

# On the Diophantine equation $x^2 - kxy + y^2 + 2^n = 0$

Refik Keskin, Olcay Karaatlı, and Zafer Siar



## **ON THE DIOPHANTINE EQUATION** $x^2 - kxy + y^2 + 2^n = 0$

#### REFIK KESKIN, OLCAY KARAATLI, AND ZAFER SIAR

Received 21 October, 2011

*Abstract.* In this paper, we determine when the equation in the title has an infinite number of positive integer solutions x and y when  $0 \le n \le 10$ . Moreover, we give all the positive integer solutions of the same equation for  $0 \le n \le 10$ .

2000 Mathematics Subject Classification: 11B37; 11B39; 11B50; 11B99

Keywords: Diophantine equations, Pell equations, generalized Fibonacci and Lucas numbers

## 1. INTRODUCTION

In [14], Yuan and Hu determined when the two equations

$$x^2 - kxy + y^2 + 2x = 0 \tag{1.1}$$

and

$$x^2 - kxy + y^2 + 4x = 0 \tag{1.2}$$

have an infinite number of positive integer solutions x and y. They showed that Eq.(1.1) has an infinite number of positive integer solutions x and y if and only if k = 3, 4 and Eq.(1.2) has an infinite number of positive integer solutions x and y if and only if and only if k = 3, 4, 6. In the present paper, we consider the equation

$$x^2 - kxy + y^2 + 2^r x = 0, (1.3)$$

where k is a positive integer and r is a nonnegative integer. Eq.(1.3) is a generalization of Eq.(1.1) and Eq.(1.2). In order to decide when Eq.(1.3) has an infinite number of positive integer solutions x and y, it is sufficient to determine when the equation

$$x^2 - kxy + y^2 + 2^n = 0 (1.4)$$

has an infinite number of positive integer solutions x and y for nonnegative integer n. Let us assume that Eq.(1.3) has positive integer solutions x and y. Then it follows that  $x|y^2$  and thus  $y^2 = xz$  for some positive integer z. A simple computation shows that  $gcd(x,z) = 2^j$  for some nonnegative integer j. Thus  $x = 2^j a^2$  and  $z = 2^j b^2$ 

© 2012 Miskolc University Press

for some positive integers a and b with (a,b) = 1. Then it follows that  $y = 2^{j}ab$ . Substituting these values of x and y into Eq.(1.3), we obtain

$$a^2 - kab + b^2 + 2^{r-j} = 0.$$

Therefore it is sufficient to know when  $x^2 - kxy + y^2 + 2^{r-j} = 0$  has an infinite number of positive integer solutions for  $0 \le j \le r$ .

Now we begin with some well known elementary properties about Pell equations. Let d be a positive integer which is not a perfect square and N be any nonzero fixed integer. Then the equation  $x^2 - dy^2 = N$  is known as the Pell equation. For  $N = \pm 1$ , the equation  $x^2 - dy^2 = \pm 1$  is known as the classical Pell equation. We use the notations (x, y), and  $x + y\sqrt{d}$  interchangeably to denote solutions of the equation  $x^2 - dy^2 = N$ . Also, if x and y are both positive, we say that  $x + y\sqrt{d}$  is positive solution to the equation  $x^2 - dy^2 = N$ . It is well known that the equation  $x^2 - dy^2 = 1$  always has a positive solution when  $d \ge 2$ . The least positive integer solution. If  $x_1 + y_1\sqrt{d}$  of the equation  $x^2 - dy^2 = N$  is called the fundamental solution. If  $x_1 + y_1\sqrt{d}$  is the fundamental solution of the equation  $x^2 - dy^2 = -1$ , it is well known that  $(x_1 + y_1\sqrt{d})^2$  is the fundamental solution to the equation  $x^2 - dy^2 = 1$ . Moreover, if  $x_1 + y_1\sqrt{d}$  is the fundamental solution to the equation  $x^2 - dy^2 = 1$ , then all positive integer solutions to the equation  $x^2 - dy^2 = 1$  are given by

$$(x_n + y_n \sqrt{d}) = (x_1 + y_1 \sqrt{d})^n$$
(1.5)

with  $n \ge 1$ . It can be seen that  $x_n = (\alpha^n + \beta^n)/2$  and  $y_n = (\alpha^n - \beta^n)/2\sqrt{d}$ , where  $\alpha = x_1 + y_1\sqrt{d}$  and  $\beta = x_1 - y_1\sqrt{d}$ . If  $x + y\sqrt{d}$  is a solution of the equation  $x^2 - dy^2 = N$  and  $a + b\sqrt{d}$  is a solution of the equation  $x^2 - dy^2 = 1$ , then  $(a + b\sqrt{d})(x + y\sqrt{d}) = (ax + dby) + (ay + bx)\sqrt{d}$  is also a solution of the equation  $x^2 - dy^2 = N$ . This means that if the equation  $x^2 - dy^2 = N$  has a solution, then it has infinitely many solutions. For more information, see [10], [13], and [2].

In section 2, we determine when Eq.(1.4) has an infinite number of positive integer solutions x and y for  $0 \le n \le 10$ . Then in section 3, we give all positive integer solutions to Eq.(1.4) for  $0 \le n \le 10$ .

### 2. MAIN THEOREMS

In this section, we determine when Eq.(1.4) has an infinite number of positive integer solutions x and y for  $0 \le n \le 10$ . Before discussing this, we give the following lemma and theorem, which will be needed in the proof of the main theorems.

**Lemma 1.** Let d > 2. If  $u_1 + v_1\sqrt{d}$  is the fundamental solution of the equation  $u^2 - dv^2 = \pm 2$ , then  $(u_1^2 + dv_1^2)/2 + u_1v_1\sqrt{d}$  is the fundamental solution of the equation  $x^2 - dy^2 = 1$ .

*Proof.* Assume that d > 2 and  $\omega = u_1 + v_1 \sqrt{d}$  is the fundamental solution of the equation  $u^2 - dv^2 = \pm 2$ . Our purpose is to show that  $\alpha = \omega^2/2 = (u_1^2 + dv_1^2)/2 + (u_1^2 + dv_1^2)/$ 

 $u_1v_1\sqrt{d}$  is the fundamental solution of the equation  $x^2 - dy^2 = 1$ . On the contrary, assume that  $\alpha$  is not the fundamental solution of the equation  $x^2 - dy^2 = 1$ . Then there exists a fundamental solution  $\beta = x_1 + y_1 \sqrt{d}$  of the equation  $x^2 - dy^2 = 1$ such that  $\alpha = \beta^n$  with n > 1. Assume that *n* is an even integer. Then n = 2k for some positive integer k. By using  $\alpha = \omega^2/2$ , we obtain  $\omega^2 = 2\beta^{2k}$ , i.e.,  $(\omega/\beta^k)^2 = 2$ . If we write  $\omega/\beta^k = a + b\sqrt{d}$ , then it follows that  $(\omega/\beta^k)^2 = a^2 + b^2d + 2ab\sqrt{d} = 2$ . Thus ab = 0. This shows that a = 0 or b = 0. If a = 0, then  $b^2d = 2$ , which implies that d = 2. This contradicts with the fact that d > 2. If b = 0, then  $a^2 = 2$ , which is impossible. Now assume that *n* is an odd integer. Then n = 2t + 1 for some positive integer t. Thus it follows that  $\omega^2 = 2\alpha = 2\beta^{2t+1}$ , i.e.,  $(\omega/\beta^t)^2 = 2\beta$ . It is obvious that  $\beta^t > 1$ . Writing  $\omega/\beta^t = a + b\sqrt{d}$  gives  $(\omega/\beta^t)^2 = a^2 + b^2d + 2ab\sqrt{d} = 2\beta =$  $2x_1 + 2y_1\sqrt{d}$ . Since  $\beta$  is the fundamental solution of the equation  $x^2 - dy^2 = 1$ , it follows that ab > 0. Assume that a > 0 and b > 0. Since  $\omega$  is the fundamental solution of the equation  $u^2 - dv^2 = \pm 2$  and  $\omega/\beta^t$  is a positive solution of the same equation, we get  $\omega \leq \omega/\beta^t$ , which implies that  $\beta^t \leq 1$ . This is impossible since  $\beta^t > 1$ . Assume that a < 0 and b < 0. Then  $\omega/\beta^t = -(e + f\sqrt{d})$  for some positive integers e and f. This shows that  $-\omega/\beta^t = e + f\sqrt{d}$  is a positive solution of the equation  $u^2 - dv^2 = \pm 2$ . Since  $\omega$  is the fundamental solution of the same equation, we get  $\omega \leq -\omega/\beta^t$ . From here, we find that  $\beta^t \leq -1$ , a contradiction.  $\square$ 

The following theorem is given in [10].

**Theorem 1.** Let d be a positive integer which is not a perfect square. If  $x_1$  and  $y_1$  are natural numbers satisfying the inequality

$$x_1 > \frac{y_1^2}{2} - 1$$

and if  $\alpha = x_1 + y_1\sqrt{d}$  is a solution of the equation  $x^2 - dy^2 = 1$ , then  $\alpha$  is the fundamental solution of this equation.

The proof of the following theorem is given in [6], and [7].

**Theorem 2.** Let k > 3. Then the equation  $x^2 - kxy + y^2 + 1 = 0$  has no positive integer solutions.

**Corollary 1.** The equation  $x^2 - kxy + y^2 + 1 = 0$  has an infinite number of positive integer solutions x and y if and only if k = 3.

*Proof.* By the above theorem,  $x^2 - kxy + y^2 + 1 = 0$  has no positive integer solutions when k > 3. It is clear that the equation  $x^2 - kxy + y^2 + 1 = 0$  has no positive integer solutions x and y for k = 1, 2. For  $k = 3, x^2 - 3xy + y^2 + 1 = 0$  has an infinite number of positive integer solutions  $(x, y) = (F_{2n+1}, F_{2n-1})$  with  $n \ge 0$ , where  $F_n$  is the *n*-th Fibonacci number defined in section 3 (see [6], Theorem 1.6).

**Theorem 3.** The equation  $x^2 - kxy + y^2 + 2 = 0$  has an infinite number of positive integer solutions x and y if and only if k = 4.

*Proof.* Assume that  $x^2 - kxy + y^2 + 2 = 0$  for some positive integers x and y. It is clear that x and y must be odd integers. Then it follows that k is even. Let k = 2t for some positive integer t. Then  $x^2 - kxy + y^2 + 2 = 0$  implies that  $(x - ty)^2 - (t^2 - 1)y^2 = -2$ . Let  $u_1 + v_1\sqrt{t^2 - 1}$  be the fundamental solution of the equation  $u^2 - \sqrt{t^2 - 1}v^2 = -2$ . Then from Lemma 1, it follows that  $(u_1^2 + (t^2 - 1)v_1^2)/2 + u_1v_1\sqrt{t^2 - 1}$  is the fundamental solution of the equation  $x^2 - (t^2 - 1)y^2 = 1$ . For t > 1, since (t, 1) is the fundamental solution of the equation  $x^2 - (t^2 - 1)y^2 = 1$  by Theorem 1, we get  $(u_1^2 + (t^2 - 1)v_1^2)/2 = t$  and  $u_1v_1 = 1$ . From this, it follows that t = 2 and thus k = 4.

**Theorem 4.** The equation  $x^2 - kxy + y^2 + 4 = 0$  has an infinite number of positive integer solutions x and y if and only if k = 3, 6.

*Proof.* Assume that  $x^2 - kxy + y^2 + 4 = 0$  for some positive integers x and y. Assume that x is even. Then y is even and thus x = 2a and y = 2b for some positive integers a and b. Then it follows that  $a^2 - kab + b^2 + 1 = 0$ , which implies that k = 3 by Corollary 1. Now assume that x and y are odd integers. Then k is even and  $4 \nmid k$ . Therefore k = 2t for some odd positive integer t. Completing the square gives  $(x - ty)^2 - (t^2 - 1)y^2 = -4$ . Since  $8|t^2 - 1$ , it follows that x - ty = 2m and thus  $m^2 - ((t^2 - 1)/4)y^2 = -1$ . Let  $d = (t^2 - 1)/4$  and assume that  $u_1 + v_1\sqrt{d}$  is the fundamental solution of the equation  $u^2 - dv^2 = -1$ . Then  $(u_1 + v_1\sqrt{d})^2 = u_1^2 + dv_1^2 + 2u_1v_1\sqrt{d}$  is the fundamental solution of the equation  $x^2 - dy^2 = 1$ . For t > 1, since (t, 2) is the fundamental solution of the equation  $x^2 - dy^2 = 1$  by Theorem 1, we get  $u_1^2 + dv_1^2 + 2u_1v_1\sqrt{d} = t + 2\sqrt{d}$ . Then it follows that  $u_1v_1 = 1$  and  $u_1^2 + ((t^2 - 1)/4)v_1^2 = t$ . From this, we see that t = 3 and thus k = 6.

**Theorem 5.** The equation  $x^2 - kxy + y^2 + 8 = 0$  has an infinite number of positive integer solutions x and y if and only if k = 4, 6, 10.

*Proof.* Assume that x is even. Then y is even and thus x = 2a and y = 2b for some positive integers a and b. Thus we get  $a^2 - kab + b^2 + 2 = 0$ . By Theorem 3, it follows that k = 4. Now assume that x and y are odd positive integers. Then k is even and  $4 \nmid k$ . Thus k = 2t for some odd positive integer t. Completing the square gives  $(x - ty)^2 - (t^2 - 1)y^2 = -8$ , which implies that x - ty = 2m for some positive integer m. Thus we get  $m^2 - ((t^2 - 1)/4)y^2 = -2$ . If t = 3, then we get  $m^2 - 2y^2 = -2$ . Since  $4 + 3\sqrt{2}$  is a solution of the equation  $m^2 - 2y^2 = -2$ , this equation has infinitely many solutions. Thus we get k = 6. Let  $d = (t^2 - 1)/4$  and assume that t > 3. If  $u_1 + v_1\sqrt{d}$  is the fundamental solution of the equation  $u^2 - dv^2 = -2$ , then by Lemma 1,  $(u_1^2 + dv_1^2)/2 + u_1v_1\sqrt{d}$  is the fundamental solution of the equation  $x^2 - dy^2 = 1$ . For t > 1, since (t, 2) is the fundamental solution of the equation t and the equation t and the equation t.

 $x^2 - dy^2 = 1$  by Theorem 1, we get  $(u_1^2 + dv_1^2)/2 + u_1v_1\sqrt{d} = t + 2\sqrt{d}$ . From this, it follows that  $u_1v_1 = 2$  and  $u_1^2 + ((t^2 - 1)/4)v_1^2 = 2t$ . Solving these equations, we see that t = 5 and thus we get k = 10.

The proofs of the following theorems are similar to that of the above theorems and therefore we omit their proofs.

**Theorem 6.** The equation  $x^2 - kxy + y^2 + 16 = 0$  has an infinite number of positive integer solutions x and y if and only if k = 3, 6, 18.

**Theorem 7.** The equation  $x^2 - kxy + y^2 + 32 = 0$  has an infinite number of positive integer solutions x and y if and only if k = 4, 6, 10, 14, 34.

Now, we consider the equation

$$x^2 - dy^2 = N, (2.1)$$

where  $N \neq 0$  and d is a positive integer which is not a perfect square. If  $u^2 - dv^2 = N$ , then we say that  $\alpha = u + v\sqrt{d}$  is a solution to Eq.(2.1). Let  $\alpha_1$  and  $\alpha_2$  be any two solutions to Eq.(2.1). Then  $\alpha_1$  and  $\alpha_2$  are called associated solutions if there exists a solution  $\alpha$  to  $x^2 - dy^2 = 1$  such that

$$\alpha_1 = \alpha \alpha_2.$$

The set of all solutions associated with each other forms a class of solutions to Eq.(2.1). If K is a class, then  $\overline{K} = \left\{ u - v\sqrt{d} \mid u + v\sqrt{d} \in K \right\}$  is also a class. We say that the class is ambiguous if  $K = \overline{K}$ .

Now we give the following definitions from [1].

**Definition 1.** Assume that N < 0 or N = 1. Let  $u_0 + v_0\sqrt{d}$  be a solution to Eq.(2.1) given in a class K such that  $v_0$  is the least positive value of v which occurs in K. If K is not ambiguous then the number  $u_0$  is uniquely determined. If K is ambiguous we get a uniquely determined  $u_0$  by prescribing that  $u_0 \ge 0$ .

Now we can give the following theorem from [10].

**Theorem 8.** Let N < 0 and  $x_1 + y_1\sqrt{d}$  be the fundamental solution to  $x^2 - dy^2 = 1$ . If  $u_0 + v_0\sqrt{d}$  is the fundamental solution to the equation  $u^2 - dv^2 = N$  in its class, then

$$0 < v_0 \le \frac{y_1 \sqrt{-N}}{\sqrt{2(x_1 - 1)}} \text{ and } 0 \le |u_0| \le \sqrt{\frac{-1}{2}(x_1 - 1)N}$$

Now we can give the following theorems.

**Theorem 9.** The equation  $x^2 - kxy + y^2 + 64 = 0$  has an infinite number of positive integer solutions x and y if and only if k = 3, 6, 18, 66.

*Proof.* Assume that  $x^2 - kxy + y^2 + 64 = 0$  for some positive integers x and y. If x is even, then y is even and thus x = 2a and y = 2b for some positive integers a and b. Substituting these values of x and y into the equation  $x^2 - kxy + y^2 + 64 = 0$ , we get  $a^2 - kab + b^2 + 16 = 0$ , which implies that k = 3, 6, 18 by Theorem 6. Now assume that x and y are odd integers. Then k is even and  $4 \nmid k$ . Thus k = 2t for some positive odd integer t. Completing the square gives  $(x - ty)^2 - (t^2 - 1)y^2 = -64$ . Since  $8|t^2 - 1$ , it follows that x - ty = 2n and  $t^2 - 1 = 8s$  for some positive integers n and s. So we get  $n^2 - 2sy^2 = -16$ . It is seen that n is even. Then n = 2m and thus  $2m^2 - sy^2 = -8$ . Since y is odd, it is seen that s is even and thus we get  $m^2 - ((t^2 - 1)/16)y^2 = -4$ . Now we consider the equation

$$u^2 - \left(\frac{t^2 - 1}{16}\right)v^2 = -4. \tag{2.2}$$

Let  $u_0 + v_0 \sqrt{d}$  be the fundamental solution to Eq.(2.2) in a given class K. If (m, y) is a solution in the class K, then it is seen that  $v_0$  is odd. Since (t, 4) is the fundamental solution to the equation  $x^2 - ((t^2 - 1)/16)y^2 = 1$  for t > 7 by Theorem 1, we get

$$0 < v_0 \le \frac{4\sqrt{4}}{\sqrt{2(t-1)}} \le \frac{4\sqrt{4}}{\sqrt{2(9-1)}} = 2$$

by Theorem 8. Since  $v_0$  is odd,  $v_0 = 1$ . If we substitute the value of  $v_0$  into Eq.(2.2), we get (t - 4u)(t + 4u) = 65. First assume that t - 4u = 1 and t + 4u = 65. Then we get t = 33 and thus k = 66. In a similar way, if t - 4u = 5 and t + 4u = 13, then we get t = 9 and thus k = 18. Now assume that  $1 < t \le 7$ . Since  $(t^2 - 1)/16$  is not an integer for 1 < t < 7, t must be 7. But if we substitute the value of t into Eq.(2.2), we get  $u^2 - 3v^2 = -4$ , which has no positive integer solutions u and v. This completes the proof.

**Theorem 10.** The equation  $x^2 - kxy + y^2 + 128 = 0$  has an infinite number of positive integer solutions x and y if and only if k = 4, 6, 10, 14, 34, 46, 130.

*Proof.* Assume that  $x^2 - kxy + y^2 + 128 = 0$  for some positive integers x and y. If x is even, then y is even and thus x = 2a and y = 2b for some positive integers a and b. Substituting these values of x and y into the equation  $x^2 - kxy + y^2 + 128 = 0$ , we get  $a^2 - kab + b^2 + 32 = 0$ , which implies that k = 4, 6, 10, 14, 34 by Theorem 7. Now assume that x and y are odd integers. Then k is even and  $4 \nmid k$ . Thus k = 2t for some positive odd integer t. Completing the square gives  $(x - ty)^2 - (t^2 - 1)y^2 = -128$ . Since  $8|t^2 - 1$ , it is seen that x - ty = 4m and thus we get  $m^2 - ((t^2 - 1)/16)y^2 = -8$ . Now we consider the equation

$$u^2 - \left(\frac{t^2 - 1}{16}\right)v^2 = -8.$$
 (2.3)

Let  $u_0 + v_0 \sqrt{d}$  be the fundamental solution to Eq.(2.3) in a given class K. If (m, y) is a solution in the class K, then it is seen that  $v_0$  is odd. Since (t, 4) is the fundamental

solution to the equation  $x^2 - ((t^2 - 1)/16)y^2 = 1$  for t > 7 by Theorem 1, we get

$$0 < v_0 \le \frac{4\sqrt{8}}{\sqrt{2(t-1)}} \le \frac{4\sqrt{8}}{\sqrt{2(9-1)}} < 3$$

by Theorem 8. Since  $v_0$  is odd,  $v_0 = 1$ . Substituting this value of  $v_0$  into Eq.(2.3), we get (t - 4u)(t + 4u) = 129. A simple computation shows that t = 23 and t = 65. Thus we get k = 46 and k = 130. Now assume that  $1 < t \le 7$ . Since  $(t^2 - 1)/16$  is not an integer for 1 < t < 7, t must be 7. If we substitute the value of t into Eq.(2.3), we get  $u^2 - 3v^2 = -8$ , which has no positive integer solutions u and v. This completes the proof.

Since the proofs of the following theorems are similar to that of above theorems, we omit them.

**Theorem 11.** The equation  $x^2 - kxy + y^2 + 256 = 0$  has an infinite number of positive integer solutions x and y if and only if k = 3, 6, 18, 66, 258.

**Theorem 12.** The equation  $x^2 - kxy + y^2 + 512 = 0$  has an infinite number of positive integer solutions x and y if and only if k = 4, 6, 10, 14, 34, 46, 66, 130, 174, 514.

**Theorem 13.** The equation  $x^2 - kxy + y^2 + 1024 = 0$  has an infinite number of positive integer solutions x and y if and only if k = 3, 6, 18, 66, 210, 258, 1026.

Assume that x and y are solutions of Eq.(1.4), where  $1 \le n \le 10$ . Then it can be shown that x and y have same parity. The equation  $x^2 - 66xy + y^2 + 1024 = 0$  has positive integer solutions (4, 4) and (41, 1). The equation  $x^2 - 46xy + y^2 + 512 = 0$  has positive integer solutions (6, 2) and (19, 1). Morever, the equation  $x^2 - 18xy + y^2 + 64 = 0$  has positive integer solutions (2, 2) and (5, 1). It is seen from the proofs of the above theorems that all x and y solutions of Eq.(1.4) are either odd or even for  $(k, n) \notin \{(66, 10), (46, 9), (18, 6)\}$ .

3. Solutions of some of the equations  $x^2 - kxy + y^2 + 2^n = 0$ 

In this section, we will give solutions of the equation  $x^2 - kxy + y^2 + 2^n = 0$  for  $0 \le n \le 10$ . Solutions of the equation  $x^2 - kxy + y^2 + 2^n = 0$  are related to the generalized Fibonacci and Lucas numbers. Now we briefly mention the generalized Fibonacci and Lucas sequences  $(U_n(k,s))$  and  $(V_n(k,s))$ . Let k and s be two integers with  $k^2 + 4s > 0$ . Generalized Fibonacci sequence is defined by  $U_0(k,s) = 0$ ,  $U_1(k,s) = 1$  and  $U_{n+1}(k,s) = kU_n(k,s) + sU_{n-1}(k,s)$  for  $n \ge 1$  and generalized Lucas sequence is defined by  $V_0(k,s) = 2$ ,  $V_1(k,s) = k$  and  $V_{n+1}(k,s) = kV_n(k,s) + sV_{n-1}(k,s)$  for  $n \ge 1$ , respectively. For negative subscript,  $U_{-n}$  and  $V_{-n}$  are defined by

$$U_{-n}(k,s) = \frac{-U_n(k,s)}{(-s)^n} \text{ and } V_{-n}(k,s) = \frac{V_n(k,s)}{(-s)^n}$$
(3.1)

for  $n \ge 1$ . We will use  $U_n$  and  $V_n$  instead of  $U_n(k, 1)$  and  $V_n(k, 1)$ , respectively. For s = -1, we represent  $(U_n)$  and  $(V_n)$  by  $(u_n) = (U_n(k, -1))$  and  $(v_n) = (V_n(k, -1))$  or briefly by  $(u_n)$  and  $(v_n)$  respectively. Also, it is seen from Eq.(3.1) that

$$u_{-n} = -U_n(k, -1)$$
 and  $v_{-n} = V_n(k, -1)$ 

for all  $n \in \mathbb{Z}$ . For k = s = 1, the sequences  $(U_n)$  and  $(V_n)$  are called Fibonacci and Lucas sequences and they are denoted as  $(F_n)$  and  $(L_n)$ , respectively. For k = 2 and s = 1, the sequences  $(U_n)$  and  $(V_n)$  are called Pell and Pell Lucas sequences and they are denoted as  $(P_n)$  and  $(Q_n)$ , respectively. Let  $\alpha$  and  $\beta$  are the roots of the equation  $x^2 - kx - s = 0$ . Then it is well known that

$$U_n = \frac{\alpha^n - \beta^n}{\alpha - \beta} \text{ and } V_n = \alpha^n + \beta^n$$
 (3.2)

where  $\alpha = (k + \sqrt{k^2 + 4s})/2$  and  $\beta = (k - \sqrt{k^2 + 4s})/2$ . The above identities are known as Binet's formulae. Clearly  $\alpha + \beta = k$ ,  $\alpha - \beta = \sqrt{k^2 + 4s}$ , and  $\alpha\beta = -s$  for every  $n \in \mathbb{Z}$ . Moreover, it is well known that

$$U_n^2 - kU_n U_{n-1} - U_{n-1}^2 = (-1)^{n-1},$$

$$v_n = u_{n+1} - u_{n-1}$$
(3.3)

and

$$u_n^2 - ku_n u_{n-1} + u_{n-1}^2 = 1, (3.4)$$

where  $U_n = U_n(k, 1)$  and  $u_n = U_n(k, -1)$ . For more information about generalized Fibonacci and Lucas sequences, one can consult [11], [4], [12], [5], [8], and [9].

Now we give the following two theorems that help us to find solutions of some of the equations  $x^2 - kxy + y^2 + 2^n = 0$ . Since the proofs of these theorems can be found in [6], [5], [8], [9], and [3], we omit their proofs.

**Theorem 14.** Let k > 3. Then all nonnegative integer solutions of the equation  $x^2 - kxy + y^2 - 1 = 0$  are given by  $(x, y) = (u_n, u_{n-1})$  with  $n \ge 0$ , where  $u_n = U_n(k, -1)$ .

**Theorem 15.** All nonnegative integer solutions of the equation  $x^2 - kxy - y^2 + 1 = 0$  are given by  $(x, y) = (U_{2n}, U_{2n-1})$  with  $n \ge 0$ , where  $U_n = U_n(k, 1)$ .

**Theorem 16.** Let  $r \ge 0$  be an integer. Then all positive integer solutions of the equation  $x^2 - (2^{2r} + 2)xy + y^2 + 2^{2r} = 0$  are given by  $(x, y) = (U_{2n+1}(2^r, 1), U_{2n-1}(2^r, 1))$  with  $n \ge 0$ .

*Proof.* Assume that  $x^2 - (2^{2r} + 2)xy + y^2 + 2^{2r} = 0$  for some positive integers x and y. It is easily seen that  $2^r | x - y$ . Without loss of generality, we may suppose  $x \ge y$ . Let  $u = (x - y)/2^r$  and v = y. Then we get  $x = 2^r u + v$  and y = v. Substituting these values of x and y into the equation  $x^2 - (2^{2r} + 2)xy + y^2 + 2^{2r} = 0$ , we obtain

$$(2^{r}u + v)^{2} - (2^{2r} + 2)(2^{r}u + v)v + v^{2} + 2^{2r} = 0$$

and this implies that  $u^2 - 2^r uv - v^2 + 1 = 0$ . Therefore by Theorem 15, we get  $u = U_{2n}(2^r, 1)$  and  $v = U_{2n-1}(2^r, 1)$  with  $n \ge 0$ . Thus  $x = 2^r U_{2n} + U_{2n-1} = U_{2n+1}$  and  $y = U_{2n-1}$  with  $n \ge 0$ . Conversely, if  $(x, y) = (U_{2n+1}, U_{2n-1})$ , then from identity (3.3), it follows that  $x^2 - (2^{2r} + 2)xy + y^2 + 2^{2r} = 0$ .

**Theorem 17.** Let  $r \ge 1$  be an odd integer. Then all positive integer solutions of the equation  $x^2 - (2^r + 2)xy + y^2 + 2^r = 0$  are given by  $(x, y) = (u_{n+1} - u_n, u_n - u_{n-1})$  with  $n \ge 0$ , where  $u_n = U_n(2^r + 2, -1)$ .

*Proof.* Assume that  $x^2 - (2^r + 2)xy + y^2 + 2^r = 0$  for some positive integers x and y. It is seen that x and y have the same parity. Without loss of generality, we may suppose  $x \ge y$ . It can be easily seen that  $2^{(r+1)/2}|x - y|$ . Moreover, it can be shown that

$$\frac{2^r}{4}(x+y)^2 - (\frac{2^r}{4}+1)(x-y)^2 = 2^r.$$

This implies that

$$\left(\frac{x+y}{2}\right)^2 - (2^{r-1}+2)\left(\frac{x-y}{2^{(r+1)/2}}\right)^2 = 1.$$

Since  $\alpha = \left(2^{r-1} + 1 + 2^{(r-1)/2}\sqrt{2^{r-1} + 2}\right)$  is the fundamental solution to the equation  $x^2 - (2^{r-1} + 2)y^2 = 1$  by Theorem 1, it follows from (1.5) that

$$(x+y)/2 = x_n$$
 and  $(x-y)/2^{(r+1)/2} = y_n$ 

for some  $n \ge 0$ , where  $x_n + y_n \sqrt{2^{r-1} + 2} = \alpha^n$ . It is easily seen that  $x_n = v_n(2^r + 2, -1)/2$  and  $y_n = 2^{(r-1)/2}u_n(2^r + 2, -1)$ . Then we get  $x = (v_n + 2^r u_n)/2$  and  $y = (v_n - 2^r u_n)/2$ . Since  $v_n = u_{n+1} - u_{n-1}$ , it follows that  $x = (u_{n+1} - u_{n-1} + 2^r u_n)/2 = (u_{n+1} + u_{n+1} - 2u_n)/2 = u_{n+1} - u_n$ . In a similar way, it is seen that  $y = u_n - u_{n-1}$ . This shows that  $(x, y) = (u_{n+1} - u_n, u_n - u_{n-1})$  with  $n \ge 0$ . Conversely, if  $(x, y) = (u_{n+1} - u_n, u_n - u_{n-1})$ , then from identity (3.4), it follows that  $x^2 - (2^r + 2)xy + y^2 + 2^r = 0$ .

As an alternative to Theorem 16, we can give the following theorem without proof, since its proof is similar to that of Theorem 17.

**Theorem 18.** Let  $r \ge 1$  be an integer. Then all positive integer solutions of the equation  $x^2 - (2^{2r} + 2)xy + y^2 + 2^{2r} = 0$  are given by  $(x, y) = (u_{n+1} - u_n, u_n - u_{n-1})$  with  $n \ge 0$ , where  $u_n = U_n(2^{2r} + 2, -1)$ .

Now we can give the following corollaries from above theorems.

**Corollary 2.** All positive integer solutions of the equation  $x^2 - 3xy + y^2 + 1 = 0$ are given by  $(x, y) = (F_{2n+1}, F_{2n-1})$  with  $n \ge 0$ .

**Corollary 3.** All positive integer solutions of the equation  $x^2 - 4xy + y^2 + 2 = 0$ are given by  $(x, y) = (u_{n+1} - u_n, u_n - u_{n-1})$  with  $n \ge 0$ , where  $u_n = U_n(4, -1)$ . **Corollary 4.** All positive integer solutions of the equation  $x^2 - 3xy + y^2 + 4 = 0$ are given by  $(x, y) = (2F_{2n+1}, 2F_{2n-1})$  with  $n \ge 0$ .

**Corollary 5.** All positive integer solutions of the equation  $x^2 - 6xy + y^2 + 4 = 0$ are given by  $(x, y) = (P_{2n+1}, P_{2n-1})$  with  $n \ge 0$ .

**Corollary 6.** All positive integer solutions of the equation  $x^2 - 4xy + y^2 + 8 = 0$ are given by  $(x, y) = (2u_{n+1} - 2u_n, 2u_n - 2u_{n-1})$  with  $n \ge 0$ , where  $u_n = U_n(4, -1)$ .

**Theorem 19.** All positive integer solutions of the equation  $x^2 - 6xy + y^2 + 8 = 0$ are given by  $(x, y) = (3u_{n+1} - u_n, 3u_n - u_{n-1})$  with  $n \ge 0$ , where  $u_n = U_n(6, -1)$ .

*Proof.* Assume that  $x^2 - 6xy + y^2 + 8 = 0$  for some positive integers x and y. Then by Theorem 3, it is seen that x and y are both odd integers. Also it is easily seen that 8|x-3y. Without loss of generality, we may suppose  $x \ge 3y$ . Let u = (x-3y)/8 and v = (3x - 17y)/8. Then we get x = 17u - 3v and y = 3u - v. Substituting these values of x and y into the equation  $x^2 - 6xy + y^2 + 8 = 0$ , we obtain

$$(17u - 3v)^2 - 6(17u - 3v)(3u - v) + (3u - v)^2 + 8 = 0$$

and this shows that  $u^2 - 6uv + v^2 - 1 = 0$ . From Theorem 14, we get  $(u, v) = (u_n, u_{n-1})$  with  $n \ge 0$ . If we substitute these values of u and v into the equations x = 17u - 3v and y = 3u - v, then it follows that  $x = 17u_n - 3u_{n-1} = 3u_{n+1} - u_n$  and  $y = 3u_n - u_{n-1}$  with  $n \ge 0$ . Conversely, if  $(x, y) = (3u_{n+1} - u_n, 3u_n - u_{n-1})$ , then from identity (3.4), it follows that  $x^2 - 6xy + y^2 + 8 = 0$ . This completes the proof.

**Corollary 7.** All positive integer solutions of the equation  $x^2 - 10xy + y^2 + 8 = 0$ are given by  $(x, y) = (u_{n+1} - u_n, u_n - u_{n-1})$  with  $n \ge 0$ , where  $u_n = U_n(10, -1)$ .

Now we can give the following corollaries.

**Corollary 8.** All positive integer solutions of the equation  $x^2 - 3xy + y^2 + 16 = 0$ are given by  $(x, y) = (4F_{2n+1}, 4F_{2n-1})$  with  $n \ge 0$ .

**Corollary 9.** All positive integer solutions of the equation  $x^2 - 6xy + y^2 + 16 = 0$ are given by  $(x, y) = (2P_{2n+1}, 2P_{2n-1})$  with  $n \ge 0$ .

**Corollary 10.** All positive integer solutions of the equation  $x^2 - 18xy + y^2 + 16 = 0$  are given by  $(x, y) = (U_{2n+1}, U_{2n-1})$  with  $n \ge 0$ , where  $U_n = U_n(4, 1)$ .

**Corollary 11.** All positive integer solutions of the equation  $x^2 - 4xy + y^2 + 32 = 0$  are given by  $(x, y) = (4u_{n+1} - 4u_n, 4u_n - 4u_{n-1})$  with  $n \ge 0$ , where  $u_n = U_n(4, -1)$ .

**Corollary 12.** All positive integer solutions of the equation  $x^2 - 6xy + y^2 + 32 = 0$  are given by  $(x, y) = (6u_{n+1} - 2u_n, 6u_n - 2u_{n-1})$  with  $n \ge 0$ , where  $u_n = U_n(6, -1)$ .

**Corollary 13.** All positive integer solutions of the equation  $x^2 - 10xy + y^2 + 32 = 0$  are given by  $(x, y) = (2u_{n+1} - 2u_n, 2u_n - 2u_{n-1})$  with  $n \ge 0$ , where  $u_n = U_n(10, -1)$ .

**Corollary 14.** All positive integer solutions of the equation  $x^2 - 34xy + y^2 + 32 = 0$  are given by  $(x, y) = (u_{n+1} - u_n, u_n - u_{n-1})$  with  $n \ge 0$ , where  $u_n = U_n(34, -1)$ .

**Theorem 20.** All positive integer solutions of the equation  $x^2 - 14xy + y^2 + 32 = 0$  are given by  $(x, y) = (3u_{n+1} - u_n, u_n - u_{n-1})$  with  $n \ge 0$ , where  $u_n = U_n(4, -1)$ .

*Proof.* Assume that  $x^2 - 14xy + y^2 + 32 = 0$  for some positive integers x and y. Then by Theorem 5, it is seen that x and y must be odd integers. Also, it is easily seen that 8|x-3y. Without loss of generality, we may suppose  $x \ge 3y$ . Let u = (x-3y)/8 and v = (x - 11y)/8. Then we get x = 11u - 3v and y = u - v. Substituting these values of x and y into the equation  $x^2 - 14xy + y^2 + 32 = 0$ , we obtain

$$(11u - 3v)^2 - 14(11u - 3v)(u - v) + (u - v)^2 + 32 = 0$$

and this shows that  $u^2 - 4uv + v^2 - 1 = 0$ . Therefore by Theorem 14, we get  $u = U_n(4, -1)$  and  $v = U_{n-1}(4, -1)$  with  $n \ge 0$ . Thus it follows that  $x = 11u_n - 3u_{n-1} = 3u_{n+1} - u_n$  and  $y = u_n - u_{n-1}$  with  $n \ge 0$ . Conversely, if  $(x, y) = (3u_{n+1} - u_n, u_n - u_{n-1})$ , then from identity (3.4), it follows that  $x^2 - 14xy + y^2 + 32 = 0$ .

In order to find all positive integer solutions of the equation  $x^2 - 46xy + y^2 + 128 = 0$ , we need the following theorem given in [1].

**Theorem 21.** If  $u + v\sqrt{d}$  is a solution in nonnegative integers to the Diophantine equation  $u^2 - dv^2 = N$ , where N < 0, then there exists a nonnegative integer m such that

$$u + v\sqrt{d} = (u_1 + v_1\sqrt{d})(x_1 + y_1\sqrt{d})^m$$

where  $u_1 + v_1 \sqrt{d}$  is the fundamental solution to the class of solutions of the equation  $u^2 - dv^2 = N$  to which  $u + v \sqrt{d}$  belongs and  $x_1 + y_1 \sqrt{d}$  is the fundamental solution to the equation  $x^2 - dy^2 = 1$ .

**Lemma 2.** All positive integer solutions of the equation  $x^2 - 33y^2 = -8$  are given by  $(x, y) = (|17u_n + 5u_{n-1}|, 3u_n - u_{n-1})$  with  $n \in \mathbb{Z}$ , where  $u_n = U_n(46, -1)$ .

*Proof.* Assume that  $x^2 - 33y^2 = -8$  for some positive integers x and y. It can be seen from Theorem 8 that the equation  $x^2 - 33y^2 = -8$  has two solution classes. And the fundamental solutions of these classes are  $5 + \sqrt{33}$  and  $-5 + \sqrt{33}$ . By Theorem 21, all positive integer solutions of the equation  $x^2 - 33y^2 = -8$  are given by

$$a_n + b_n \sqrt{33} = (5 + \sqrt{33})(x_n + y_n \sqrt{33})$$

with  $n \ge 0$  or

$$c_n + d_n \sqrt{33} = (-5 + \sqrt{33})(x_n + y_n \sqrt{33})$$

with  $n \ge 1$ , where  $x_n + y_n \sqrt{33}$  is the solution of the equation  $x^2 - 33y^2 = 1$ . Since the fundamental solution of this equation is  $\alpha = 23 + 4\sqrt{33}$ , we get  $x_n + y_n\sqrt{33} = \alpha^n$  and therefore  $x_n = (\alpha^n + \beta^n)/2$  and  $y_n = (\alpha^n - \beta^n)/2\sqrt{33}$ , where  $\beta = 23 - 4\sqrt{33}$ . Thus we get  $b_n = 5y_n + x_n$  and  $d_n = -5y_n + x_n$ . It is seen that  $x_n = V_n(46, -1)/2$  and  $y_n = 4U_n(46, -1)$ . This shows that  $b_n = 20u_n + v_n/2 = u_{n+1} - 3u_n$  with  $n \ge 0$  and  $d_n = -20u_n + v_n/2 = 3u_n - u_{n-1}$  with  $n \ge 1$ . Since  $3u_{-n} - u_{-n-1} = u_{n+1} - 3u_n$  for n > 0, we can take y as  $y = u_{n+1} - 3u_n$  with  $n \in \mathbb{Z}$ . Substituting the value of y into the equation  $x^2 - 33y^2 = -8$ , we get  $x = |17u_n + 5u_{n-1}|$  with  $n \in \mathbb{Z}$ . Conversely, if  $(x, y) = (|17u_n + 5u_{n-1}|, 3u_n - u_{n-1})$ , then from identity (3.4), it follows that  $x^2 - 33y^2 = -8$ .

**Theorem 22.** All positive integer solutions of the equation  $x^2 - 46xy + y^2 + 128 = 0$  are given by  $(x, y) = (3u_{n+1} - u_n, 3u_n - u_{n-1})$  with  $n \in \mathbb{Z}$ , where  $u_n = U_n(46, -1)$ .

*Proof.* Assume that  $x^2 - 46xy + y^2 + 128 = 0$  for some positive integers x and y. Completing the square gives  $(x - 23y)^2 - 528y^2 = -128$ , which implies that  $x - 23y = \pm 4m$  for some positive integer m. Rearranging the equation gives  $m^2 - 33y^2 = -8$ . By Lemma 2, we get  $(m, y) = (|17u_n + 5u_{n-1}|, 3u_n - u_{n-1})$  with  $n \in \mathbb{Z}$ . Thus  $x = 23y \pm 4m = 23(3u_n - u_{n-1}) \pm 4(17u_n + 5u_{n-1})$  and therefore we get  $x = 3u_{n+1} - u_n$  or  $x = 3u_{n-1} - u_{n-2}$  with  $n \in \mathbb{Z}$ . Since  $3u_{(n+2)-1} - u_{(n+2)-2} = 3u_{n+1} - u_n$ , we can take  $(x, y) = (3u_{n+1} - u_n, 3u_n - u_{n-1})$  with  $n \in \mathbb{Z}$ . Conversely, if  $(x, y) = (3u_{n+1} - u_n, 3u_n - u_{n-1})$ , then from identity (3.4), it follows that  $x^2 - 46xy + y^2 + 128 = 0$ .

The proofs of the following theorems are similar to that of Theorem 22 and therefore we omit them.

**Theorem 23.** All positive integer solutions of the equation  $x^2 - 174xy + y^2 + 512 = 0$  are given by  $(x, y) = (3u_{n+1} - u_n, 3u_n - u_{n-1})$  with  $n \in \mathbb{Z}$ , where  $u_n = U_n(174, -1)$ .

**Theorem 24.** All positive integer solutions of the equation  $x^2 - 66xy + y^2 + 512 = 0$  are given by  $(x, y) = (9u_{n+1} - u_n, 9u_n - u_{n-1})$  with  $n \in \mathbb{Z}$ , where  $u_n = U_n(66, -1)$ .

**Theorem 25.** All positive integer solutions of the equation  $x^2 - 210xy + y^2 + 1024 = 0$  are given by  $(x, y) = (5u_{n+1} - u_n, 5u_n - u_{n-1})$  with  $n \in \mathbb{Z}$ , where  $u_n = U_n(210, -1)$ .

**Theorem 26.** All positive integer solutions of the equation  $x^2 - 66xy + y^2 + 1024 = 0$  are given by  $(x, y) = (41u_{n+1} - u_n, 41u_n - u_{n-1})$  with  $n \in \mathbb{Z}$ , where  $u_n = U_n(66, -1)$  or  $(x, y) = (4U_{2n+1}, 4U_{2n-1})$  with  $n \ge 0$ , where  $U_n = U_n(8, 1)$ .

Since all positive integer solutions of the following equations

$$\begin{aligned} x^2 - kxy + y^2 + 64 &= 0, \ k \in \{3, 6, 18, 66\}, \\ x^2 - kxy + y^2 + 128 &= 0, \ k \in \{4, 6, 10, 14, 34, 130\}, \\ x^2 - kxy + y^2 + 256 &= 0, \ k \in \{3, 6, 18, 66, 258\}, \\ x^2 - kxy + y^2 + 512 &= 0, \ k \in \{4, 6, 10, 14, 34, 46, 130, 514\}, \end{aligned}$$

and

$$x^{2} - kxy + y^{2} + 1024 = 0, k \in \{3, 6, 18, 258, 1026\}$$

can be given easily by using the previous theorems and corollaries, we do not give their solutions.

#### REFERENCES

- M. DeLeon, "Pell's equation and pell number triples," *Fibonacci Q.*, vol. 14, no. 5, pp. 456–460, 1976.
- [2] M. J. Jacobson and H. C. Williams, Solving the Pell equation. Springer, 2006.
- [3] J. P. Jones, "Representation of solutions of Pell equations using Lucas sequences," Acta Acad. Paedagog. Agriensis, Sect. Mat. (N.S.), vol. 30, pp. 75–86, 2003.
- [4] D. Kalman and R. Mena, "The Fibonacci numbers exposed," *Math. Mag.*, vol. 76, no. 3, pp. 167–181, 2003.
- [5] R. Keskin and B. Demirtürk, "Solutions of some Diophantine equations using generalized Fibonacci and Lucas sequences," *Ars Combinatoria*, p. in press, 2012.
- [6] R. Keskin, "Solutions of some quadratic Diophantine equations," *Comput. Math. Appl.*, vol. 60, no. 8, pp. 2225–2230, 2010.
- [7] A. Marlewski and P. Zarzycki, "Infinitely many positive solutions of the Diophantine equation  $x^2 kxy + y^2 + x = 0$ ," *Comput. Math. Appl.*, vol. 47, no. 1, pp. 115–121, 2004.
- [8] W. L. McDaniel, "Diophantine representation of Lucas sequences," *Fibonacci Q.*, vol. 33, no. 1, pp. 59–63, 1995.
- [9] R. Melham, "Conics which characterize certain Lucas sequences," *Fibonacci Q.*, vol. 35, no. 3, pp. 248–251, 1997.
- [10] T. Nagell, Introduction to number theory. New York: Chelsea Publishing Company, 1981.
- [11] S. Rabinowitz, "Algorithmic manipulation of Fibonacci identities," in *Applications of Fibonacci numbers*, ser. Proceedings of the sixth international research conference on Fibonacci numbers and their applications, Washington State University, Pullman, WA, USA, July 18-22, 1994, G. E. Bergum, Ed., vol. 6. Dordrecht: Kluwer Academic Publishers, 1996, pp. 389–408.
- [12] P. Ribenboim, *My numbers, my friends. Popular lectures on number theory.* New York: Springer, 2000.
- [13] J. P. Robertson, "Solving the generalized Pell equation  $x^2 Dy^2 = N$ ," 2003. [Online]. Available: http://hometown.aol.com/jpr2718/pell.pdf
- [14] P. Yuan and Y. Hu, "On the Diophantine equation  $x^2 kxy + y^2 + lx = 0$ ,  $l \in \{1, 2, 4\}$ ," *Comput. Math. Appl.*, vol. 61, no. 3, pp. 573–577, 2011.

#### Authors' addresses

#### Refik Keskin

Sakarya University, Faculty of Arts and Science, TR54187, Sakarya, Turkey *E-mail address:* rkeskin@sakarya.edu.tr

## Olcay Karaatlı

Sakarya University, Faculty of Arts and Science, TR54187, Sakarya, Turkey *E-mail address:* okaraatli@sakarya.edu.tr

## Zafer Siar

Sakarya University, Faculty of Arts and Science, TR54187, Sakarya, Turkey *E-mail address:* zaferkah@hotmail.com