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1. Introduction

At present studying of differential equations with impulsive effects [1-5,6] is of great
importance. The principal feature of the given equations is that their solutions form
the set of power continuum. Such systems are essentially nonlinear and possess a num-
ber of specific effects caused by the presence of impulsive actions [6]. Many different
problems for systems with impulsive effects written usually by ordinary differential
equations, partial differential equations or delay differential equations [7] have been
considered so far. At the same time while studying a non-perturbed problem for
singularly perturbed differential equations with the impulsive effects [8], the problem
of implicit function equations with discontinuous trajectories (with impulsive effects)
research appears. In contrast with the case of differential equations with impulsive
effects, the corresponding problem for equations can have a countable or even a finite
number of solutions.

In this paper we study a system defined by the implicit function equation:

g(t, x) = 0 (1.1)

and the condition of impulsive effects:

∆x|t=sn = x(sn + 0)− x(sn − 0) = In(x), n ∈ N ⊂ N. (1.2)

The function g(t, x) is supposed to be continuous in variables (t, x) ∈ D = T ×R1,
where T is an open linear connected set from R1, and to have almost everywhere (by
Lebesgue measure) the first order continuous derivatives with respect to t, x, i.e.,
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g(t, x) ∈ C
(1,1)
(t,x) (D) almost everywhere. We assume the set I = {sn, n ∈ N} ⊂ T to

be not empty. Functions In(x), n ∈ N , are continuous on R1. Moments of impulsive
effects sn ∈ I, n ∈ N , are fixed and additionally a real number δ > 0 exists such that
sn+1 − sn ≥ δ for all n ∈ N .

2. Definition of solutions and preliminary notes

We formulate below some definitions, which will be substantially used in the future.

Definition 2.1. [9] A point (t0, x0) ∈ L = {(t, x) ∈ D̄ : g(t, x) = 0} is called a
critical point of the equation (1.1) any of its deleted neighborhoods V̇ (t0, x0) contains
a point from the set L and either there is not a neighborhood U of the point (t0, x0)
such that g(t, x) is continuously differentiable at every point (t, x) ∈ U(t0, x0) or
the function g(t, x) is continuously differentiable in some neighborhood U(t0, x0) but
g0x(t0, x0) = 0.

Definition 2.2. A function x = x(t), t ∈ (α, β), is called a solution to the equation
(1.1) if (t, x(t)) ∈ D for any t ∈ (α, β), the equality g(t, x(t)) = 0 holds and the set
{(t, x(t)) : t ∈ (α, β)} contains no critical points.
Definition 2.3. An isolated solution to the equation (1.1) is a point (t0, x0) ∈ L
isolated in the set L.
Definition 2.4. The point (t∗, x∗) ∈ L that is neither a critical point nor an isolated
solution is called a regular point of the equation (1.1) .

Under the conditions imposed above, for any point (t0, x0) ∈ L\∂L [9] there is a
continuously differentiable solution x(t) to the equation (1.1) defined on the maximal
interval (ω−, ω+) such that x(t0) = x0.

Further it would be relevant to mention the following definitions:

Definition 2.5. A point (t∗, x∗) is called a left finite critical point of the equation
(1.1) if for some solution x = ϕ(t) of the equation (1.1) limit lim

t→t∗−0
ϕ(t) = x∗ exists

and |x∗| < +∞. In the case |x∗| = +∞ the point (t∗, x∗) is called a left infinite critical
point of the equation (1.1) .

Definition 2.6. A piecewise continuous function x = x(t), t ∈ (α, β), is called a
bounded solution to the problem (1.1) , (1.2) , if:

(1) function x = x(t) satisfies the equation (1.1) for all t ∈ (α, β)\I;

(2) the set {(t, x(t)) : t ∈ (α, β)\I} contains no critical points of equation (1.1);

(3) function x(t) is left continuous at points t = sn and satisfies condition (1.2).

Let x = ϕ(t) be a solution to equation (1.1) defined on the maximal interval (α, t∗).
It easy to show that the point (t∗, ϕ(t∗)), where ϕ(t∗) = lim

t→t∗−0
ϕ(t), is a critical point

of equation (1.1) .
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Definition 2.7. A piecewise continuous function x = x(t) : (α, β) → R̄1 is called a
solution to the problem (1.1), (1.2), if:

(1) function x = x(t) satisfies the equation (1.1) for all t ∈ (α, β)\I;

(2) the set {(t, x(t)) : t ∈ (α, β)\I} contains no critical points of the equation (1.1)
;

(3a) if the point s ∈ I∩(α, β) and |x(s−0)| < +∞, then there exists a neighborhood
U(s) such that function x = x(t), t ∈ U, is a bounded solution to the problem
(1.1), (1.2) in the sense of the definition 2.6;

(3b) if the point s ∈ I ∩ (α, β) and |x(s− 0)| = +∞, then the point (s,∞) is a left
and right infinite critical point of the equation (1.1) simultaneously.

It should be noted here that if a solution to the problem (1.1) , (1.2) is defined
in both the left and right neighborhoods of the point sn ∈ I, which coincides with
t—coordinate of an infinite critical point (sn,∞), then it necessarily follows the point
(sn,∞) is neither right continuous nor left continuous. By another way if the point
(sn, xn) is a left infinite critical point then it is also a right infinite critical point.

If the limit lim
t→t∗−0

ϕ(t) does not exist, then there is a sequence {tk, k ≥ 1} such
that tk ∈ (α, t∗), tk → t∗ as k →∞ and limit lim

k→∞
ϕ(tk) =: ϕ[{tk}] exists. The set of

all these points ϕ[{tk}] forms a linear connected set [a, b] ⊂ R̄
1
. In this case a point

(t∗, a∗) where a∗ ∈ [a, b] is called a left continual critical point of the equation (1.1) .
Further we suppose the equation (1.1) has no continual critical points. Analogously

to definition 2.5, it is possible to introduce notions of a right finite, a right infinite
and a right continual critical point of the equation (1.1) .

It should be noted that point (t∗, x∗) can be both a left critical point for a solution
ϕ1(t), t ∈ (α, t∗), and a right critical point for another solution ϕ2(t), t ∈ (t∗, β).
In the case the point (t∗, x∗) is a left critical point of the equation (1.1), there

exists a solution ϕ(t) to the equation (1.1) such that lim
n→∞ϕ(tn) = x∗ exists for

any monotone increasing sequence {tn, n ≤ 1} ⊂ (α, t∗) : tn → t∗ as n → ∞ and
g(tn, ϕ(tn)) = 0. Using this property, it is possible to clarify whether or not point
(t∗, x∗) is a left critical point for some solution to the equation (1.1). Namely, if a
sequence {(tn, xn), n ≥ 1} : g(tn, xn) = 0 and (tn, xn)→ (t∗− 0, x∗) as n→∞ exists,
then the point (t∗, x∗) is a left critical point of the equation (1.1). Otherwise the
point (t∗, x∗) is a right critical point.

Remark 2.1. Any critical point can be a point of non-uniqueness [10] of the solutions
to the equation (1.1) .
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3. Necessary condition of existence of a solution

Assuming the equation (1.1) has no isolated solution, let us study conditions of exis-
tence of a solution to the problem (1.1), (1.2).

Lemma 3.1. Let function x = x(t), t ∈ T , be a solution to the problem (1.1), (1.2).
Then:

(1) if a point (sn, x(sn − 0)) is either a regular point or a left critical point of the
equation (1.1), then point (sn, x(sn + 0)) is either a regular or a right finite
critical point of the equation (1.1);

(2) a point (sn, x(sn − 0)) is a left infinite critical point of the equation (1.1), iff
(sn, x(sn + 0)) is a right infinite critical point of the equation (1.1). .

Proof of the lemma follows from functions In(x) continuity.

Remark 3.1. Let us suppose:

(1) a point (sn, x(sn−0)), a solution x(t) to the problem (1.1) , (1.2) passes through,
is a left infinite critical point of the equation (1.1) ;

(2) solution x(t) is defined on an interval, the opened part of which contains point
sn.

Then point (sn, x(sn + 0)) is a right infinite critical point of the equation (1.1) .
In addition, the value In(xn) = lim

t→sn−0
In(x(t)) is considered to be finite.

Theorem 3.1. (necessary condition of existence of a solution to the problem (1.1),
(1.2) ). If the problem (1.1), (1.2) has a solution x(t), t ∈ T , then there are points
xn ∈ R̄

1
, n ∈ N , such that (sn, xn) ∈ L, n ∈ N , and one of the following conditions

takes place:

(i) if xn ∈ R1 then equality g(sn, xn + In(xn)) = 0 holds;

(ii) if xn ∈ R̄
1\R1 then point (sn, x(sn−0)) is a left infinite critical point and point

(sn, x(sn + 0)) is a right infinite critical point of the equation (1.1).

Proof. To prove the theorem it is enough to verify its statement for a point where
solution x(t), t ∈ T , has discontinuity.
Let x = x(t) be a solution to the problem (1.1), (1.2), defined on T . In accordance

with the definition of a solution to the problem (1.1), (1.2) function x(t) is continu-
ously differentiable on the set T , excepting points of impulsive effects where it is only
left continuous.
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Let sn0 ∈ T be an arbitrary point from the set I. The case when the point
(sn0 , x(sn0 − 0)) is a left infinite critical point or the point (sn0 , x(sn0 +0)) is a right
infinite critical one of the equation (1.1) is mentioned above in remark 3.1; thus we
suppose the solution x(t) to have a discontinuity of the first kind at the point sn0 .

Let us consider set {(sn0 , xn), n ∈ N}, where xn = lim
tk→sn−0

x(t) as tk → sn0 and

tk < sn0 . Since the given solution x(t) is defined on the whole set T , and none of
points (sn0 , xn) is a continual critical point of the equation (1.1), then for any n set
{(sn0 , xn), n ∈ N} can contain the only point.
Assuming the correspondence xn0 to sn0 for any n0 ∈ N and taking into account

that function x(t) satisfies the equation (1.1), we infer the set {(sn0 , xn), n ∈ N} to
be a subset of the set L. Hence the equality g(sn, xn + In(xn)) = 0 is true for any
n ∈ N and some set {xn, n ∈ N} that completes the proof of the theorem.

Theorem 3.2. Let set T ×¯1 contain only finite critical points of the equation (1.1);
the functions In(x), n ∈ N are bounded. If the problem (1.1), (1.2) has the solution
defined on the interval (α, β), then this solution is necessarily bounded on every part
[a, b] ⊂ (α, β).

Proof. Let a function x(t) satisfying the problem (1.1), (1.2) be defined on interval
(α, β) and unbounded on a subinterval [a1, b1] ⊂ (α, β). In this case there is a point
t0 ∈ [a1, b1] such that lim

t→t0
x(t) =∞. In accordance with definition 2.1, it is possible

to deduce that the equation (1.1) has a critical point (t0,∞) ∈ T × R̄1. The last
assumption contradicts the supposition of the theorem and concludes the proof.

4. Necessary condition of existence of a periodic solution

It should be mentioned here that analogy of the necessary condition of the existence
of a periodic solution to a differential equation with impulsive effects [2, 5] also holds
in the case of the problem (1.1), (1.2). Namely the following theorem is true:

Theorem 4.1. (necessary condition of existence of a periodic solution to the problem
(1.1), (1.2)). If the problem (1.1), (1.2) has a T—periodic solution defined on the whole
set T , then there are points xn ∈ R̄

1
, n ∈ N and a natural number m ∈ N such that

{(sn, xn), n ∈ N} ⊂ L and for any n ∈ N the following conditions are fulfilled:

In+m(xn) = In(xn), sn+m = sn + T, k ∈ N ,

provided that sn+m ∈ T .

Proof. Let function ϕ(t) be a periodic solution to the problem (1.1) , (1.2) and (α, β) ⊂
T be an interval of its definition. Then we evidently have β − α > T.

At first we shall show that if a point sn0 ∈ (α, β) belongs to the set I and interval
(α, β) contains at least one of the points s+ = sn0 + T or s− = sn0 − T , then there is
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a natural m ∈ N such that for any n ∈ N we have In+m(xn) = In(xn), n ∈ N and
sn+m = sn + T having supposed s+ ∈ (α, β) for determination.
Evidently, inclusion s+ ∈ (α, β) follows s+ ∈ I. Otherwise, assuming s+ to be not

a point of an impulsive effect, we can conclude that function ϕ(t) as a solution to
the problem (1.1), (1.2)is continuous at s+. Hence due to the periodicity condition of
theorem 4.1, function ϕ(t) has to be continuous at sn0 = s+−T , which is impossible.

Thus, if sn0 ∈ I and s+ = sn0 + T ∈ (α, β), then s+ ∈ I. As sn0 is an arbitrary
point, then we can infer that there is a natural m ∈ N such that sn+m = sn + T ∈ I
for any n ∈ N provided that sn+m ∈ (α, β). In particular, m = n1 − n0, where we
have denoted sn1 = s+ = sn0 + T. We suppose the number m ∈ N to be the least
such natural number.

Accordingly to theorem 3.1, there follows the existence of set {xn, n ∈ N} such
that g(sn, xn + In(xn)) = 0 for any n ∈ N . Taking the condition of periodicity of the
solution x = ϕ(t) in the form: ϕ(t) ≡ ϕ(t + T ) ∀t ∈ ((sn−1 , sn1)\{sn0}) ∩ T , where
sn1 = sn0 + T, sn−1 = sn0 − T, we get the following relationships:

In0(xn0) = ϕ(sn0 + T + 0)− ϕ(sn0 + T − 0) =

= ϕ(sn0+m + 0)− ϕ(sn0+m − 0) =

= xn0+m + In0+m(xn0+m)− xn0+m = In0+m(xn0+m) = In0+m(xn0).

Thus theorem 4.1 is proved.

5. Criterion of existence of a solution

The maximal interval size of definition of a solution to the problem (1.1), (1.2) depends
on the existence of critical points of the equation (1.1) in the set T × R̄1. We pursue
proving the following theorem on necessary and sufficient conditions of the existence
of a solution to the problem (1.1), (1.2).

Theorem 5.1. (criterion of existence of a solution to the problem (1.1), (1.2)). Let
set T × R̄1 contain no critical points of equation (1.1). Then the problem (1.1), (1.2)
has a bounded solution defined on the whole set T iff there are points xn ∈ R1, n ∈ N
such that {(sn, xn), n ∈ N} ⊂ L and condition g(sn, xn + In(xn)) = 0 holds for all
n ∈ N and, additionally, the following condition takes place: for any n ∈ N there is
a domain Gn ⊂ T ×R1 such that

a) points (sn, xn + In(xn)), (sn+1, xn+1) belong to the domain Gn provided that
sn, sn+1 ∈ I;

b) for any t∗ ∈ (sn, sn+1) the equation g(t∗, x) = 0 has the only solution x = x∗
such that (t∗, x∗) ∈ Gn.
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Proof. At first we note that the necessity of conditions of the theorem follows from
theorem 3.1. Indeed, let function x∗(t) defined on the whole set T be a solution
to the problem (1.1), (1.2). In accordance with the definition 2.6, function x∗(t)
is continuously differentiable with respect to t ∈ T everywhere, excepting points of
impulsive effects sn ∈ I, n ∈ N ordered by the following way s1 < s2 < . . . .

Consider sets Tk ⊂ T , k ∈ N to have the following form: T1 = {t ∈ T : t ≤ s1},

T2 = {t ∈ T \T1 : t ≤ s2} if s2 ∈ I, . . . , Tn = {t ∈ T \
n−1S
k=1

Tk : t ≤ sn} if sn ∈ I.

Since set I is not empty, then there are at least two sets T1 and T2. Let xn(t) =
x∗(t), t ∈ Tn, for all n ∈ N . We denote

xn = lim
t→sn−0

x∗(t). (5.1)

Evidently the set of points {(sn, xn), n ∈ N} is a subset of L and accordingly to the
necessary condition of existence of a solution, i.e., the equality g(sn, xn+ In(xn)) = 0
is true. Necessity is proved.

Let us prove the sufficiency. Assume points xn ∈ R1, n ∈ N exist. We prove that
the problem (1.1), (1.2) has a solution defined on the whole set T . Again we consider
subsets Tn ⊂ T , n ∈ N being devided by the points of impulsive effects sn ∈ I. Since
point (s1, x1) ∈ L is not a critical point of the equation (1.1), then in accordance with
theorem [9] on a global existence of a solution to the equation (1.1), there is the only
continuously differentiable function x = x1(t) defined on the whole set T such that
x1(s1) = x1. Let x∗(t) be a solution to the problem (1.1), (1.2). As before, we define
x1(t) as restriction of solution x∗(t) on the set T1, i.e., x∗(t) = x1(t) for any t ∈ T1.
Let us construct a right continuation of the solution x1(t). It can be fulfilled

because point (s1, x1 + I1(x1)) ∈ L is not a critical point of the equation (1.1).
Following the aforecited argument, we are able to affirm the existence of the only
continuously differentiable function defined on the whole set T such that x2(s1) =
x1 + I1(x1). We consider x2(t), t ∈ T2, as restriction of the solution x∗(t) on the set
T2, i.e., x∗(t) = x2(t) for any t ∈ T2.
If s2 /∈ I, i.e., the set I of points of impulsive effect contains the only point, then

function x∗(t) is defined on the whole set T . Otherwise we repeat the aforementioned
procedure.

So for any n ∈ N it is possible to build function xn(t) satisfying both the equation
(1.1) for any t ∈ T and condition (1.2) at t = sn. In addition, its restriction will
coincide with the solution x∗(t) on the interval (sn−1, sn].

If the whole set T is right bounded or the set I contains only a finite number of
points of impulsive effects, then by means of finite steps we are able to construct the
solution x∗(t) defined on the whole set T . Otherwise, when T is right unbounded,
due to both theorem [9] on global existence of a solution to the equation (1.1) and
condition sn+1 > sn + δ, n ∈ N , we are able to find x∗(t) for any t ∈ T by a finite
number of steps.
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It means that the problem (1.1), (1.2) has a solution defined on the whole set T
that proves the theorem 5.1.

Let us consider now the case when set T × R̄1 contains some critical points of the
equation (1.1). Let us draw lines through the critical points being paralleled to axis
OX and assume that number of such lines is at most countable. We denote these
lines as t = τm,m ∈ B ⊂ N.
At first we consider the case when the set T contains only finite critical points.

Theorem 5.2. Let the critical points of the equation (1.1) belonging to the set T ×R̄1
be only isolated finite critical points which are necessarily being elements of the set
I. Then the problem (1.1), (1.2) has a solution defined on the whole set T iff the
following conditions are fulfilled:

1) there is a point (t̄, x̄) ∈ L such that t̄ < s1;

2) there are points xn ∈ R1, n ∈ N such that condition i) of the theorem 3.1 holds;

3) for any n ∈ N0 = N ∪ {0} there is a domain Gn such that (t̄, x̄), (s1, x1) ∈ ∂G0
and points (sn, xn + In(xn)), (sn+1, xn+1) ∈ ∂Gn if sn+1 ∈ I;

4) for any t∗ ∈ (sn, sn+1) the equation g(t∗, x) = 0 has the only solution x = x∗
such that (t∗, x∗) ∈ Gn.

Proof. Let us start proving the necessity of conditions of theorem 5.2. We denote the
finite critical points of equation (1.1) belonging to the set T × R̄1 by the following
{(τm, κml

),m ∈ B, l ∈ Z}, where in accordance with assumptions of theorem 5.2
{τm,m ∈ B} ⊂ I.
Let the function x∗(t) defined on the whole set T be a solution to the problem

(1.1), (1.2). Evidently, there is a point (t̄, x̄) ∈ L, t̄ < s1, since we can put x̄ = x∗(t̄)
for any t̄ ∈ T such that t̄ < s1. Thus, the first condition holds.

By means of the argument used to prove theorem 5.1, we can show the existence
of points xn ∈ R, n ∈ N such that {(sn, xn), n ∈ N} ⊂ L and for every point (sn, xn)
the condition i) of theorem 3.1 holds.

Since the set (sn, sn+1)× R̄1 contains no critical points, there are not two differ-
ent solutions to the equation (1.1) passing through the same point belonging to set
(sn, sn+1)× R̄1 because such a point would be a critical point of the equation (1.1).
Taking into account that all critical points of equation (1.1) belonging to T ×R1

are isolated, we conclude that for any n ∈ N there is a domain Gn such that condition
3) is satisfied, for we can consider an open linear connected set being a small enough
neighborhood of the function xn(t), t ∈ Tn, n ∈ N, graph as the set Gn, n ∈ N0.
Additionally, condition 4) would be fulfilled.

Thus the necessity is proved.
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Having assumed conditions 1) — 4) of theorem 5.2 to hold we proceed to prove
sufficiency. Let us show that the problem (1.1), (1.2) has a solution defined on the
whole set T . Since a point (t̄, x̄) belongs to the set L, then due to theorem [9] on the
existence of a global solution to equation (1.1) there is a continuously differentiable
function x1(t) defined at least on the set T1 such that x1(t̄) = x̄.

The solution x1(t) admits right-side continuation. Indeed, if (s1, x1 + I1(x1)) is
a regular point of equation (1.1), then in accordance with theorem 5.1 this solution
can be extended to the next interval (s1, s2]; if (s1, x1 + I1(x1)) is a critical point of
equation (1.1), then from condition 3 of the theorem it follows that this point is a left
finite critical one for equation (1.1) and, consequently, equation (1.1) has a solution
x2(t) defined at least on the set T2 satisfying the condition x2(s1 + 0) = x1 + I1(x1),
or, in other words, ”entering” into this critical point.

If set I contains the only point s1, then function x2(t) is defined on set T2 = T \T1
and as a result function x∗(t), composed on functions x1(t), x2(t), is defined on the
whole set T , satisfying the equation (1.1) and condition (1.2), i.e., it is a solution to
the problem (1.1), (1.2).

If s2 ∈ I, then the function x2(t) is defined on set T2 and we come across a problem
of x2(t) continuation on the next set T3 that we can solve using the speculations given
above. Thus, for any point sn ∈ I it is possible to construct function xn(t) defined
on set Tn.
If set T is right bounded or contains only a finite number of its elements, then

by a finite number of steps we are able to construct solution x∗(t) defined on the
whole set T . Otherwise, when set T is right unbounded, then due to both theorem [9]
on the global existence of a solution to equation (1.1) and condition sn+1 > sn + δ,
n ∈ N for any t > s1, the value x∗(t) can be found by means of a finite number of
the aforementioned steps. Thus theorem 5.2 is proved.

Theorem 5.3. Let set T × R̄1 contain only infinite critical points of the equation
(1.1) which form set {(τk,∞), k ∈ B ⊂ } where τk ∈ I for all k ∈ B. Then the problem
(1.1), (1.2) has a solution defined on the whole set T iff the following conditions take
place:

1) there is a point (t̄, x̄) ∈ L such that t̄ < s1;

2) there are points xn ∈ R̄
1
, n ∈ N such that:

a) {(sn, xn), n ∈ N} ⊂ L;
b) condition i) or ii) of theorem 3.1 holds;

3) for any n ∈ N ∪ {0} there exists a domain Gn ⊂ T ×R1 such that:

a) set G0 ∪ {(s1, x) : −∞ ≤ x ≤ +∞} includes points (t̄, x̄) and (s1, x1);
b) for any n ∈ N set Gn∪{(sn, x) : −∞ ≤ x ≤ +∞}∪{(sn+1, x) : −∞ ≤ x ≤
+∞} includes points (sn, xn+In(xn)), (sn+1, xn+1) provided that sn+1 ∈ I;
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4) for all n ∈ N and any t∗ ∈ (sn, sn+1) the equation g(t∗, x) = 0 has the only
solution x = x∗ such that (t∗, x∗) ∈ Gn.

Proof. Necessity of the conditions is the first item to be proved. Let function x∗(t)
defined on the whole set T be a solution to the problem (1.1), (1.2). Set I, being not
empty according to the assumption, contains at least one element s1. Thus there is a
point t̄ ∈ T such that t̄ < s1 and value x̄ = x∗(t̄) is defined. So, condition 1) holds.

In accordance with definition 2.6, function x∗(t) is continuously differentiable for
all t ∈ T excepting points of impulsive effects sn ∈ I. For any n ∈ N such that sn ∈ I
let denote xn(t) = x∗(t) for sn < t ≤ sn+1; x0(t) = x∗(t) for t ∈ T ∩ (−∞, s1].

Similarly as in the proof of theorem 5.1, we put xn = lim
t→sn−0

x∗(t) for all n ∈ N .

Obviously, the set of points {(sn, xn), n ∈ N} is a subset of L; hence, according
to theorem 3.1, the necessary conditions of existence of a solution are fulfilled.

Let us consider an interval (sn, sn+1], where sn, sn+1 ∈ I. If (sn+1, xn+1) is a
critical point for the equation (1.1), then refereing to the input conditions of theorem
5.3, we find this point to be a right infinite critical point of solution xn(t) = x∗(t),
t ∈ (sn, sn+1] and as a consequence, this point is a left infinite critical point of solution
xn+1(t) = x∗(t), t ∈ (sn+1, sn+2].
In conclusion we note that for any n ∈ N ∪ {0} domain Gn can be chosen as a

small enough neighborhood of graph of the function xn(t), t ∈ (sn, sn+1], such that
conditions 3) and 4) have to take place. Thus, the necessity has been demonstrated.

Now sufficiency is to be proved. Let conditions 1) — 4) be right. By direct method
of constructing a function we shall show that the problem (1.1), (1.2) has a solution
defined on the whole set T . Let us consider subsets on which the set T is divided
by points of impulsive effects sn ∈ I starting from interval (−∞, s1] ∩ T . As point
(t̄, x̄) belongs to set L then according to theorem [9] on the existence of a global
solution to the equation (1.1), there is a continuously differentiable function x1(t)
defined at least on interval T ∩ (−∞, s1) such that x1(t̄) = x̄. Denoting solution to
the problem (1.1), (1.2) defined on the set T as x∗(t), we obviously get x∗(t) = x1(t)
for all t ∈ T ∩ (−∞, s1). In addition, x1(s1) = x1.

Let us build the right prolongation of function x1(t). If (s1, x1) is a regular point
of the equation (1.1), then, due to theorem 5.1, solution to the problem (1.1), (1.2)
can be right-side extended either on interval (s1, s2] if s2 ∈ I or set T \(−∞, s1] if
s2 /∈ I. Otherwise, if (s1, x1) is a critical point of the equation (1.1), then it is only
an infinite critical one. Thus relying on definition 2.7, we get solution x2(t) to the
problem (1.1), (1.2) defined either on interval (s1, s2] if s2 ∈ I or set T \(−∞, s1] if
s2 /∈ I. It should be mentioned here that assumptions 2) — 4) of theorem 5.3 supply
the existence and uniqueness of the function x2(t) satisfying equation (1.1), starting
at either point (s1, x1 + I1(x1)) (value x1 is finite) or point (s1,∞) (value x1 = ∞)
and ending at either point (s2, x2) (value x2 is finite) or point (s2,∞) (value x2 =∞).
If s2 /∈ I, then the solution x2(t) is defined on set T ∩(−∞, s1], hence, the solution

x∗(t) composed on functions x1(t), x2(t) is defined on the whole set T .
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If s2 ∈ I, then the solution to the problem (1.1), (1.2) is constructed on the set
(−∞, s2] ∩ T .
Based on the same arguments, it is easy to see that if the solution x = x∗(t) to

the problem (1.1), (1.2) is found on interval T ∩ (−∞, sk], then it can be extended on
interval T ∩ (−∞, sk+1] under assumption sk+1 ∈ I, otherwise the solution obviously
exists on the whole set T .
Thus, the solution to the problem (1.1), (1.2) can be constructed on the whole set

T , which completes the proof of the theorem.

Let us introduce the notion of a piecewise smooth solution.

Definition 5.1. A function x = x(t) is called a piecewise smooth solution to the
problem (1.1), (1.2) if it is a solution to the problem (1.1), (1.2) in the sense of
definition 2.5 for all t ∈ T excepting values, coinciding with t—coordinates of critical
points where its continuation and smoothness properties may be not satisfied.

The above definition allows us to study a case when the set T contains a critical
point of the equation (1.1) such that its t—coordinate coincides with a moment of
impulsive effects.

Let us consider sets T cr
m = (τm, τm+1), m ∈ B. Here, as before, τm are t—

coordinates of critical points of the equation (1.1), which are ordered with indexes m,
i.e., τm < τm+1 for all m,m+1 ∈ B and there exists δ1 > 0 such that τm+1−τm > δ1.
For the given case by analogy we can formulate a statement summarizing theorems
5.1—5.3.

Theorem 5.4. Let the set T × R̄1 contain critical points of the equation (1.1). Then
the problem (1.1), (1.2) has a piecewise smooth solution defined on the set T \{τm,m ∈
B} iff:

(1) there is a point (t̄, x̄) ∈ L, a non-critical one of the equation (1.1) such that
t̄ < s1 ∈ I;

(2) there are points xn ∈ R̄
1
, n ∈ N such that:

a) {(sn, xn), n ∈ N} ⊂ L;
b) condition i) or ii) of theorem 3.1 holds;

(3) for any n ∈ N ∪ {0} there exists a set Gn ⊂ T × R̄
1
such that:

a) set G0 is connected and includes points (t̄, x̄) and (s1, x1);

b) for any n ∈ N set Gn is connected and includes points (sn, xn + In(xn)),
(sn+1, xn+1) provided that sn+1 ∈ I;

(4) for all n ∈ N and any t∗ ∈ (sn, sn+1)\{τm : m ∈ B} the equation g(t∗, x) = 0
has the only solution x = x∗ such that (t∗, x∗) ∈ Gn;
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(5) for any m ∈ B interval (τm, τm+1) contains at least one point t∗ such that the
equation g(t∗, x) = 0 has a solution.

The proof of the theorem is similar to that of theorem 5.1 — 5.3 above and therefore
it is not given here.

6. Sufficient conditions of the existence of a periodic solution

Let us study the existence of a solution to the problem (1.1), (1.2) when function
g(t, x) is T—periodic with respect to time variable t. If a solution to the problem
(1.1), (1.2) exists on an interval length of which is more than T , then under certain
additional conditions solution to the problem under consideration can be continued
on the whole set T .
Sufficient conditions of the existence of a periodic solution (a piecewise continuous

solution) to the problem (1.1), (1.2) are given by the following theorem.

Theorem 6.1. Let us assume that the following conditions hold:

1) function g(t, x) is T—periodic with respect to variable t;

2) values of impulsive effects are constants, i.e., Ik(x) = Ik, where Ik ∈ R1, k ∈ N ;
3) the condition of periodicity of impulsive effects takes place, i.e., there is such a

natural m ∈ that for all k, k +m ∈ N : Ik+m = Ik, sk+m = sk + T ;

4) problem (1.1), (1.2) has a solution (a piecewise continuous solution) ϕ(t) defined
on interval [α, β], where β − α = T and ϕ(α) = ϕ(β).

Then the problem (1.1), (1.2) has a periodic solution (a piecewise continuous so-
lution) defined on the whole set T ∩ [s0,∞), where s0 = min{sn, n ∈ N}.

Proof. As function ϕ(t), t ∈ [α, β], is a solution to the problem (1.1), (1.2), we put
Φ(t) = ϕ(t− nT ) for all t ∈ [α+ nT, β + nT ] ∩ T ∩ [s0,∞), n ∈ Z.
Due to definition, function Φ(t) is defined on the whole set T and is T—periodic

in variable t. Let us show that Φ(t) satisfies the equation (1.1). Indeed, we have
g(t+ nT,Φ(t+ nT )) = g(t, ϕ(t)) = 0 for all t ∈ [α, β] ∩ [s0,∞).
As ϕ(α) = ϕ(β) then Φ(α) = Φ(α+ sT ) for any s ∈ N .

Let us verify whether or not function Φ(t) satisfies the condition of impulsive
effects (1.2). From assumption 3) of theorem 6.1 it follows that for any moment of
impulsive effects sk ∈ I there is a point s∗ ∈ [α, β] such that s∗ = sk + nkmT where
nk is some integer and additionally Ik = Ik+nkm.

Then in accordance with construction of function Φ(t) we get:

Ik = Φ(sk + 0)− Φ(sk − 0) = Φ(s∗ − nkmT + 0)− Φ(s∗ − nkmT − 0) =
= ϕ(s∗ + 0)− ϕ(s∗ − 0) = Ik+nkm.

Thus theorem 6.1 is proved.
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