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Abstract. In this note lower bounds for the projective dimension of edge ideals are determined
and the integrality of the symmetric algebra of these ideals is studied for some classes of simple
graphs.
Criterions about torsion freeness of the symmetric powers are also analyzed and conditions about
the acyclicity of the Z-complex of edge ideals of graphs are obtained.
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1. INTRODUCTION AND PRELIMINARIES

Algebraically speaking, the edge ideals I.G / of finite simple graphs G are gener-
ated by square-free monomials of degree 2 in the polynomial ringRD kŒX1; : : : ;Xn�;
where k is a field and n the number of vertices of G .

The present paper deals with important problems about the projective dimension
and the symmetric algebra of I.G /, and the acyclicity of the Z-complex of I.G / is
also discussed. It is structured as follows.

Section 2 analyzes the projective dimension of the edge ideals of simple graphs
with respect to the number of their edges and consequences of it.

In section 3 the symmetric algebra of the edge ideals of simple graphs SR.I.G //
is studied, bearing also in mind essential results in [2,11], and it is shown when such
an algebra is an integral domain.

In section 4 criterions about torsion freeness of the symmetric powers of SR.I.G //
are considered and acyclicity conditions for the complex Z.I.G // are examined.

Let G be a graph,V.G /;E.G / the sets of its vertices and edges, resp. G is said to
be simple if, for all fvi ;vj g 2E.G /; i ¤ j , it is vi ¤ vj .
A cycle of length n, Cn � G , is an alternating sequence of nC1 distinct vertices and
n edges beginning and ending at the same vertex, in which each edge is incident to
the two vertices immediately preceding and following it.
A tree is a connected graph without cycles.
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The degree of a vertex v` 2 V.G /, denoted by deg.v`/, is the number of edges in-
cident with v` , i.e. deg.v`/ D maxfr j9v1; : : : ;vr 2 V.G / with fvi ;v`g 2 E.G /;
i D 1; : : : ; rg. When deg.v`/D 0, the vertex v` is said isolated .
A subsetA of V.G / is said a minimal vertex cover for G if every edge of G is incident
with one vertex in A and there is no proper subset of A having such property. If A
satisfies only the incident condition, A is called a vertex cover for G .
The smallest number of vertices in any minimal vertex cover for G is called vertex
covering number of G and denoted by ˛0.G /.
If V.G /D fv1; : : : ;vn g and R D kŒX1; : : : ;Xn� is the polynomial ring over a field k
such that each variable Xi corresponds to the vertex vi , the edge ideal I.G / associ-
ated to G is the ideal .fXiXj j fvi ;vj g 2E.G /g/�R .
Note that the non-zero edge ideals are those generated by square-free monomials of
degree 2. This implies that I.G / is a graded ideal of R of initial degree 2, that is
I.G /D˚i>2 .I.G /i / .
If E.G /D¿ , i.e. G has isolated vertices only, then I.G /D .0/ .
So I.G / has a graded free resolution of length at most n . The length of the (unique)
minimal resolution of I.G / is equal to pdimR.I.G //, the projective dimension of
I.G / .
An ideal } � R generated by AD fXi1 ; :::;Xir g is a minimal prime ideal of I.G / if
and only if A is a minimal vertex cover for G .
It is well-known that ht.I.G //D ˛0.G / ([14], Corollary 6.1.18).
G is said a Cohen-Macaulay graph over k (C-M for short) if depth.R=I.G // D
dim.R=I.G //, where dim is the Krull dimension.
If G is a C-M graph, the Auslander and Buchsbaum theorem ([4], Corollary 3.3) gives
pdimR.I.G //D ˛0.G /�1.
The first initial Betti number in a minimal graded resolution of I.G / has the following
geometric interpretation (see [3]).

Proposition 1. If G is a graph with edge ideal I.G / and

0 �!

cgM
iD1

Rbgi .�dgi
/ �! : : : �!Rc.�4/˚Rb.�3/ �!

�!RjE.G /j.�2/ �! I.G / �! 0

is the minimal graded resolution of I.G /, then b D jE.L.G //j �Nt , being Nt the
number of triangles in G , and L.G / the edge graph of G :

Remark 1. The number c in a minimal graded resolution of I.G / is equal to the
number of unordered pairs of lines fi ;fj such that fi and fj are independent and
cannot be joined by an edge.

Let I be an ideal of R D kŒX1; : : : ;Xn�. The symmetric algebra of I over R is

SR.I /D
M
t>0

St .I / :
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Let Rm
'
�! Rq

 
�! I �! 0 be a presentation of I , where ' D .aij / is an q�m

matrix with entries in R . Then

SR.I / ' RŒT1; : : : ;Tq�=J ;

being J D.f1; : : : ;fm/ the ideal of relations of SR.I /; fj D
X
i;j

aij Ti :

For each p D 0; : : : ;n let’s consider the morphism

@p W

p^
Rn �!

p�1^
Rn˝I

defined by

@p .ei1 ^ : : :^ eip /D

pX
jD1

.�1/j�1 ei1 ^ : : :^beij ^ : : :^ eip ˝ .eij /
where e1; : : : ; en is a basis of Rn andbe means omission.
Let’s denote Zp.I /D ker@p.
Then one can build the complex:

Z.I / W 0 �! Zn.I /˝SŒ�n�
@
0
n
�! Zn�1.I /˝SŒ�nC1� �! : : :

: : : �! Z1.I /˝SŒ�1�
@
0
1
�! Z0.I /˝S �! SR.I / �! 0

where @
0

p is the map induced by @p ; and SŒ�p � t D St�p : More information about
the complexes Z.I / can be found in [6].

2. BOUNDS FOR PROJECTIVE DIMENSION

In this section we find lower bounds for the projective dimension of the edge ideals
of finite simple graphs with respect to the number of their edges.

Theorem 1. Let I.G / be the edge ideal of a simple graph G with jE.G /j>4 . Then
pdimR.I.G // > 1.

Proof. It results pdimR.I.G //> ˛0.G /�1.
So when ˛0.G /> 3, then pdimR.I.G // > 1 and we conclude.
We have to show only the cases ˛0.G /D 1;2.
˛0.G /D 1.

There is a unique graph G0Dfv;v1;v2;v3;v4g with jE.G0/jD4:
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Every other graph G 00 with jE.G 00/j>4 must contain G0 and it is obtained by adding
to G0 ` distinct edges of initial vertex v.
The graded minimal resolution of I.G0/ is

0!R.�5/!R4.�4/!R6.�3/
'
�!R4.�2/! I.G0/! 0 I

it results pdimR.I.G0//D 3 > 1. The graded minimal resolution of I.G 00/ will be

0!R.�5�`/!R.
4C`

4C`�1/.�4�`/! : : :

: : :!R.
4C`

2 /.�3/!R4C`.�2/! I.G 00/! 0 :

Then pdimR.I.G
0
0// > pdimR.I.G0// > 1:

˛0.G /D 2.
We have to consider only the following simple graphs, each having 4 edges:

Resolution of I.G1/ W
0!R.�4/!R4.�3/

'
�!R4.�2/! I.G1/! 0:

Resolution of I.G2/ W
0!R.�4/!R4.�3/

'
�!R4.�2/! I.G2/! 0:
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Resolution of I.G3/ W
0!R.�4/!R4.�3/

'
�!R4.�2/! I.G3/! 0:

Resolution of I.G4/ W
0!R.�5/!R3.�3/˚R.�4/

'
�!R4.�2/! I.G4/! 0:

Resolution of I.G5/ W
0!R.�6/!R4.�5/!R2.�3/˚R4.�4/

'
�!R4.�2/!I.G5/!0:

It results pdimR.I.Gi //D 2; for i D 1;2;3;4 I pdimR.I.G5//D 3.

If we add to any of the above graphs Gi ; i D 1;2;3;4 , a finite number of distinct
edges such that in the new graphs G 0i ; i D 1;2;3;4 , ˛0.G 0i /D ˛0.Gi /, we have, by
Proposition 1, that b0C c0 > bC c, where b0 and c0 are the graded Betti numbers of
the first syzygy module in the resolution of I.G 0i /.
Because pdimR.I.Gi //D 2, then pdimR.I.G

0
i // > 1:

Similar arguments hold for G5, except in the following situation:
let’s G 05 be the graph obtained from G5 by adding to it the edge fv1;v4g . Unlike
the other cases, the edge ideal of G 05 has projective dimension strictly less than
pdimR.I.G5//.
In fact, the resolution of I.G 05/ is :

0!R2.�4/!R6.�3/!R5.�2/! I.G 05/! 0:

However pdimR.I.G
0
5//D 2 > 1 . �

It is possible to improve the above lower bound.

Proposition 2. Let G be as in Theorem 1. Let ˛.G / be the size of the largest
minimal vertex cover for G . Then pdimR.I.G //> ˛.G /�1 .
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Proof. Note that pdimR.I.G //D reg.R=I.G /^/, the regularity ofR=I.G /^, where
I.G /^ is the Alexander dual of I.G /.
Because the Alexander dual is generated by the minimal vertex covers for G , the
degree of its largest generator is ˛.G /.
So reg.R=I.G /^/> ˛.G /�1: �

For example, let’s consider the graph G0 that appears in the proof of Theorem 1.
We see that any graph G that contains G0 as an induced subgraph will have at least
one minimal vertex cover of at least size 4. In fact, the minimal vertex cover that does
not contain v must contain v1;v2;v3;v4. So pdimR.I.G //> 3 .

Corollary 1. The only simple graphs with projective dimension of their edge ideal
less than or equal to 1 are the following:
P WD

˚
v1;v2

	
, an edge.

Q WD
n
fv1;v2;v3g;

˚
fv1;v2g;fv2;v3g

	o
, two consecutive edges.

R WD
n
fv1;v2;v3;v4g;

˚
fv1;v2g;fv3;v4g

	o
, two non consecutive edges.

S WD
n
fv1;v2;v3g;

˚
fv1;v2g;fv2;v3g;fv1;v3g

	o
, a triangle.

T WD
n
fv1;v2;v3;v4g;

˚
fv1;v2g;fv2;v3g;fv3;v4g

	o
, three consecutive edges.

3. INTEGRALITY FOR SYMMETRIC ALGEBRA

In this section we examine meaningful classes of simple graphs and study the
integrality of the symmetric algebra of their edge ideal.

Proposition 3. Let I.G / be the edge ideal of a simple graph G with jE.G /j<4 .
Then the symmetric algebra SR.I.G // is an integral domain.

Proof. Let’s consider every simple graph with at most 3 edges and construct ex-
plicitly the symmetric algebra of its edge ideal.
- Graph with 2 nodes and 1 edge

It is SR.I.P //DRŒY �=J ; J D .0/ I obviously, SR.I.P // is integral.
- Graph with 3 nodes and 2 edges
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SR.I.Q//DRŒY1;Y2�=J ; J D .X1Y1�X3Y2/ :

J � kŒX1;X2;X3;Y1;Y2� is prime, so SR.I.Q// is integral.
- Graph with 4 nodes and 2 edges

SR.I.R//DRŒY1;Y2�=J ; J D .X1X2Y1�X3X4Y2/ :

J � kŒX1;X2;X3;X4;Y1;Y2� is prime, so SR.I.R// is integral.
- Graph with 3 nodes and 3 edges

SR.I.S//DRŒY1;Y2;Y3�=J ; J D .X2Y1�X1Y2; X1Y2�X3Y3/ :

J � kŒX1;X2;X3;Y1;Y2;Y3� is prime, so SR.I.S// is integral.
- Graph (tree) with 4 nodes and 3 edges

SR.I.T //DRŒY1;Y2;Y3�=J ; J D .X2Y1�X4Y2; X1Y2�X3Y3/ :

J � kŒX1; : : : ;X4;Y1;Y2;Y3� is prime, so SR.I.T // is integral.
- Graph with 4 nodes and 3 edges
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SR.I.U//DRŒY1;Y2;Y3�=J ; where
J D .X3Y1�X4Y2; X2Y1�X4Y3; X2Y2�X3Y3/ :

J � kŒX1; : : : ;X4;Y1;Y2;Y3� is prime, so SR.I.U// is integral.
- Graph with 5 nodes and 3 edges

SR.I.V//DRŒY1;Y2;Y3�=J ; where
J D .X2Y2�X3Y3; X1X3Y1�X4X5Y2; X1X2Y1�X4X5Y3/ :

J � kŒX1; : : : ;X5;Y1;Y2;Y3� is prime, so SR.I.V// is integral.
- Graph with 6 nodes and 3 edges

SR.I.W//DRŒY1;Y2;Y3�=J ; where
J D .X3X4Y1�X5X6Y2; X1X2Y1�X5X6Y3; X1X2Y2�X3X4Y3/ :

J � kŒX1; : : : ;X6;Y1;Y2;Y3� is prime, so SR.I.W// is integral. �

Corollary 2. Let G be a simple graph such that pdimR.I.G //6 1 . Then SR.I.G //
is an integral domain.

Proof. By Corollary 1, the result immediately descends. �
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Let G be a Cohen-Macaulay graph with q edges. By [14], Exercise 6.2.19, if g is
the height of I.G /, it results q 6 .g2Cg/=2. Hence the possible C-M graphs with
˛0.G /D 3 have at most 6 edges.

Proposition 4. Let G be a Cohen-Macaulay graph with no cycles of even length
and pdimR.I.G //D 2 . Then the symmetric algebra SR.I.G // is an integral domain.

Proof. Remember that for C-M graphs it results pdimR.I /D ˛0�1 .
By Proposition 3, the symmetric algebra of edge ideals of generic simple graphs
having at most 3 edges is an integral domain.
So it remains to examine the symmetric algebra of edge ideals of C-M graphs G with
pdimR.I.G //D 2 and 46 jE.G /j6 6.
Computations are made using softwares CoCoA [13] and Macaulay [5].
? C-M graphs with pdimR.I /D 2 having 4 edges are the following:
H1

The minimal free resolution of its edge ideal is

0!R2.�5/!R2.�3/˚R3.�4/
'
�!R4.�2/! I.H1/! 0 :

SR.I.H1//DRŒY1; : : : ;Y4�=J ; where
J D .X1Y3�X3Y4; X2Y2�X3Y4; X2X3Y1�X4X5Y3;

X1X3Y1�X4X5Y2; X1X2Y1�X4X5Y4/ :

J � kŒX1; : : : ;X5;Y1; : : : ;Y4� is prime, so SR.I.H1// is integral.
H2

The ideal of relations of SR.I.H2// is
J D .X2Y2�X4Y3; X1Y3�X3Y4; X3X4Y1�X5X6Y2;
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X2X3Y1�X5X6Y3; X1X2Y1�X5X6Y4/ :

J � kŒX1; : : : ;X6;Y1; : : : ;Y4� is prime, so SR.I.H2// is integral.
? C-M graphs with pdimR.I /D 2 having 5 edges are the following:
H3

The minimal free resolution of its edge ideal is

0!R.�5/!R5.�3/
'
�!R5.�2/! I.H3/! 0 :

The ideal of relations of SR.I.H3// is
J D .X3Y2�X5Y3; X4Y1�X1Y2; X2Y1�X5Y5;

X2Y3�X4Y4; X1Y4�X3Y5/ :

J � kŒX1; : : : ;X5;Y1; : : : ;Y5� is prime, so SR.I.H3// is integral.
H4

The minimal free resolution of its edge ideal is

0!R.�4/˚R.�5/!R5.�3/˚R.�4/
'
�!R5.�2/!I.H4/!0 :

J D .X3Y1�X5Y2; X2Y2�X4Y4; X1Y2�X4Y3; X2Y3�X1Y4;

X1Y4�X3Y5; X1X2Y1�X4X5Y5/ is a prime ideal.
So the symmetric algebra SR.I.H4// is integral.
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H5

J D .X6Y1�X5Y3; X2Y3�X6Y4; X4Y1�X3Y2; X2Y1�X5Y4;

X1Y4�X3Y5; X1X2Y2�X4X5Y5/ is a prime ideal.
So the symmetric algebra SR.I.H5// is integral.
? C-M graphs with pdimR.I /D 2 having 6 edges are the following:
H6

The minimal free resolution of its edge ideal is

0!R3.�4/!R8.�3/
'
�!R6.�2/! I.H6/! 0 :

The ideal of relations of SR.I.H6// is
J D .X6Y1�X5Y4; X2Y4�X6Y5; X4Y1�X3Y3; X4Y2�X2Y3;

X2Y1�X3Y2; X3Y2�X5Y5; X1Y2�X5Y6; X1Y5�X3Y6/ :

J � kŒX1; : : : ;X6;Y1; : : : ;Y6� is prime, so SR.I.H6// is integral.
H7

The ideal of relations of SR.I.H7// is
J D .X3Y1�X2Y4; X2Y4�X4Y5; X4Y2�X3Y3; X3Y3�X1Y4;
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X1Y1�X2Y3; X2Y3�X4Y6; X2Y2�X1Y5; X1Y5�X3Y6/ :

J is not a prime ideal, so SR.I.H7// is not integral.
H8

J D .X3Y1�X5Y4; X1Y1�X5Y3; X2Y4�X4Y5; X4Y2�X3Y3;

X3Y3�X1Y4; X2Y3�X4Y6; X2Y2�X1Y5; X1Y5�X3Y6/ :

J is not a prime ideal, so SR.I.H8// is not integral.
H9

J D .X3Y1�X4Y2; X4Y2�X5Y4; X1Y1�X5Y3; X2Y2�X5Y5;

X2Y4�X4Y5; X3Y3�X1Y4; X2Y3�X4Y6; X1Y5�X3Y6/ :

J is not a prime ideal, so SR.I.H9// is not integral.
H10

J D .X3Y1�X6Y4; X1Y1�X6Y3; X4Y2�X5Y4; X2Y2�X5Y5;

X2Y4�X4Y5; X3Y3�X1Y4; X2Y3�X4Y6; X1Y5�X3Y6/ :

J is not a prime ideal, so SR.I.H10// is not integral. �

Proposition 4 can be easily extended as follows.
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Theorem 2. Let G be a simple graph such that jE.G / j6 6, with no cycles of even
length, and ˛0.G /D3 . Then the symmetric algebra S.I.G // is an integral domain.

In the light of previous results, we are able to show that the symmetric algebra is
integral for the following classes of simple graphs.

1) Connected graphs of the type

2) Connected graphs (star graphs) of the type

3) Non-connected graphs of the type

Theorem 3. Let G be a simple graph as in items 1) – 3) . Then the symmetric
algebra S.I.G // is an integral domain .

Proof. The statement is shown for star graphs (item 2) ) with nC1 vertices and n
edges.
Let R D kŒX1; : : : ;XnC1� be the polynomial ring whose variables are associated to
the vertices of G . The edge ideal of G is I.G /D

�
X1XnC1; : : : ;XnXnC1

�
.
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The minimal free resolution of I.G / is

0!R.�n�1/!R.
n

n�1/.�n/!R.
n

n�2/.�nC1/! : : :

: : :!R.
n
3/.�4/!R.

n
2/.�3/!Rn.�2/! I.G /! 0 :

The ideal of relations of SR.I.G // is J D .g1;g2; : : : ;g.n
2/
/, where

g1DXn�1Y1�XnY2
g2DXn�2Y1�XnY3 gnDXn�2Y2�Xn�1Y3
g3DXn�3Y1�XnY4 gnC1DXn�3Y2�Xn�1Y4 g2n�2DXn�3Y3�Xn�2Y4
g4DXn�4Y1�XnY5 gnC2DXn�4Y2�Xn�1Y5 g2n�1DXn�4Y3�Xn�2Y5
� � � � � � � � � � � � � � � � � �

gn�1DX1Y1�XnYn g2n�3 DX1Y2�Xn�1Yn g3n�6 DX1Y3�Xn�2Yn

: : : : : : : : : g.n
2/�2
DX2Yn�2�X3Yn�1

g.n
2/�1
DX1Yn�2�X3Yn g.n

2/
DX1Yn�1�X2Yn :

For all n 2N, J is a prime ideal, so SR.I.G // is integral. �

4. INTEGRALITY AND ACYCLICITY

In this section we study conditions about the acyclicity of the Z-complex of edge
ideals and join them with integrality.

Remark 2. In 1964 Micali (cfr. [7]) showed, whenR is an integral domain andE a
finitely generatedR-module, that the symmetric algebra SR.E/ is an integral domain
if and only if St .E/ is torsion free, 8 t .
So, for all simple graphs examined in last section, the symmetric powers St .I.G //
are torsion free, 8 t .
In particular, for simple graphs such that pdimR.I.G // D 1 (Corollaries 1 and 2),
St .I.G // torsion free is equivalent to the inequality gradeIk.'/> jE.G /j�1�kC1;
for all k D 1; : : : ; rank.'/ (see [1]).

The following joins integrality and acyclicity.

Proposition 5. Let G be one of the graphs as in Corollary 1 . The complex
Z.St .I.G /// is acyclic if and only if the symmetric algebra SR.St .I.G /// is an
integral domain.

Proof. By Corollary 2 , SR.I.G // is an integral domain.
By Micali’s theorem (cfr. Remark 2), St .I.G // is torsion-free,8 t . Because St .I.G //
is an R-module, SR.St .I.G /// integral domain is equivalent to be Z.St .I.G ///

acyclic, according to a remark of [10] . �

Remark 3. By [12], Remark 3.8 c), if G is a graph such that St .I.G // is torsion
free, then the complex Z.I.G // is exact if and only if Z.I.G //} is exact for any
}2Spec.R/ with depthR}< jE.G /j:



PROJECTIVE DIMENSION AND SYMMETRIC ALGEBRA 363

Proposition 6. Let G be a graph with jE.G /j > 4: Then SR.I.G // is not a com-
plete intersection.

Proof. By [12], Theorem 2.9 , SR.I.G // is a complete intersection if and only if
pdimR.I.G //6 1 .
But when jE.G /j> 4 , Proposition 1 says that pdimR.I.G // > 1 .
So SR.I.G // is not a complete intersection. �

Proposition 7. The edge ideals of graphs G with pdimR.I.G //D 2 and rankN D
rankZ1.I.G //D 3 have the Z-complex acyclic.

Proof. rankN D 3 H) .
3V
N/�� 'R and the Z-complex is

Z.I.G // W 0!R˝SŒ�3�! .
2
^N/��˝SŒ�2�!

!N ˝SŒ�1�!Rq˝S ! SR.I.G //! 0

Because I.G / is torsion-free, .
2V
N/��'Z2.I.G // (in fact, 2< rankN ) andZ2.I.G //

is a reflexive module.

It follows that .
2V
N/�� is a reflexive module. Such a module is a second syzygy

module, so depth.
2V
N/�� > 2 (see [4, 8]).

¿From Peskine and Szpiro’s acyclicity lemma (see [9], Lemma 1.8), the complex
Z.I.G // is exact. �

Corollary 3. The only C-M graphs with pdimR.I /D 2 and such that rankZ1.I /
D 3 are the following:

1) H1 WD

n
fv1;v2;v3;v4;v5g;

˚
fv1;v2g;fv2;v3g;fv1;v3g;fv4;v5g

	o
;

a triangleC an isolated edge.
2) H2 WD

n
fv1;v2;v3;v4;v5;v6g;

˚
fv1;v2g;fv2;v3g;fv3;v4g;fv5;v6g

	o
;

three consecutive edgesC an isolated edge.

Proof. Looking at the minimal free resolutions of the edge ideals of H1 and H2 as
in Proposition 4, it results that rankZ1.I.H1// and rankZ1.I.H2// are both equal
to 3D rank ' . �

Note that, by Proposition 7, the complexes Z.I.H1// and Z.I.H2// are acyclic.
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