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1. Introduction

The rank reduction algorithm and the bordered inversion method play important
roles in numerical linear algebra. The rank reduction algorithm, while keeping the
size of the matrix, decreases its rank to zero. The bordered inversion method, start-
ing from a small size leading principal submatrix, increases the size and rank of the
submatrix to obtain an inverse. The formulae of the two methods show certain formal
similarities. In this paper we are looking for a deeper connection between the two
methods. Using unexplored observations of Egerváry [4], we determine three kinds
of relationship between the two algorithms and associated sequences. These results
are essentially the following. The rank reduction operation gives the reverse bor-
dered inversion formula. Using the inverse LDU decomposition algorithm included in
the bordered inversion method, we can produce the same full rank factorization as
the rank reduction algorithm. Finally, the bordered inversion formula leads to new
multiplicative canonical forms of the rank reduction algorithm.

2. Preliminary results

We need the following results. For proofs and other details, see Ouellette [12].

Lemma 1 (Guttman-1) Let

A =

·
E F
G H

¸
∈ Rm×n ¡

E ∈ Rk×k¢ . (2.1)

If E is nonsingular, then

rank (A) = rank (E) + rank
¡
H −GE−1F

¢
. (2.2)
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Corollary 2 If A and E are nonsingular, then the Schur complement

S = (A/E) = H −GE−1F

is also nonsingular.

Lemma 3 (Guttman-2) Let

A =

·
E F
G H

¸
∈ Rm×n ¡

H ∈ Rj×j¢ . (2.3)

If H is nonsingular, then

rank (A) = rank (H) + rank
¡
E − FH−1G

¢
. (2.4)

Corollary 4 If A and H are nonsingular, then the Schur complement

T = (A/H) = E − FH−1G

is also nonsingular.

3. The inverse of partitioned matrices

Here we recall the most important results concerning the inverse of partitioned
matrices. For proofs and related results see Ouellette [12]. Let

A =

·
E F
G H

¸
∈ Rn×n ¡

E ∈ Rk×k¢ (3.1)

and E be nonsingular.

Theorem 5 (Banachiewicz-Frazer-Duncan-Collar) If the nonsingular matrix A ∈
Rn×n is partitioned in the form (3.1), where E has an inverse, then A−1 can be
expressed in the partitioned form

A−1 =
·
E−1 +E−1FS−1GE−1 −E−1FS−1

−S−1GE−1 S−1

¸
. (3.2)

Remark 6 Provided that E is invertible, A is invertible if and only if S is invertible.

Remark 7 Formula (3.2) can be written in the following form

A−1 =
·
E−1 0
0 0

¸
+

·
E−1F
−I

¸
S−1

£
GE−1,−I¤ . (3.3)
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4. The bordered inversion method

Formula (3.2) is the basis for the bordered inversion or escalator method of Frazer,
Duncan and Collar [6]. For k = 1, . . . ,m let

Ek+1 =

·
Ek Fk
Gk Hk

¸ ¡
Ek ∈ Rnk×nk , Fk, GT

k ∈ Rnk×pk , Hk ∈ Rpk×pk¢ .
Hence nk+1 = nk+pk and Em+1 = E. If Ek and Sk = Hk−GkE

−1
k Fk are nonsingular,

then Ek+1 is also nonsingular and by Theorem 5 we can calculate E−1k+1.

The block bordered inversion algorithm

1. Determine E−11 .

2. For k = 1, . . . ,m set
Sk = Hk −GkE

−1
k Fk

and

E−1k+1 =
·
E−1k +E−1k FkS

−1
k GkE

−1
k −E−1k FkS

−1
k

−S−1k GkE
−1
k S−1k

¸
. (4.1)

end

It is clear that E−1m+1 = E−1 provided that Sk is nonsingular for k = 1, . . . ,m. If Sk
is singular for an index k, then the Guttman lemma implies that Ek+1 is singular.

Theorem 8 (Guttman) Let E be nonsingular. The block bordered inversion method
gives the inverse of E if and only if all Ek are nonsingular for k = 1, . . . ,m.

Guttman suggested several block variants of the bordered inversion method. For
details, see Guttman [10] and Ouellette [12]. We also note that Gergely [9] observed
the equivalence of the bordered inversion method with the Gauss-Jordan inversion.

5. The rank reduction algorithm

The rank reduction procedure of Egerváry is based on the following result.

Theorem 9 (Egerváry-Guttman-Wedderburn) Let H,S ∈ Rm×n and rank (H) ≥
rank (S) = k. Furthermore let UR−1V T (U ∈ Rm×k, R ∈ Rk×k, V ∈ Rn×k) be a
full rank factorization of S. Then

rank (H − S) = rank (H)− rank (S) , (5.1)

if and only if
U = HX, V T = Y TH, Y THX = R (5.2)

for some matrices X ∈ Rn×k and Y ∈ Rm×k.
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Remark 10 We can write that

rank (H − S) = rank (H)− rank (S)⇔ S = HX
¡
Y THX

¢−1
Y TH.

For the proof of the theorem see Egerváry [4], Guttman [11], Cline and Funderlic
[3], Ouellette [12] and Galántai [7].

The rank reduction algorithm which is important in full rank factorizations and
conjugation has the following form.

Let A1 = A, Xi ∈ Rn×li , Yi ∈ Rm×li , li ≥ 1 and Y T
i AiXi be nonsingular for

i = 1, 2, . . . , k.

The rank reduction procedure

Ai+1 = Ai −AiXi

¡
Y T
i AiXi

¢−1
Y T
i Ai (i = 1, 2, . . . , k) , (5.3)

where rank (A) ≥Pk
i=1 li.

The algorithm is said to be breakdown free, if all Y T
i AiXi are nonsingular for

i = 1, 2, . . . , k. Assume that

rank (A) =
kX
i=1

li.

In this case, Ak+1 = 0. Let

X = [X1, . . . ,Xk] , Y = [Y1, . . . , Yk]

and
X(i) = [X1, . . . ,Xi] , Y (i) = [Y1, . . . , Yi] .

Then the following theorem is true.

Theorem 11 The rank reduction procedure can be carried out breakdown free if and
only if Y TAX =

£
Y T
i AXj

¤k
i,j=1

is block strongly nonsingular1 . In this event the rank
reduction procedure has the canonical form

Ai+1 = A−AX(i)
³
Y (i)TAX(i)

´−1
Y (i)TA (i = 1, . . . , k) . (5.4)

For proof, see Galántai [7], [8]. For i = k the relation

A = AX
¡
Y TAX

¢−1
Y TA

holds, where Z = X
¡
Y TAX

¢−1
Y T is a reflexive inverse of A. It is also easy to see

that algorithm (5.3) leads to the full rank factorization

A = QD−1PT , (5.5)
1 It means that the matrix has a block LU decomposition without pivoting.
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where
P =

£
AT
1 Y1, . . . , A

T
k Yk

¤
, Q =

£
A1X1, . . . , A

T
kXk

¤
and

D = diag
¡
Y T
1 A1X1, . . . , Y

T
k AkXk

¢
.

If a square matrix B has a block LDU decomposition with respect to a given
partition, then this unique factorization will be denoted by B = LBDBUB. Then we
can prove

Theorem 12 Let Y TAX be block strongly nonsingular. The components of the full
rank factorization (5.5) are

P = ATY L−T
Y TAX

, Q = AXU−1
Y TAX

, D = DY TAX , (5.6)

and A can be expressed in the form

A =
¡
AXU−1

Y TAX

¢
D−1
Y TAX

¡
L−1
Y TAX

Y TA
¢
. (5.7)

For proof, see Galántai [7], [8].

6. Rank-reduction and bordered inversion I

We show a surprisingly simple connection between the rank reduction operation
and the bordered inversion.

Theorem 13 Assume that

A =

·
E F
G H

¸
∈ Rn×n ¡

E ∈ Rk×k¢ (6.1)

and

J =

·
0
In−k

¸
∈ Rn×(n−k).

Then

A−AJ
¡
JTAJ

¢−1
JTA =

·
(A/H) 0
0 0

¸
,

provided that H is invertible2 .

Proof. By simple calculation we have

AJ
¡
JTAJ

¢−1
JTA =

·
F
H

¸
H−1 [G,H] =

·
FH−1G F

G H

¸
and

A− J
¡
JTAJ

¢−1
JTA =

·
E − FH−1G 0

0 0

¸
,

which was to be proved.
2This condition is in agreement with the strong block nonsingularity of Y TAX. In fact, X1 =

Y1 = J and Y T
1 AX1 = H.
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Remark 14 If J is replaced by bJ = · Ik
0

¸
, then we have

A−A bJ ³ bJTA bJ´−1 bJTA = · 0 0
0 (A/E)

¸
, (6.2)

provided that E is nonsingular.

Remark 15 If A and H are replaced by A−1 and S−1, respectively then we have¡
A−1/S−1

¢
= E−1. This means that

A−1 −A−1J
¡
JTA−1J

¢−1
JTA−1 =

·
E−1 0
0 0

¸
. (6.3)

We just obtained that one rank reduction step on matrix A−1 results in the inverse
of the leading principal submatrix E. Relation (6.3) gives a direct connection between
the rank reduction and the bordered inversion. It was first discovered by Egerváry
[4] in the scalar case (H ∈ R), who developed it for solving difference equations with
modified boundary conditions [5]. The same idea appears in Brezinski et al. [2], who
give credit to Duncan and call it reverse bordered inversion. Their variant of identity
(6.3) is obtained in the following way.

Let

A−1 =

" bE bFbG bH
#
.

Then bE = E−1 +E−1FS−1GE−1, bF = −E−1FS−1,bG = −S−1GE−1, bH = S−1.

As bF ³ bH´−1 = −E−1F and bF ³ bH´−1 bG = E−1FS−1GE−1 we have

E−1 = bE −E−1FS−1GE−1 = bE − bF ³ bH´−1 bG, (6.4)

which is exactly the reverse bordered inversion formula of Brezinski et al. [2].

7. The bordered inversion method and triangular factorization

We associate sequences with the bordered inversion algorithm which produce the
inverse LDU factorizations of the leading principal submatrices Ek. It is based on the
following observation. Let E = LDU be the unique block LDU decomposition of E.
If E is not partitioned, then we just take L = U = I and D = E. If A has the form
(3.1), then the inverse formula (3.3) can be written as

A−1 =
·
U−1 −E−1F
0 I

¸ ·
D−1 0
0 S−1

¸ ·
L−1 0
−GE−1 I

¸
= U−1A D−1A L−1A ,
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which is the inverse block LDU decomposition of A−1. Thus we can define the fol-
lowing sequences related to the bordered inversion algorithm of Section 4.

Let Ek = LkDkUk denote the unique LDU decomposition of Ek for k = 1, . . . ,m.

Inverse LDU decomposition algorithm

For k = 1, . . . ,m set

L−1k+1 =
·

L−1k 0
−GkE

−1
k I

¸
, D−1k+1 =

·
D−1k 0
0 S−1k

¸
,

U−1k+1 =

·
U−1k −E−1k Fk
0 I

¸
.

end

It is clear that E−1k+1 = U−1k+1D
−1
k+1L

−1
k+1 and

E−1 = U−1m+1D
−1
m+1L

−1
m+1. (7.1)

The above algorithm, which requires no extra operations, is based on a remark
by Egerváry [4], according to which the bordered inversion (or escalator) method
”furnishes the triangular factorisation of the inverse”.

The associated procedure can be carried out if and only if the bordered inversion
can be so. Hence the necessary and sufficient condition for performing the algorithm
without breakdown is the block strong nonsingularity of E.

8. Rank-reduction and bordered inversion II

Here we determine a new relationship between rank reduction and bordered in-
version. More precisely, we show that certain sequences related to the rank reduction
and the bordered inversion algorithms, respectively, can be tied together. We recall
the facts that

1. The associated sequences of the bordered inversion method produce U−1E , D−1E
and L−1E .

2. The rank reduction method produces the full rank factorization

A = QD−1PT =
¡
AXU−1

Y TAX

¢
D−1
Y TAX

¡
L−1
Y TAX

Y TA
¢
.

If X = BTV , then the pair (P, V ) is block B-conjugate (see Galántai [7], [8]).
This conjugation property plays an important role in the ABS methods (see Abaffy-
Spedicato [1]).

Having the two observations above, we can easily derive the following

Conjugation algorithm

1. Apply the inverse LDU decomposition algorithm to the matrix Y TAX and get
L−1
Y TAX

.
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2. Set
P = ATY L−T

Y TAX
.

end

Thus we have a new connection between rank reduction and bordered inversion. It is
also clear that, similarly, we can have Q and D−1. Finally we mention that Stewart
[13] gave a conjugation algorithm which is based on LU factorization.

9. Rank-reduction and the reverse bordered inversion

We deal with the last connection found, which is, in fact, an application of identity
(6.3) to obtain new canonical forms for Ai+1. We start with the formula (5.4), which
tells us that

Ai+1 = A−AX(i)
³
Y (i)TAX(i)

´−1
Y (i)TA (i = 1, . . . , k) .

Let I(j) be the first j columns of the identity matrix In. Furthermore let ωi =
Pi

j=1 lj .
Then X(i) = XI(ωi) and Y (i) = Y I(ωi) and we can write

Ai+1 = AX

·¡
Y TAX

¢−1 − I(ωi)
³
Y (i)TAX(i)

´−1
I(ωi)T

¸
Y TA.

As

I(ωi)
³
Y (i)TAX(i)

´−1
I(ωi)T =

· ¡
Y (i)TAX(i)

¢−1
0

0 0

¸
we have the following

Theorem 16 Ai+1 has the following canonical form

Ai+1 = AX

µ¡
Y TAX

¢−1 − · ¡Y (i)TAX(i)
¢−1

0
0 0

¸¶
Y TA (9.1)

under the conditions of Theorem 11.

We can observe that in the parentheses we have a variant of the identity (6.3) with
Y TAX instead of A−1. Thus¡

Y TAX
¢−1 − · ¡Y (i)TAX(i)

¢−1
0

0 0

¸
=
¡
Y TAX

¢−1
J
h
JT
¡
Y TAX

¢−1
J
i−1

JT
¡
Y TAX

¢−1
,

where

J =

·
0

In−ωi

¸
. (9.2)

Hence by simple calculations we have



Rank reduction and bordered inversion 125

Theorem 17 Ai+1 has the following canonical form

Ai+1 = Y −TJ
¡
JTX−1A−1Y −TJ

¢−1
JTX−1 (9.3)

under the conditions of Theorem 11.

Assuming that ¡
Y TAX

¢−1
=

" bE bFbG bH
#

we can obtain a third form of Ai+1.

Theorem 18 Ai+1 has the following canonical form

Ai+1 = Y −T
·
0 0

0 bH−1
¸
X−1 (9.4)

under the conditions of Theorem 11.

These new multiplicative canonical forms indicate different properties of the rank
reduction algorithm. The first canonical form indicates the decrease of kAk+1k. The
second form shows the projector properties of the rank reduction matrix Ai+1. The
last canonical form shows the structure of Ak+1 in terms of inverse quantities. These
three new forms certainly give a better understanding of rank reduction and may lead
to further new results.
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