = {w ∈ IR : |g1(t)− w| ≤ l(t)|y1(t)− y2(t)|}.

Since the multivalued operator V (t) = U(t)∩F (t, y2(t)) is measurable (see Proposition
III.4 in [23] there exists g2(t) a measurable selection for V . So, g2(t) ∈ F (t, y2(t)) and

|g1(t)− g2(t)| ≤ l(t)|y1(t)− y2(t)|, for each t ∈ J.

Let us define for each t ∈ J

h2(t) =

Z t

0

(t− s)g2(s)ds+
t

1− η

Z η

0

(η − s)g2(s)ds− t

1− η

Z 1

0

(1− s)g2(s)ds.

Then we have

|h1(t)− h2(t)| ≤
Z t

0

(t− s)|g1(s)− g2()| ds+ t

1− η

Z η

0

(η − s)|g1(s)− g2(s)| ds

+
t

1− η

Z 1

0

(1− s)|g1(s)− g2(s)| ds

≤
Z t

0

l(s)|y1(s)− y2(s)|ds+ 1

1− η

Z η

0

(η − s)l(s)|y1(s)− y2(s)|ds

+
1

1− η

Z 1

0

(1− s)l(s)|y1(s)− y2(s)|ds ≤
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≤
Z t

0

l(s)e−µL(s)eµL(s)|y1(s)− y2(s)| ds

+
1

1− η
L(η)eµL(t)ky1 − y2kB

+
1

1− η
L(1)eµL(t)ky1 − y2kB

≤ ky1 − y2kB
Z t

0

l(s)eµL(s)ds+
1

1− η
L(η)eµL(t)ky1 − y2kB

+
1

1− η
L(1)eµL(t)ky1 − y2kB

= ky1 − y2kB 1
µ

Z t

0

(eµL(s))0ds+
1

1− η
L(η)eµL(t)ky1 − y2kB

+
1

1− η
L(1)eµL(t)ky1 − y2kB

≤ ky1 − y2kB
µ

eµL(t) +
1

1− η
L(η)eµL(t)ky1 − y2kB

+
1

1− η
L(1)eµL(t)ky1 − y2kB.

Then

kh1 − h2kB ≤
·
1

µ
+

L(η) + L(1)

1− η

¸
ky1 − y2kB.

By the analogous relation, obtained by interchanging the roles of y1 and y2, it follows
that

Hd(N(y1), N(y2)) ≤
·
1

µ
+

L(η) + L(1)

1− η

¸
ky1 − y2kB.

So, N is a contraction and thus, by Lemma 2, it has a fixed point y, which is
solution to (1.1)-(1.2).

4. Four-Point BVPs

The main result of this section concerns the four-point BVP (1.3)—(1.4). Before
we state and prove this result, we give the definition of a solution of the four-point
BVP (1.3)—(1.4).

Definition 6 A function y : J −→ IR is called a solution for the BVP (1.3)-(1.4)
if y and its first derivative are absolutely continuous and y00 (which exists almost
everywhere) satisfies the differential inclusion (1.3) a.e. on J and the conditions
(1.4).

Theorem 7 Assume that (H1) and (H2) are satisfied. If

1

µ
+ L(η) + 2

L(τ) + L(1)

1− η
< 1,
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then the BVP (1.3)-(1.4) has at least one solution on J.

Proof. Let k · kB the Bielecki-type norm on C(J, IR) defined by

kykB = max
t∈J

{|y(t)|e−µL(t)}.

Transform the problem into a fixed point problem. Consider the multivalued map,
N1 : C(J, IR)→ P(C(J, IR)) defined by:

N1(y) =

½
h ∈ C(J, IR) : h(t) =

Z t

0

(t− s)g(s)ds+

Z η

0

g(s)ds

+
1 + t

1− τ

·Z τ

0

(τ − s)g(s)ds−
Z 1

0

(1− s)g(s)ds

¸¾
where

g ∈ SF,y =
©
g ∈ L1(J, IR) : g(t) ∈ F (t, y(t)) for a.e. in J

ª
.

We can easily show that N1 has closed values and it is a contraction multivalued map.
We omit the details.

5. Concluding Remarks

Let ai ∈ IR, with all of the a,is having the same sign, ξi ∈ (0, 1), i = 1, 2, . . . ,m − 2,
0 < ξ1 < ξ2 < . . . < ξm−2 < 1. Consider the following m-point boundary value
problem for second order differential inclusions

y00(t) ∈ F (t, y(t)), t ∈ J, (5.1)

y(0) = 0, y(1) =
m−2X
i=1

aiy(ξi). (5.2)

It is well known (see [12] for example) that if a function y ∈ C1 satisfies the boundary
condition (5.2) and all of the ai, i = 1, 2, . . . ,m − 2 have the same sign, then there
exists η ∈ [ξ1, ξm−2], depending on y ∈ C1(J, IR) such that

y(1) = αy(η)

with α =
m−2P
i=1

ai. Accordingly, the problem of the existence of a solution for the BVP

(5.1)—(5.2) can be studied via the three-point BVP

y00(t) ∈ F (t, y(t)), t ∈ J,

y(0) = 0, y(1) = αy(η),

where η ∈ (0, 1) is given. We omit the details, since the proof follows the steps of the
proof of Theorem 4, with obvious modifications.
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It is obvious that the above method can also be applied to other types of m-point
BVPs. For example for the BVPs

y00(t) ∈ F (t, y(t)), t ∈ J,

y0(0) = 0, y(1) =
m−2X
i=1

aiy(ξi),

or

y00(t) ∈ F (t, y(t)), t ∈ J,

y(0) = 0, y0(1) =
m−2X
i=1

aiy
0(ξi)

which can be reduced to the following three point BVPs:

y00(t) ∈ F (t, y(t)), t ∈ J,

y0(0) = 0, y(1) = αy(η)

and

y00(t) ∈ F (t, y(t)), t ∈ J,

y(0) = 0, y0(1) = αy0(η)

respectively.

REFERENCES

[1] Boucherif, A. and Bouguima, S. M.: Nonlinear second order ordinary differ-
ential equations with nonlocal boundary conditions, Commu. Appl. Nonl. Anal.,
5(2), (1998), 73-85.

[2] Gupta, C. P.: Solvability of a three-point boundary value problem for a second
order ordinary differential equation, J. Math. Anal. Appl., 168, (1992), 540-551.

[3] Gupta, C. P.: A note on a second order three-point boundary value problem, J.
Math. Anal. Appl., 186, (1994), 277-281.

[4] Gupta, C. P.: A second order m-point boundary value problem at resonance,
Nonlinear Anal., 24, (1994), 1483-1489.

[5] Gupta, C. P.: Solvability of a multi-point boundary value problem at resonance,
Results Math., 28, (1995), 270-276.

[6] Gupta, C. P., Ntouyas, S. K. and Tsamatos, P. Ch.: On an m-point bound-
ary value problem for second order ordinary differential equations, Nonlinear
Anal. 23 (1994), 1427-1436.

[7] Gupta, C. P., Ntouyas, S. K. and Tsamatos, P. Ch.: Existence results for
m-point boundary value problems, Differential Equations Dynam. Systems, 2,
(1994), 289-298.



On three and four point BV problems for second order differential inclusions 101

[8] Gupta, C. P., Ntouyas, S. K. and Tsamatos, P. Ch.: Solvability of an m-
point boundary value problem for second order ordinary differential equations, J.
Math. Anal. Appl., 189, (1995), 575-584.

[9] Gupta, C. P. and Trofimchuk, S. I.: A sharper condition for the solvability
of a three-point second order boundary value problem, J. Math. Anal. Appl., 285,
(1997), 586-597.

[10] Gupta, C. P. and Trofimchuk, S. I.: A Wirtinger type inequality and a three-
point boundary value problem, Dynam. Systems Appl., 8, (1999), 127-132.

[11] Marano, S. A.: A remark on a second order three-point boundary value problem,
J. Math. Anal. Appl., 183, (1994), 518-522.

[12] Il’in, V. A. and Moiseev, E. I.: Nonlocal boundary value problem of the first
kind for a Sturm-Liouville operator in its differential and finite difference aspects,
Differential Equations, 23(7), (1987), 803-810.

[13] Il’in, V. A. andMoiseev, E. I.: Nonlocal boundary value problem of the second
kind for a Sturm-Liouville operator, Differential Equations, 23(8), (1987), 979-
987.

[14] Bitsadze, A. V.: On the theory of nonlocal boundary value problem, Soviet.
Math. Dokl., 30(1), (1984), 8-10.

[15] Bitsadze, A. V.: On a class of conditionally solvable nonlocal boundary value
problems for harmonic functions, Soviet. Math. Dokl., 31(1), (1985), 91-94.

[16] Bitsadze, A. V. and Samarskii, A. A.: On some simple generalizations of
linear elliptic boundary value problem, Soviet. Math. Dokl., 10(2), (1969), 398-
400.

[17] Benchohra, M. and Ntouyas, S. K.: A note on a three-point boundary value
problem for second order differential inclusions, Mathematical Notes, Miskolc, 2,
(2001), 39-47.

[18] Benchohra, M. and Ntouyas, S. K.: Multi-point boundary value problems for
second order differential inclusions, Math. Vesnik, to appear.

[19] Covitz, H. and Nadler S. B. Jr.: Multivalued contraction mappings in gen-
eralized metric spaces, Israel J. Math., 8, (1970), 5-11.

[20] Deimling, K.: Multivalued Differential Equations, Walter de Gruyter, Berlin-
New York, 1992.

[21] Gorniewicz, L.: Topological Fixed Point Theory of Multivalued Mappings, Math-
ematics and its Applications, 495, Kluwer Academic Publishers, Dordrecht, 1999.

[22] Hu Sh. and Papageorgiou, N.: Handbook of Multivalued Analysis, Volume I:
Theory, Kluwer Academic Publishers, Dordrecht, 1997.

[23] Castaing, C. and Valadier, M.: Convex Analysis and Measurable Multi-
functions, Lecture Notes in Mathematics, Vol. 580, Springer-Verlag, Berlin-
Heidelberg-New York, 1977.


