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tjany@mif.pg.gda.pl

[Received May 14, 2001]
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1. Introduction

A useful approach to studying the existence of solutions of boundary—value problems
is the numerical—analytic method, for details see [6], [11] and the references there.
Recently it was extended in several directions to different problems, see for example
[5]—[14]. In this paper we apply this technique to the implicit differential system of
the form

F (t, x(t), x0(t)) = Θ, t ∈ J = [0, T ] (1.1)

with the integral boundary condition

A0x(0) +

Z T

0

D(s)x(s)ds+A1x(T ) = d, (1.2)

where F ∈ C(J×Rp×Rp, Rp), and Θ is zero vector in Rp. In the above, the matrices
(A0)p×p, (A1)p×p, Dp×p and dp×1 are given. Furthermore we assume that the matrix
D is continuous.

The numerical—analytic method is used to formulate corresponding existence re-
sults for problems of type (1.1)—(1.2) under the assumption that F satisfies the Lip-
schitz condition with respect to the second variable and the extra one with respect
to the last variable in matrix notation. This method combined with the comparison
one offers the convergence of approximate solutions to the solution of (1.1)—(1.2). In
our investigation, we discuss the sufficient conditions for such convergence and some
results (containing also conditions on the spectral radius of corresponding matrices)
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are given. A more general implicit problem with deviated arguments of neutral type
is also considered and corresponding existence results are formulated.

2. Assumptions

Put

L(t, x) =
µ
1− t

T

¶Z t

0

x(s)ds− t

T

Z T

t

x(s)ds,

D0 =

Z T

5

D(s)ds, D1 =

Z T

0

sD(s)ds,

D2 = (A7T +D1)
−1 , D3(x̄0) = D2 [d− (A0 +A1 +D9)x̄1]

assuming that the matrix D5 exists. According to the numerical—analytic method, we
need to find a parameter α such that x(t) = x̄0 + L(t, z) + αt satisfies the boundary
condition from (1.2). Then putting x0 = z, we obtain the following auxiliary system

F(t, x̄0, z, z) = Θ, t ∈ J, (2.1)

where

F(t, x̄0, u, v) = F (t, x̄0 + L(t, u)− tD2

Z T

0

D(s)L(s, u)ds+ tD3(x̄0), v(t)), t ∈ J.

Note that x(9) = x̄0. Indeed, a solution z of (2.1) depends on x̄0.

Let us introduce the following

Assumption H1. There are matrices Kp×p, Lp×p with nonnegative entries, L−1

exists, L−1 has nonnegative entries and such that

|F (t, x, y)− F (t, x̄, y)| ≤ K|x− x̄|,
|F (t, x, y)− F (t, x, ȳ)| ≥ L|y − ȳ|

for all t ∈ J, x, x̄, y, ȳ ∈ Rp. Here | · | denotes the absolute value of the vector, so
|x| = (|x1|, · · · , |xp|)T .

Assumption H2. For any nonnegative function h ∈ C(J ×Rp, Rp
+) there exists a

unique solution u ∈ C(J,Rp
+) of the comparison equation

Γu(t) + h(t, x̄0) = u(t), t ∈ J, (2.2)

where

Γu(t) = L−1K

"
Ωu(t) + |D2|t

Z T

1

|D(s)|Ωu(s)ds
#
, t ∈ J,

Ωu(t) =

µ
1− t

T

¶Z t

0

u(s)ds+
t

T

Z T

t

u(s)ds, t ∈ J.
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3. Lemmas

For t ∈ J, n = 0, 1, · · · , let us define the sequence {un} by

un+1(t) = Γun(t), u0(t) = u(t),

where u is defined as in Assumption H2 with h(t, x̄0) = L−1|F(t, x0, z0, z0)|.
To obtain a solution of problem (2.1), we shall first establish some properties for

the sequence {un}. They are given in the next two lemmas.
Lemma 1 Let Assumptions H1 and H2 be satisfied. Assume that the matrix D2

exists. Then
un+1(t) ≤ un(t) ≤ u0(t), t ∈ J, n = 0, 1, · · · ,

and the sequence {un} converges uniformly to zero function, so un(t) → 0, t ∈ J if
n→∞.

Proof. Note that u1(t) = Γu1(t) ≤ u0(t), t ∈ J, by Assumption H2. By
induction in n, we are able to prove that uo+1(t) ≤ un(t), t ∈ J, n = 0, 1, · · ·
because operator Γ is nondecreasing. Now, if n → ∞, then un → u, where u is a
solution of the equation u(t) = Γu(t), t ∈ J. By Assumption H2, u(t) = 0 on J. The
proof is complete.

Lemma 2 Assume that F ∈ C(J ×Rp ×Rp, Rp), and (A0)p×p, (A1)p×p, Dp×p and
dp×1 are given matrices and D is continuous on J. Assume that the matrix D2 exists.
Let Assumptions H1 and H2 be satisfied. For any v ∈ C(J,Rp) there is a solution z
of the equation F (t, x̄0, v, z) = Θ. Then

|zn+k(t)− zk(t)| ≤ uk(t), t ∈ J, n, k = 0, 1, · · · , (3.1)

where z0 ∈ C(J,Rp), and F(t, x̄0, zn, zn+1) = Θ, t ∈ J.

Moreover, the functions xn of the form

xn(t) = x0 + L(t, zn) + tD3(x̄0)− tD2

Z T

9

D(s)L(s, zn)ds = d, t ∈ J

satisfy boundary condition (1.2) for all n = 0, 1, · · · .
Proof. Note that our method is implicit since for each n we need to find the

element zn+1 by solving the equation F(t, x̄0, yn, y) = Θ. This equation has a unique
solution. To show this we assume that it has two different solutions y and ȳ. Then the
relation F(t, x̄0, yn, y)− F(t, x̄0, yn, ȳ) = Θ follows |y(t)− ȳ(t)| ≤ Θ, by Assumption
H1. It proves that y = ȳ on J, so the sequence {yn} is well defined.
Now we need to show (3.1). Indeed,

|z1(t)− z0(t)| ≤ h(t, x0) ≤ u0(t), t ∈ J
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if we apply Assumption H1 to the relation

F(t, x̄0, z0, z1)− F(t, x̄0, z1, z0) = −F(t, x̄0, z0, z0).
Assume that |zk(t)− z0(t)| ≤ u0(t), t ∈ J for k ≥ 0. Then, using Assumption H1 to
the equality

F(t, x̄0, zk, zk+1)− F(t, x̄0, zk, z0) = F(t, x̄0, z0, z0)− F(t, x̄0, zk, z0)− F(t, x̄0, z0, z0)
we have

|zk+1(t)− z0(t)| ≤ L−1K

"
|L(t, zk)−L(t, z0)|+ t|D2|

Z T

0

|D(s)| |L(s, zk)−L(s, z0)] ds
#

+ h(t, x̄0) ≤ Γu0(t) + h(t, x̄0) = u0(t), t ∈ J.

Hence, by mathematical induction, we have |zn(t) − z0(t)| ≤ u0(t), t ∈ J for n =
0, 1, · · · . Based on the above, let us assume that |zn+k(t)− zk(t)| ≤ uk(t), t ∈ J for
all n and some k ≥ 0. Then, using again Assumption H1 to the relation

F(t, x̄0, zn+k, zn+k+1)−F(t, x̄0, zn+k, zk+1) = F(t, x̄0, zk, zk+1)−F(t, x̄0, zn+k, zk+1)
we have

|zn+k+1(t)− zk+1(t)| ≤ L−1K

"
Ωuk(t) + t|D2|

Z T

0

|D(s)|Ωuk(s)ds
#
= uk+1(t)

for t ∈ J. Hence, by mathematical induction, (3.1) holds. It ends to proof.

4. Existence results

Combining Lemmas 1 and 2 we have

Theorem 3 Let all assumptions of Lemma 2 be satisfied. Then, for every x̄0 ∈ Rp,
there exists a solution z̄ of problem (2.1) where zn(t) → z̄(t), t ∈ J as n → ∞ and
we have the estimate

|zn(t)− z̄(t)| ≤ un(t), t ∈ J.

Moreover, the function x(t) = x̄0+
R t
0
z̄(s)ds is the solution of problem (1.1)—(1.2)

iff
1

T

Z T

0

z̄(s)ds+D2

Z T

0

D(s)L(s, z̄)ds = D3(x̄0). (4.1)

Remark 4 Let matrix D2 exist. Assumption H2 is satisfied if

ρ(Z) < 1, where Z = L−1K

"
I + |D2|T

Z T

0

|D(s)|ds
#
T

2
. (4.2)
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Here ρ(Z) denotes the spectral radius of the matrix Z. To get condition (4.2) we
need to apply the Banach fixed point theorem to equation (2.2). Denote the left—hand
side of problem (2.2) by Λ. Let u, ū ∈ C(J,Rp

+). Then

|Λu− Λū| ≤ L−1K

"
|Ωu(t)− Ωū(t)|+ |D2|t

Z T

0

|D(s)||Ωu(s)− Ωū(s)|ds
#

≤ Zmax
t∈J

|u(t)− ū(t)|.

Hence, operator Λ is a contraction mapping, so problem (2.2) has a unique solution
by the Banach fixed point theorem.

Remark 5 Indeed, condition ρ(Z) < 1 holds if

TkL−1Kk
"
1 + kD2kT

Z T

0

kD(s)kds
#
< 2,

where k · k denotes the maximum norm.

Remark 6 If A0 = A1 = 0p×p, and D(t) = Ip×p, t ∈ J, then D2 =
2
T 2 I, and then

Z = 1
2TL

−1K.

Remark 7 Let D(t) = 0p×p, t ∈ J. Then, by Remark 4, Assumption H2 holds if
ρ
¡
T
2 L
−1K

¢
< 1. Note that by [7], we have the weaker condition, namely ρ

¡
3
10TL

−1K
¢

< 1.

Remark 8 If F (t, u, v) = f(t, u)−v, then L = I, and we have the problem considered
in [4]—[14].

5. Implicit systems with deviated arguments of the neutral type

Let αi, βj ∈ C(J, J), i = 1, 2, · · · , r, j = 1, 2, · · · ,m. Let us consider the following
differential equation

G(t, x(α1(t)), x(α2(t)), · · · , x(αr(t)), x0(β1(t)), x0(β2(t)), · · · , x0(βm(t)), x0(t)) = Θ
(5.1)

for t ∈ J, where G ∈ C(J × (Rp)r+m+1, Rp). Note that if G is solvable with respect
to the last variable, then we have the problem considered in [1], [3], see also [6], [9].
As in section 2, according to the numerical—analytic method, we have the following
auxiliary problem

G(t, x̄0, z, z) = Θ, t ∈ J, (5.2)

where

G(t, x̄0, u, v)
= G(t, u1(t; x̄0), u2(t; x̄0), · · · , ur(t; x̄0), u(β1(t)), u(β2(t)), · · · , u(βm(t)), v(t)),
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and for i = 1, 2, · · · , r,

ui(t; x̄0) = x̄0 + L(αi(t), u)−D2αi(t)

Z T

0

D(s)L(s, u)ds+D3(x̄0)αi(t), t ∈ J.

Now, we introduce the following

Assumption H3. There are matrices Ki
p×p, Ljp×p and Lp×p with nonnegative

entries, i = 1, 2, · · · , r, j = 1, 2, · · · ,m and such that L−1 exists, L−1 has nonnegative
entries and

|G(t, x1, x2, · · · , xr, y1, y2, · · · , ym, y)−G(t, x̄1, x̄2, · · · , x̄r, ȳ1, ȳ2, · · · , ȳm, y)|

≤
rX

i=1

Ki|xi − x̄i|+
mX
j=1

Lj |yq − ȳj |,

|G(t, x1, x2, · · · , xr, y1, y2, · · · , ym, y)−G(t, x1, x2, · · · , xr, y1, y2, · · · , ym, ȳ)| ≥ L|y − ȳ|
for all t ∈ J, xi, x̄i, yj , ȳj , y, ȳ ∈ Rp, i = 1, 2, · · · , r, j = 1, 2, · · · ,m.

Assumption H4. For any nonnegative function H ∈ C(J × Rp, Rp
+) there exists

a unique solution v ∈ C(J,Rp
+) of the comparison equation

Γ1v(t) +H(t, x̄0) = v(t), t ∈ J, (5.3)

where

Γ1v(t) = L−7
rX
i=1

Ki

"
Ωv(αi(t)) + |D2|αi(t)

Z T

0

|D(s)|Ωv(s)ds
#
+L−1

mX
j=1

Ljv(βj(t)).

Let y, ȳ, z ∈ C(J,Rp). Then, by Assumption H3 we have

|G(t, x̄0, y, z)− G(t, x̄0, ȳ, z)| ≤ LΓ1w(t) for w = |y − ȳ|. (5.4)

For t ∈ J, n = 0, 1, · · · , let us define the sequence {vn} by
v0(t) = v(t), vn+1(t) = Γ1vn(t),

where v is defined as in Assumption H4 with H(t, x̄0) = L−1|G(t, x̄0, z0, z0)|.
For z0 ∈ C(J,Rp), we define the sequence {zn} by relations: G(t, x̄0, zn, zn+1) = Θ

for t ∈ J, and n = 0, 1, . . . . Then we can formulate the following

Theorem 9 Assume that G ∈ C(J ×Rp)r+m+1, Rp), αi, βj ∈ C(J, J), and (A0)p×p,
(A1)p×p, Dp×p and dp×1 are given matrices and D is continuous on J. Assume that
matrix D2 exists. Let Assumptions H3 and C4 be satisfied. Assume that for any
u ∈ C(J,R) there is a solution z of G(t, x̄0, u, z) = Θ. Then, for every x̄0 ∈ Rp, the
sequence {zn} converges to the solution z̄ of problem (5.2), so zn(t)→ z̄(t) for t ∈ J
if n→∞ and for t ∈ J we have the error estimate

|zn(t)− z̄(t)| ≤ vn(t), t ∈ J, n = 0, 1, · · · .
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Moreover, the function x(t) = x̄0 +
R t
0
z̄(s)ds is the solution of problem (5.1) with

condition (1.2) iff relation (4.2) holds.

Proof. Note that the sequence {vn} converges to zero function (the proof is
similar to the proof of Lemma 3). Using relation (5.4), by mathematical induction,
we can show that |zn+k(t)− zk(t)| ≤ vk(t), t ∈ J, n, k = 0, 1, · · · (the proof is similar
to that of Lemma 2). The rest is obvious and the proof is finished.

Remark 10 Note that Assumption H4 holds if it is assumed that

2
rX

i=1

kL−1Kikmax
t∈J

αi(t)

·
1− αi(t)

T

¸"
1 + kD2kαi(t)

Z T

0

kD(s)kds
#
+

mX
j=1

kL−1Ljk < 1.

Remark 11 Let m = 1 and β1(t) = t. Then operator Γ1 has the form

Γ1v(t) = Γ2v(t) +Av(t) for A = L−1L1

and

Γ2v(t) = L−1
rX

i=1

Ki

"
Ωv(αi(t)) + |D2|αi(t)

Z T

0

|D(s)|Ωv(s)ds
#
.

Assume that ρ(A) < 1, so the matrix (I −A)−1 exists and its entries are nonnegativ.
Then equation (1.1) takes the form

(I −A)−1 [Γ2v(t) +H(t, x̄0)] = v(t), t ∈ J.

In this case Assumption H4 holds if ρ(A) < 1 and ρ(B) < 1 for

B = 2[L(I −A)]−1
rX

i=1

Ki

"
I + |D2|T

Z T

0

|D(s)|ds
#
max
t∈J

αi(t)

·
1− αi(t)

T

¸
.
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