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Abstract. The purpose of this article is to establish, via Hopf bifurcation, the occurrence of
attracting periodical orbits, in two models for microparasitical and macroparasitical diseases,
due to Diekmann and Krezschmar, and described by systems of two ordinary differential
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1. Introduction

In this work we will establish the occurrence of attracting periodical orbits, via
Hopf bifurcation, in two epidemiological models introduced in [1]; one of them for mi-
croparasitical diseases of susceptible-infected S-I and the other for macroparasitical
diseases of the host-parasite N-P type.

The first model is described by the system




dS

dt
= β

S2 + 2ξIS + ξ2IS

I + S
− µS − KI

c + S + I
S

dI

dt
=

KI

c + S + I
S − µI − αI.

(1.1)

and the macroparasitical model is represented by




dN

dt
= −µN − αP + βN

( kN

kN + P (1− ξ)

)k

dP

dt
= −(µ + σ)P +

KPN

c + N
− αN

( P

N
+

(
P

N

)2 (
k + 1

k

))
.

(1.2)
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where in the model (1.1) (model (1.2)), the parameters α, β, ξ, µ, σ, c, k, K stand for :
β: per capita natural birth rate (of hosts)
µ: per capita natural death rate (of hosts), µ < β
α: additional mortality rate due to disease (by one parasite)
ξ: parameter describing the reduction of fertility of an infected individual (host) due
to the disease ( to one parasite), 0 ≤ ξ ≤ 1
K: contact rate between infectives and susceptibles (between hosts and infective
stages of the parasites, such as eggs, cysts, spores, chrysalis, parasites)
σ: death rate of parasites
k: “clumping” parameter (a small k indicates high clumping, i.e., few hosts carry a
large part of the parasites , while a large part of the hosts have very few parasites;
for k →∞, the parasites are randomly distributed over the host population).

The change of variables x =
1

I + S
and y =

I

I + S
, transforms (1.1) into





dx

dt
= x

(
µ + αy − β(1− (1− ξ)y)2

)

dy

dt
= y

( ( K

cx + 1
− α

)
(1− y)− β(1− (1− ξ)y)2

) (1.3)

and x =
1
N

, y =
P

N
, transforms (1.2) into





dx

dt
= x

(
µ + αy − β

( k

(1− ξ)y + k

)k)

dy

dt
= y

(
K

cx + 1
− (σ + α)− α

k
y − β

k

(1− ξ)y + k

k
) (1.4)

Each one of these models will be treated with unified notation:{
ẋ = xF (ξ, y)
ẏ = yG(K, ξ, x, y)

in the corresponding region M = {(x, y) ∈ IR2 : x ≥ 0, 0 ≤ y < b} , where b = 1 or
∞ according to the model being (1.3) or (1.4).

The following proposition of [1] synthesizes common properties of both systems
and plays an important role in the determination and classification of critical points
in both cases. It also ensures the existence of at most one critical point (x, y) in the
interior of M .

Proposition 1: Consider each one of systems (1.3) and (1.4) in its respective domain
M with 0 ≤ ξ ≤ 1 and 0 < µ < β. Suppose further that for system (1.4), β < α + µ.
Then,

a)
∂F

∂y
> 0 and there is a unique y = y(ξ) in [0, b[ rendering F (ξ, y(ξ)) = 0 ;

b)
∂G

∂x
< 0 and there is a unique x = g(K, ξ, y) rendering

G(K,ξ,g(K,ξ,y),y)=0;
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c)
∂G

∂K
> 0 and G(0, ξ, x, y) < 0 for all (x, y) ∈ M .

In Section 2 we will give the preliminary results needed for the study of each one
of the systems (1.3) and (1.4) and also introduce the fundamental parameters ξ = ξp

and K = Kt(ξp).

Further, we present some phase portrait simulations , obtained by means of the
software MAPLE V, whereby the occurrence of Hopf bifurcation becomes apparent.

In Section 3, guided by a result of [4], we prove the theorem below, which is also
stated in [1].

Theorem: Consider the parameter restrictions 0 < µ < β, 0 < ξ < 1 on systems
(1.3), (1.4) and the additional restriction on (1.4): β < α + µ, 0 < α < kβ. Under
the assumption that a value K, K > Kt(ξp), has been fixed it follows that system (1.3)
admits a supercritical Hopf bifurcation at the critical point inside M , with respect to
the parameter ξ at the value ξp. Otherwise, there exists a value µ0, 0 < µ0 < β, such
that occurs the same for system (1.4) if µ > µ0.

As a consequence we have a Hopf bifurcation for each one of the systems (1.1)
and (1.2). Thus, for each value of the parameter ξ in a certain region , there is one
periodic (hyperbolic) attracting orbit and, by results of Kooij and Zegeling ( see [2],
[3]), there are no other periodic orbits.

2. The parameters ξp and Kt(ξp)

Now we consider models (1.3) and (1.4) in their corresponding domains M , with
the restrictions on the parameters as in the assumptions of the foregoing theorem.

In this article our attention will be focused solely upon critical points, which are
solutions of the system: {

F (ξ, y) = 0 ,
G(K, ξ, x, y) = 0 .

Given ξ, 0 < ξ < 1, consider

y(ξ) =
2(1− ξ)β + α−

√
(2(1− ξ)β + α)2 + 4(1− ξ)2β(µ− β)

2(1− ξ)2β

the unique value for y in ]0, 1[ as to render F (ξ, y(ξ)) = 0.

The points (x, y) ∈ M such that G(K, ξ, x, y) = 0 are given by

x = g(K, ξ, y) = −1
c

(
1− K(1− y)

β(1− (1− ξ)y)2 + α(1− y)

)
.

The critical points are obtained by intercepting the straight line y = y(ξ) and the
graph of x = g(K, ξ, y).

Let ξp denote the (unique) value of the parameter ξ for which y(ξ) = ym(ξ), where

ym(ξ) = 2− 1
1− ξ

is the point of maximum of x = g(K, ξ, y) (see Figure 1): For each

fixed ξ, the following values of the parameter K are relevant: Kt(ξ) = α + 4βξ(1− ξ)
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for which the graph of x = g(K, ξ, y) is tangent to the y-axis and K2(ξ) which renders
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Figures 1 and 2.

g(K, ξ, y(ξ)) = 0. Since K2(ξ) is determined by
{

β(1− (1− ξ)y(ξ))2 + (α−K)(1− y(ξ)) = 0
β(1− (1− ξ)y(ξ))2 − αy(ξ)− µ = 0

and y′(ξ) > 0, it follows that K2(ξ) is derivable and increasing. Further, K2(ξ) >
Kt(ξ) for ξ 6= ξp, provided that the function x = g(K, ξ, y) is increasing with respect
to K, as long as y < 1 (see Figure 2).

Thus we may state that for any K, K > Kt(ξp) = K2(ξp), there is a neighborhood
of ξp where K > K2(ξ) ≥ Kt(ξ); therefore, for such values of ξ there is one and only
one critical point (x, y) = (x(ξ), y(ξ)) in the interior of M . Here we denote x(ξ) =
g(K, ξ, y(ξ)) (see Figure 6, where, for fixed ξ, near ξp the graphs of x = g(K, ξ, y) and
y = y(ξ) are displayed).

Next we present some simulations of system (1.3), generated by the software
MAPLE V. This suggests the existence of Hopf bifurcations.

Let us now regard system (4)

Given ξ between 0 and 1, let y(ξ) be the unique value of y in ]0,∞[ satisfying

F (ξ, y(ξ)) = 0, that is, αy + µ = β
( k

(1− ξ)y + k

)k

(see Figure 7). Deriving this

equation implicitly, we obtain y′(ξ) > 0.

The points (x, y) ∈ M satisfying G(K, ξ, x, y) = 0 are:

x = g(K, ξ, y) = −1
c

(
1− K

φ(ξ, y)

)

where φ(ξ, y) = σ + α +
αy

k
+ β

( k

(1− ξ)y + k

)k

.

Let ym(ξ) =
k

1− ξ

[(kβ(1− ξ)
α

) 1
k+1 − 1

]
be the point of minimum of φ(ξ, y), that

is, the point of maximum of g(K, ξ, y). We have ym(0) > 0 , since α < kβ , and ym(ξ)
being independent on µ.
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Figure 3. Phase portrait of system (3) with µ = 1.2, α = 1.0, β = 1.8, ξ = 0.58,
c = 0.0001, κ = 4.0, κt = 2.75, κ1 = 2.8, κ2 = 3.03

There exists µ0, 0 < µ0 < β, with µ0 < µ < β ⇒ 0 < y(0) < ym(0). In fact, if

αym(0) ≥ β
( k

ym(0) + k

)k

, µ0 = 0; otherwise, µ0 = β
( k

ym(0) + k

)k

− αym(0) (see

Figure 8).

In this case there is a unique ξ = ξp ∈
]
0, 1− α

kβ

[
with y(ξp) = ym(ξp) (see Figure

9).

For each fixed ξ let Kt(ξ) be the value of K for which the graph of x = g(K, ξ, y)
is tangent to the axis y and K2(ξ) the value giving g(K, ξ, y(ξ)) = 0. We have,

Kt(ξ) = φ(ξ, ym(ξ)) ⇒ K′
t(ξ) = φξ + φyy′ = φξ = βym(ξ)

� k

(1− ξ)ym + k

�k+1

> 0 .

Furthermore, K2(ξ) is derivable and increasing, since it is determined by the system





FK − σ − α− αy

k
− β

( k

(1− ξ)y + k

)k

= 0

αy + µ− β
( k

(1− ξ)y + k

)k

= 0

and y′(ξ) > 0 holds.
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Figure 4. Phase portrait of system (3) with µ = 1.2, α = 1.0, β = 1.8, ξ = 0.44,
c = 0.1, κ = 4, κt = 2.77, κ1 = 3.0, κ2 = 2.9

Proceeding in a similar way to what was done in the study of model (3), we get:
K2(ξ) > Kt(ξ) for ξ 6= ξp and for K being fixed, K > Kt(ξp), we see that there is a
neighbourhood of ξp where K > K2(ξ) > Kt(ξ) for ξ 6= ξp (see Figure 10).

In Figure 11 we display the graph of x = g(K, ξ, y) and y = y(ξ), according to the
variation of K. Here the value of ξ is kept fixed and close to ξp.

3. The Hopf Bifurcation. Proof of the Theorem

The Jacobian matrix at the critical point under consideration has for both systems
the expression

J(x, y) =
[

0 xFy(ξ, y)
yGx(K, ξ, x, y) yGy(K, ξ, x, y)

]
, with det J(x, y) 6= 0.

We have also trace J(x, y) = −yGx(K, ξ, x, y)gy(K, ξ, y) since G(K, ξ, g(K, ξ, y), y), y) =
0 ⇒ Gxgy + Gy = 0.

Thus, for a fixed K, K > Kt(ξp), and ξ sufficiently close to ξp:
ξ < ξp ⇒ g(K, ξ, y(ξ)) > 0 ⇒ trJ(x, y) > 0 ⇒ (x, y) is an unstable spiral point,
ξ > ξp ⇒ g(K, ξ, y(ξ)) < 0 ⇒ trJ(x, y) < 0 ⇒ (x, y) is a stable spiral point.
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Figure 5. Phase portrait of system (3) with µ = 1.2, α = 1.0, β = 1.8, ξ = 0.3,
c = 0.1, κ = 3.2, κt = 2.51, κ1 = 3.0, κ2 = 2.83.
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The eigenvalues of J(x, y) are λ(ξ) =
yGy(K, ξ, x, y)±

√
y2G2

y + 4x yFyGx

2
, where

λ(ξp) = ±i
√

x yFy(−Gx) .

To assure that there is a Hopf bifurcation at ξp we will show that
d

dξ
Re λ(ξ)|

ξp
6= 0.

In fact,

2
d

dξ
Reλ(ξ)|

ξp
=

d

dξ
yGy(K, ξ, x, y)|

ξp
= y{Gξy + Gxygξ + Gyyy′}|

ξp

since

gy(K, ξp, y(ξp) = 0 ⇒
{

Gy(K, ξp, x, y) = 0
x′(ξp) = gξ(K, ξp, y(ξp))

.

For system (3):

Gx = −(1− y)
Kc

(cx + 1)2
, Gxx =

2c2K(1− y)
(cx + 1)3

, Gxxy = − 2c2K

(cx + 1)3
,

Gy = −
( K

cx + 1
− α

)
+ 2β(1− ξ)(1− (1− ξ)y), Gξy = 2β((1− ξ)y − 1),

Gyy = −2β(1− ξ)2, Gxy =
Kc

(cx + 1)2
, gξ = − 2βK(1− y)(1− (1− ξ)y)

[(β(1− (1− ξ)y)2 + α(1− y)]2
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For system (4):

Gy =
α

k
+ β(1− ξ)

( k

(1− ξ)y + k

)k+1

,

Gξy = β((1− ξ)y − 1)
( k

(1− ξ)y + k

)k+2

, Gxy = 0,

Gyy = −β(1− ξ)2
k + 1

k

( k

(1− ξ)y + k

)k+2

,

gξ = −K

c

( k

(1− ξ)y + k

)k+1 βy(
σ + α +

α

k
y + β

( k

(1− ξ)y + k

)k)2
.

Therefore, in both cases:

2
d

dξ
Reλ(ξ)|

ξp
= y(Gξy + yGxygξ + Gyyy′)|

ξp
< 0.

Next we engage in showing, in this following closely [ 4 ], that the critical point is a
vague attractor at ξ = ξp. Thus we will conclude the existence of attracting periodical
orbits, for ξ sufficiently close to ξp , ξ < ξp (see Figure 12).

Let us consider the system for a fixed K > Kt(ξp), and ξ = ξp, and let us, for the
sake of simplicity, omit the notation for those parameters.

Initially we apply a translation, carrying the critical point to the origin, thereby
transforming any of the systems in{

˙̃X = X̃F (Ỹ + y) + xF (Ỹ + y)
˙̃Y = Ỹ G(X̃ + x, Ỹ + y) + yG(X̃ + x, Ỹ + y)

(3.1)

whose Jacobian matrix at the origin is

J(0, 0) =
[

0 xF ′y(y)
yGx(x, y) 0

]
.

Applying the coordinate change:

X = X̃, Y =
xF ′(y)Ỹ√

−x yF ′(y)Gx(x, y)

system (3.1) becomes
{

Ẋ = Z1(X,Y ) = XF (aY + y) + xF (aY + y)

Ẏ = Z2(X, Y ) = Y G(X + x, aY + y) +
y

a
G(X + x, aY + y)

(3.2)

where

a =

√
−xyF ′(y)Gx(x, y)

xF ′(y)
.

By showing that V ′′′(0) < 0 where V (X) = P (X) − X, P (X) being the local
Poincaré transformation at (0, 0) we may conclude that (0, 0) is a vague attractor for
(6) whereas (x, y) is a vague attractor for (3) or (4).
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ξ < ξ ξ = ξ ξ  < ξp p p

Figure 12.

To this end we use the following expression, taken from [4]:

V ′′′(0) =
3π

4|λ(ξp)|
(∂3Z1

∂X3
+

∂3Z1

∂X∂Y 2
+

∂3Z2

∂X2∂Y
+

∂3Z2

∂Y 3

)
+

+
3π

4|λ(ξp)|2
(
−∂2Z1

∂X2

∂2Z1

∂X∂Y
+

∂2Z2

∂Y 2

∂2Z2

∂X∂Y
+

∂2Z2

∂X2

∂2Z2

∂X∂Y
−

−∂2Z1

∂Y 2

∂2Z1

∂X∂Y
+

∂2Z1

∂X2

∂2Z2

∂X2
− ∂2Z1

∂Y 2

∂2Z2

∂Y 2

)
.

For both systems:

∂Z1

∂X
(0, 0) = F (y) = 0 ,

∂2Z1

∂X2
(0, 0) =

∂3Z1

∂X3
(0, 0) = 0,

∂Z1

∂Y
(0, 0) = axF (y) ,

∂2Z1

∂Y 2
(0, 0) = xa2F ′′(y),

∂3Z1

∂X∂Y 2
(0, 0) = a2F ′′(y)

∂2Z1

∂X∂Y
(0, 0) = aF ′(y),

∂Z2

∂Y
(0, 0) = 0

∂2Z2

∂Y 2
(0, 0) = ayGyy(x, y),

∂Z2

∂Y
(0, 0) = 0,

∂2Z2

∂Y 2
(0, 0) = ayGyy(x, y),

∂3Z2

∂Y 3
(0, 0) = 3a2Gyy(x, y) ,

∂2Z2

∂X∂Y
(0, 0) = Gx(x, y) + yGxy(x, y),

∂Z2

∂X
(0, 0) =

yGx(x, y)
a

,
∂2Z2

∂X2
(0, 0) =

y

a
Gxx(x, y),

∂3Z2

∂X3
(0, 0) =

yGxxx(x, y)
a

,
∂3Z2

∂X2∂Y
(0, 0) = Gxx(x, y) + yGyxx(x, y).

Thus, taking into account:

a =
|λ(ξp)|
xF ′(y)

,
aF ′(y) + yaGyy(x, y)

|λ(ξp)| =
1
x

+
yGyy(x, y)

xF ′(y)
,

Gyxx(x, y)− Gxx(x, y)Gxy(x, y)
Gx(x, y)

= 0

we obtain

V ′′′(0) =
3π

4|λ(ξp)|
(
−2yGx(x, y)Gyy(x, y)

xF ′(y)
+

y2Gyy(x, y)Gxy(x, y)
xF ′(y)

−ya2F ′′(y)Gyy(x, y)
F ′(y)

)
.
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Finally, we get from this:

Gx(x, y) < 0 Gyy(x, y) < 0 ,
F ′(y) > 0 , Gxy(x, y) ≥ 0 ,

F ′′(y) < 0



 ⇒ V ′′′(0) < 0.
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