
Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 13 (2012), No 2, pp. 303-316 DOI: 10.18514/MMN.2012.472

Superadditivity of the Jensen integral

inequality with applications

S. S. Dragomir



Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 13 (2012), No. 2, pp. 303–316

SUPERADDITIVITY OF THE JENSEN INTEGRAL INEQUALITY
WITH APPLICATIONS

S. S. DRAGOMIR

Received 21 February, 2012

Abstract. The superadditivity and monotonicity of two functionals associated to the celebrated
Jensen’s integral inequality for convex functions with applications for Hölder’s inequality and
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1. INTRODUCTION

Let .˝;A;�/ be a measurable space consisting of a set˝; a � – algebra A of parts
of ˝ and a countably additive and positive measure � on A with values in R[f1g :
For a ��measurable function w W˝! R, with w.x/� 0 for � – a.e. (almost every)
x 2˝; consider the Lebesgue space

Lw .˝;�/ WD ff W˝! R; f is �-measurable and
Z
˝

w.x/ jf .x/jd�.x/ <1g:

For simplicity of notation we write everywhere in the sequel
R
˝wd� instead ofR

˝w.x/d�.x/ :

In order to provide a reverse of the celebrated Jensen’s integral inequality for con-
vex functions, S.S. Dragomir obtained in 2002 [10] the following result:

Theorem 1. Let˚ W Œm;M��R! R be a differentiable convex function on .m;M/

and f W˝! Œm;M� so that ˚ ıf; f; ˚ 0 ıf; .˚ 0 ıf /f 2Lw .˝;�/; where w � 0
�-a.e. (almost everywhere) on ˝ with

R
˝wd�D 1: Then we have the inequality:

0�

Z
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�
1

2

�
˚ 0 .M/�˚ 0 .m/

�Z
˝

w

ˇ̌̌̌
f �

Z
˝

wfd�

ˇ̌̌̌
d�:

For a generalization of the first inequality in (1.1) without the differentiability
assumption and the derivative ˚ 0 replaced with a selection ' from the subdifferential
@˚ , see the paper [24] by C.P. Niculescu.

Remark 1. We notice that in the discrete case, the inequality between the first and
the second term in (1.1) was proved in 1994 by Dragomir & Ionescu, see [12].

Utilising a different approach than in [10], we obtained in [11] the following two
results that provide other upper bounds for the Jensen’s difference:Z

˝

w.˚ ıf /d��˚

�Z
˝

wfd�

�
:

Theorem 2. Let ˚ W I ! R be a continuous convex function on the interval of
real numbers I and m;M 2 R, m < M with Œm;M� � VI , VI is the interior of I: If
f W˝! R is �-measurable, satisfies the bounds

�1<m� f .x/�M <1 for �-a.e. x 2˝

and is such that f;˚ ıf 2 Lw .˝;�/; then

0�

Z
˝

w.˚ ıf /d��˚
�
Nf˝;w

�
(1.2)

�

�
M � Nf˝;w

��
Nf˝;w �m

�
M �m

sup
t2.m;M/

	˚ .t Im;M/

�
�
M � Nf˝;w

��
Nf˝;w �m

� ˚ 0� .M/�˚ 0
C
.m/

M �m

�
1

4
.M �m/

�
˚ 0� .M/�˚ 0C .m/

�
;

where Nf˝;w WD
R
˝w.x/f .x/d�.x/ 2 Œm;M� and 	˚ .�Im;M/ W .m;M/! R is

defined by

	˚ .t Im;M/D
˚ .M/�˚ .t/

M � t
�
˚ .t/�˚ .m/

t �m
:

We also have the inequality

0�

Z
˝

w.˚ ıf /d��˚
�
Nf˝;w

�
�
1

4
.M �m/	˚

�
Nf˝;w Im;M

�
(1.3)

�
1

4
.M �m/

�
˚ 0� .M/�˚ 0C .m/

�
;

provided that Nf˝;w 2 .m;M/:
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Theorem 3. With the assumptions of Theorem 2, we have the inequalities

0�

Z
˝

w.˚ ıf /d�.x/�˚
�
Nf˝;w

�
(1.4)

� 2max

(
M � Nf˝;w

M �m
;
Nf˝;w �m

M �m

)�
˚ .m/C˚ .M/

2
�˚

�
mCM

2

��
�
1

2
max

˚
M � Nf˝;w ; Nf˝;w �m

	�
˚ 0� .M/�˚ 0C .m/

�
:

Motivated by these results we establish in the current paper some refinements and
reverses of the Jensen integral inequality by capitalizing on the superadditivity and
monotonicity properties of two associated functionals. Application in connection
with the Hölder inequality and for f -divergence measures in Information Theory are
provided as well.

2. SUPERADDITIVITY AND MONOTONICITY PROPERTIES

For a �-measurable function w W ˝ ! R, with w.x/ � 0 for � -a.e. x 2 ˝ andR
˝wd� > 0 we consider the functional

J .wI˚;f / WD

Z
˝

w.˚ ıf /d��˚

�R
˝wfd�R
˝wd�

�Z
˝

wd�� 0; (2.1)

where ˚ W I ! R is a continuous convex function on the interval of real numbers I;
f W˝! R is �-measurable and such that f;˚ ıf 2 Lw .˝;�/ :

Theorem 4. Let wi W˝! R, with wi .x/ � 0 for � – a.e. (almost every) x 2˝
and

R
˝wid� > 0;i 2 f1;2g : If ˚ W I ! R is a continuous convex function on the

interval of real numbers I; f W ˝ ! R is �-measurable and such that f;˚ ı f 2
Lw1 .˝;�/\Lw2 .˝;�/; then

J .w1Cw2I˚;f /� J .w1I˚;f /CJ .w2I˚;f /� 0 (2.2)

i.e., J is a superadditive functional of weights.
Moreover, if w2 � w1 � 0 � – a.e. on ˝; then

J .w2I˚;f /� J .w1I˚;f /� 0; (2.3)

i.e., J is a monotonic nondecreasing functional of weights.

Proof. Utilising the convexity property of ˚ we have successively

J .w1Cw2I˚;f / (2.4)

D

Z
˝

.w1Cw2/.˚ ıf /d��˚

�R
˝ .w1Cw2/fd�R
˝ .w1Cw2/d�

�Z
˝

.w1Cw2/d�

D

Z
˝

w1 .˚ ıf /d�C

Z
˝

w2 .˚ ıf /d�
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�˚

0@R˝w1d� �
R
˝w1fd�R
˝w1d�

C
R
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R
˝w2fd�R
˝w2d�R

˝ .w1Cw2/d�

1AZ
˝

.w1Cw2/d�

�

Z
˝

w1 .˚ ıf /d�C

Z
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w2 .˚ ıf /d�

�
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˝w1d�R

˝ .w1Cw2/d�
˚

�R
˝w1fd�R
˝w1d�

�
C

R
˝w2d�R

˝ .w1Cw2/d�
˚

�R
˝w2fd�R
˝w2d�

��
�

Z
˝

.w1Cw2/d�

D

Z
˝

w1 .˚ ıf /d��˚

�R
˝w1fd�R
˝w1d�

�Z
˝

w1d�

C

Z
˝

w2 .˚ ıf /d��˚

�R
˝w2fd�R
˝w2d�

�Z
˝

w2d�

D J .w1I˚;f /CJ .w2I˚;f /

which proves the superadditivity property.
Now, if w2 � w1 � 0; then on applying the superadditivity property we have

J .w2I˚;f /D J .w1C .w2�w1/ I˚;f /� J .w1I˚;f /CJ .w2�w1I˚;f /

� J .w1I˚;f /

since by the Jensen’s inequality for the positive weights we have J .w2�w1I˚;f /�
0: �

The above theorem has a simple however interesting consequence that provides
both a refinement and a reverse for the Jensen’s integral inequality:

Corollary 1. Let wi W ˝ ! R, with wi .x/ � 0 for � – a.e. x 2 ˝,
R
˝wid� >

0;i 2 f1;2g and there exists the nonnegative constants ;� such that

0�  �
w2

w1
� � <1 �-a.e. on ˝: (2.5)

If ˚ W I ! R is a continuous convex function on the interval of real numbers I;
f W ˝ ! R is �-measurable and such that f;˚ ı f 2 Lw1 .˝;�/\Lw2 .˝;�/;
then

0�  �

�Z
˝

w1 .˚ ıf /d��˚

�R
˝w1fd�R
˝w1d�

�Z
˝

w1d�

�
(2.6)
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Z
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w2 .˚ ıf /d��˚

�R
˝w2fd�R
˝w2d�

�Z
˝

w2d�
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˝

w1 .˚ ıf /d��˚
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˝w1fd�R
˝w1d�

�Z
˝

w1d�
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or, equivalently,

0�  �

R
˝w1d�R
˝w2d�

�R
˝w1 .˚ ıf /d�R

˝w1d�
�˚

�R
˝w1fd�R
˝w1d�

��
(2.7)

�

R
˝w2 .˚ ıf /d�R

˝w2d�
�˚

�R
˝w2fd�R
˝w2d�

�
� � �

R
˝w1d�R
˝w2d�

�R
˝w1 .˚ ıf /d�R

˝w1d�
�˚

�R
˝w1fd�R
˝w1d�

��
:

Proof. From (2.5) we have w1 �w2 � � w1 <1 �-a.e. on˝ and by the mono-
tonicity property (2.3) we get

J .� w1I˚;f /� J .w2I˚;f /� J .w1I˚;f / : (2.8)

Since the the functional is positive homogeneous, namely J .˛wI˚;f /D˛J .wI˚;f /,
then we get from (2.8) the desired result (2.6). �

Remark 2. Assume that �.˝/ <1 and let w W ˝ ! R, with w.x/ � 0 for � –
a.e. x 2˝,

R
˝wd� > 0 and w is essentially bounded, i.e. ess infx2˝w.x/ and ess

supx2˝w.x/ are finite.
If ˚ W I ! R is a continuous convex function on the interval of real numbers I;

f W˝! R is �-measurable and such that f;˚ ıf 2 Lw .˝;�/\L.˝;�/; then

0�
ess infx2˝w.x/

1
�.˝/

R
˝wd�

�R
˝ .˚ ıf /d�

�.˝/
�˚

�R
˝ fd�

�.˝/

��
(2.9)

�

R
˝w.˚ ıf /d�R

˝wd�
�˚

�R
˝wfd�R
˝wd�

�
�

ess supx2˝w.x/
1

�.˝/

R
˝wd�

�R
˝ .˚ ıf /d�

�.˝/
�˚

�R
˝ fd�

�.˝/

��
:

This result can be used to provide the following result related to the Hermite-
Hadamard inequality for convex functions that states that

1

b�a

Z b

a

˚ .t/dt � ˚

�
aCb

2

�
for any convex function ˚ W Œa;b�! R.

Indeed , if w W Œa;b�! Œ0;1/ is Lebesgue integrable, then we have

0�
ess infx2Œa;b�w.x/

1
b�a

R b
a w.t/dt

"
1

b�a

Z b

a

˚ .t/dt �˚

�
aCb

2

�#
(2.10)

�

R b
a w.t/˚ .t/dtR b
a w.t/dt

�˚

 R
˝w.t/ tdtR b
a w.t/dt

!
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�
ess supx2Œa;b�w.x/

1
b�a

R b
a w.t/dt

"
1

b�a

Z b

a

˚ .t/dt �˚

�
aCb

2

�#
:

Now we consider another functional depending on the weights

K .wI˚;f / WD
J .wI˚;f /R
˝wd�

D

R
˝w.˚ ıf /d�R

˝wd�
�˚

�R
˝wfd�R
˝wd�

�
� 0

and the composite functional

L.wI˚;f / WD

�Z
˝

wd�

�
ln ŒK .wI˚;f /C1�� 0;

where ˚ W I ! R is a continuous convex function on the interval of real numbers I
and f W˝! R is �-measurable and such that f;˚ ıf 2 Lw .˝;�/ :

Theorem 5. With the assumptions of Theorem 4, L is a superadditive and mono-
tonic nondecreasing functional of weights.

Proof. Let wi W˝! R, with wi .x/� 0 for � – a.e. x 2˝ and
R
˝wid� > 0; i 2

f1;2g such that f;˚ ıf 2 Lw1 .˝;�/\Lw2 .˝;�/ :
Utilising the superadditivity property of J we have

L.w1Cw2I˚;f / (2.11)

D

�Z
˝

.w1Cw2/d�

�
ln ŒK .w1Cw2I˚;f /C1�

D

�Z
˝

.w1Cw2/d�

�
ln
�
J .w1Cw2I˚;f /R
˝ .w1Cw2/d�

C1

�
�

�Z
˝

.w1Cw2/d�

�
ln
�
J .w1I˚;f /CJ .w2I˚;f /R

˝ .w1Cw2/d�
C1

�
D

�Z
˝

.w1Cw2/d�

�

� ln

24R˝w1d� � J.w1I˚;f /R
˝w1d�

C
R
˝w2d� �

J.w2I˚;f /R
˝w2d�R

˝ .w1Cw2/d�
C1

35
D

�Z
˝

.w1Cw2/d�

�

� ln

24R˝w1d� �
�
J.w1I˚;f /R
˝w1d�

C1
�
C
R
˝w2d� �

�
J.w2I˚;f /R
˝w2d�

C1
�

R
˝ .w1Cw2/d�

35
WD A:



SUPERADDITIVITY OF THE JENSEN INTEGRAL INEQUALITY 309

By the weighted arithmetic mean - geometric mean inequality we haveR
˝w1d� �

�
J.w1I˚;f /R
˝w1d�

C1
�
C
R
˝w2d� �

�
J.w2I˚;f /R
˝w2d�

C1
�

R
˝ .w1Cw2/d�

�

�
J .w1I˚;f /R
˝w1d�

C1

� R
˝w1d�R

˝.w1Cw2/d�
�
J .w2I˚;f /R
˝w2d�

C1

� R
˝w2d�R

˝.w1Cw2/d�
;

therefore, by taking the logarithm and utilizing the definition of the functionalK; we
get the inequality

A�

�Z
˝

w1d�

�
ln.K .w1I˚;f /C1/C

�Z
˝

w2d�

�
ln.K .w2I˚;f /C1/

(2.12)

D L.w1I˚;f /CL.w2I˚;f / :

Utilising (2.11) and (2.12) we deduce the superadditivity of the functional L as a
function of weights.

Since L.wI˚;f / � 0 for any weight w and it is superadditive, by employing a
similar argument to the one in the proof of Theorem 4 we conclude that it is also
monotonic nondecreasing as a function of weights. �

The following result provides another refinement and reverse of the Jensen in-
equality:

Corollary 2. Let wi W ˝ ! R with wi .x/ � 0 for � – a.e. x 2 ˝,
R
˝wid� >

0;i 2 f1;2g and there exists the nonnegative constants ;� such that

0�  �
w2

w1
� � <1 �-a.e. on ˝:

If ˚ W I ! R is a continuous convex function on the interval of real numbers I;
f W ˝ ! R is �-measurable and such that f;˚ ı f 2 Lw1 .˝;�/\Lw2 .˝;�/;
then

0�

�R
˝w1 .˚ ıf /d�R

˝w1d�
�˚

�R
˝w1fd�R
˝w1d�

�
C1

� � .R˝w1d�/
.
R
˝w2d�/

�1 (2.13)

�

R
˝w2 .˚ ıf /d�R

˝w2d�
�˚

�R
˝w2fd�R
˝w2d�

�

�

�R
˝w1 .˚ ıf /d�R

˝w1d�
�˚

�R
˝w1fd�R
˝w1d�

�
C1

�� � .R˝w1d�/
.
R
˝w2d�/

�1:

Proof. Since L is monotonic nondecreasing and positive homogeneous as a func-
tion of weights, we have

L.w1I˚;f /� L.w2I˚;f /� �L.w1I˚;f /
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which is equivalent with

ŒK .w1I˚;f /C1�
.
R
˝w1d�/ � ŒK .w2I˚;f /C1�

.
R
˝w2d�/

� ŒK .w1I˚;f /C1�
� .

R
˝w1d�/

which provides that

ŒK .w1I˚;f /C1�

.
R
˝w1d�/
.
R
˝w2d�/ �1�K .w2I˚;f /

� ŒK .w1I˚;f /C1�
�
.
R
˝w1d�/
.
R
˝w2d�/ �1:

�

Remark 3. Assume that �.˝/ <1 and let w W ˝ ! R, with w.x/ � 0 for � –
a.e. x 2˝,

R
˝wd� > 0 and w is essentially bounded, i.e. ess infx2˝w.x/ and ess

supx2˝w.x/ are finite.
If ˚ W I ! R is a continuous convex function on the interval of real numbers I;

f W˝! R is �-measurable and such that f;˚ ıf 2 Lw .˝;�/\L.˝;�/; then

0�

�R
˝ .˚ ıf /d�

�.˝/
�˚

�R
˝ fd�

�.˝/

�
C1

� ess infx2˝w.x/
1

�.˝/ .
R
˝wd�/

�1 (2.14)

�

R
˝w.˚ ıf /d�R

˝wd�
�˚

�R
˝wfd�R
˝wd�

�

�

�R
˝ .˚ ıf /d�

�.˝/
�˚

�R
˝ fd�

�.˝/

�
C1

� ess supx2˝w.x/
1

�.˝/ .
R
˝wd�/

�1:

In particular, if w W Œa;b�! Œ0;1/ is Lebesgue integrable, then we have the fol-
lowing result related to the Hermite-Hadamard inequality for the convex function
˚ W Œa;b�! R

0�

"
1

b�a

Z b

a

˚ .t/dt �˚

�
aCb

2

�
C1

# ess infx2Œa;b�w.x/
1
b�a

Rb
a w.t/dt

�1 (2.15)

�

R b
a w.t/˚ .t/dtR b
a w.t/dt

�˚

 R
˝w.t/ tdtR b
a w.t/dt

!

�

"
1

b�a

Z b

a

˚ .t/dt �˚

�
aCb

2

�
C1

# ess supx2Œa;b�w.x/
1
b�a

Rb
a w.t/dt

�1:
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3. APPLICATIONS FOR THE HÖLDER INEQUALITY

It is well known that if f 2Lp .˝;�/; p > 1;where the Lebesgue spaceLp .˝;�/
is defined by

Lp .˝;�/ WD ff W˝! R; f is �-measurable and
Z
˝

jf .x/jp d�.x/ <1g

and g 2Lq .˝;�/ with 1
p
C
1
q
D 1 then fg 2L.˝;�/ WDL1 .˝;�/ and the Hölder

inequality holds trueZ
˝

jfgjd��

�Z
˝

jf jp d�

�1=p�Z
˝

jgjp d�

�1=q
:

Assume that p >1: If h W˝!R is�-measurable,�.˝/<1; jhj ; jhjp 2Lw .˝;�/\
L.˝;�/; then by (2.9) we have the bounds

0�
ess infx2˝w.x/

1
�.˝/

R
˝wd�

�
1

�.˝/

Z
˝

jhjp d��

�
1

�.˝/

Z
˝

jhjd�

�p�
(3.1)

�
1R

˝wd�

Z
˝

w jhjp d��

�
1R

˝wd�

Z
˝

w jhjd�

�p
�

ess supx2˝w.x/
1

�.˝/

R
˝wd�

�
1

�.˝/

Z
˝

jhjp d��

�
1

�.˝/

Z
˝

jhjd�

�p�
:

Proposition 1. If f 2 Lp .˝;�/, g 2 Lq .˝;�/ with p > 1; 1
p
C
1
q
D 1; �.˝/ <

1 and there exists the constants ı;� > 0 and such that

ı � jgj �� �-a.e on ˝; (3.2)

then we have

0�
ıq

1
�.˝/

R
˝ jgj

q d�

�
1

�.˝/

Z
˝

jf jp

jgjq
d��

�
1

�.˝/

Z
˝

jf j

jgjq�1
d�

�p�
(3.3)

�

R
˝ jf j

p d�R
˝ jgj

q d�
�

�R
˝ jfgjd�R
˝ jgj

q d�

�p
�

�q

1
�.˝/

R
˝ jgj

q d�

�
1

�.˝/

Z
˝

jf jp

jgjq
d��

�
1

�.˝/

Z
˝

jf j

jgjq�1
d�

�p�
:

Proof. The inequalities (3.3) follows from (3.1) by choosing

hD
jf j

jgjq�1
and w D jgjq :

The details are omitted. �
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Remark 4. We observe that for pD qD 2we have from (3.3) the following reverse
of the Cauchy-Bunyakovsky-Schwarz inequality

0� ı2�.˝/

"
1

�.˝/

Z
˝

ˇ̌̌̌
f

g

ˇ̌̌̌2
d��

�
1

�.˝/

Z
˝

ˇ̌̌̌
f

g

ˇ̌̌̌
d�

�2#Z
˝

jgj2d� (3.4)

�

Z
˝

jgj2d�

Z
˝

jf j2d��

�Z
˝

jfgjd�

�2
��2�.˝/

"
1

�.˝/

Z
˝

ˇ̌̌̌
f

g

ˇ̌̌̌2
d��

�
1

�.˝/

Z
˝

ˇ̌̌̌
f

g

ˇ̌̌̌
d�

�2#Z
˝

jgj2d�;

provided that f;g 2 L2 .˝;�/ and g satisfies the bounds (3.2).

Similar results can be stated by utilizing the inequality (2.13), however the details
are not presented here.

4. APPLICATIONS FOR f -DIVERGENCE MEASURES

One of the important issues in many applications of Probability Theory is finding
an appropriate measure of distance (or difference or discrimination ) between two
probability distributions. A number of divergence measures for this purpose have
been proposed and extensively studied by Jeffreys [16], Kullback and Leibler [21],
Rényi [27], Havrda and Charvat [14], Kapur [19], Sharma and Mittal [29], Burbea
and Rao [4], Rao [26], Lin [22], Csiszár [7], Ali and Silvey [1], Vajda [35], Shioya
and Da-te [30] and others (see for example [23] and the references therein).

These measures have been applied in a variety of fields such as: anthropology [26],
genetics [23], finance, economics, and political science [28], [32], [33], biology [25],
the analysis of contingency tables [13], approximation of probability distributions
[6], [20], signal processing [17], [18] and pattern recognition [2], [5]. A number of
these measures of distance are specific cases of Csiszár f -divergence and so further
exploration of this concept will have a flow on effect to other measures of distance
and to areas in which they are applied.

Assume that a set ˝ and the ��finite measure � are given. Consider the set of all
probability densities on� to be P WD

˚
pjp W˝! R, p .x/� 0;

R
˝ p .x/d�.x/D 1

	
.

Csiszár f �divergence is defined as follows [8]

If .p;q/ WD

Z
˝

p .x/f

�
q .x/

p .x/

�
d�.x/ ; p;q 2P ; (4.1)

where f is convex on .0;1/. It is assumed that f .u/ is zero and strictly convex
at u D 1. By appropriately defining this convex function, various divergences are
derived.
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The Kullback-Leibler divergence [21] is well known among the information diver-
gences. It is defined as:

DKL .p;q/ WD

Z
˝

p .x/ ln
�
p .x/

q .x/

�
d�.x/ ; p;q 2P ; (4.2)

where ln is to base e.
In Information Theory and Statistics, various divergences are applied in addition

to the Kullback-Leibler divergence. These are the: variation distance Dv, Hellinger
distance DH [15], �2�divergence D�2 , ˛�divergence D˛, Bhattacharyya distance
DB [3], Harmonic distance DHa, Jeffrey’s distance DJ [16], triangular discrimina-
tion D� [34], etc... They are defined as follows:

Dv .p;q/ WD

Z
˝

jp .x/�q .x/jd�.x/ ; p;q 2P I (4.3)

DH .p;q/ WD

Z
˝

ˇ̌̌p
p .x/�

p
q .x/

ˇ̌̌
d�.x/ ; p;q 2P I (4.4)

D�2 .p;q/ WD

Z
˝

p .x/

"�
q .x/

p .x/

�2
�1

#
d�.x/ ; p;q 2P I (4.5)

D˛ .p;q/ WD
4

1�˛2

�
1�

Z
˝

Œp .x/�
1�˛
2 Œq .x/�

1C˛
2 d�.x/

�
; p;q 2P I (4.6)

DB .p;q/ WD

Z
˝

p
p .x/q .x/d�.x/ ; p;q 2P I (4.7)

DHa .p;q/ WD

Z
˝

2p .x/q .x/

p .x/Cq .x/
d�.x/ ; p;q 2P I (4.8)

DJ .p;q/ WD

Z
˝

Œp .x/�q .x/� ln
�
p .x/

q .x/

�
d�.x/ ; p;q 2P I (4.9)

D� .p;q/ WD

Z
˝

Œp .x/�q .x/�2

p .x/Cq .x/
d�.x/ ; p;q 2P : (4.10)

For other divergence measures, see the paper [19] by Kapur or the book on line [31]
by Taneja.

Most of the above distances .4:2/� .4:10/, are particular instances of Csiszár
f �divergence. There are also many others which are not in this class (see for ex-
ample [31]). For the basic properties of Csiszár f �divergence see [8], [9] and [35].

The following result holds:

Proposition 2. Let f W .0;1/! R be a convex function with the property that
f .1/D 0: Assume that p;q 2P and there exists constants 0 < s < 1 < S <1 such
that

s �
p .x/

q .x/
� S for �-a.e. x 2˝: (4.11)
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Then we have the inequalities

s
h
If . 1� /

.q;p/�f
�
D�2 .p;q/C1

�i
(4.12)

� If .p;q/

� S
h
If . 1� /

.q;p/�f
�
D�2 .p;q/C1

�i
:

Proof. If we use the inequality (2.6) we get

s

�Z
˝

qf

�
q

p

�
d��f

�Z
˝

q2

p
d�

��
(4.13)

�

Z
˝

pf

�
q

p

�
d�

� S

�Z
˝

qf

�
q

p

�
d��f

�Z
˝

q2

p
d�

��
:

Since Z
˝

q2

p
d�DD�2 .p;q/C1

and Z
˝

qf

�
q

p

�
d�D If . 1� /

.q;p/ ;

then from (4.13) we deduce the desired result (4.12). �

We notice that f
�
1
�

�
is not always a convex function. However the definition

(4.1) can be extended to any measurable function for which the integral is finite. In
applications, the examples for which f

�
1
�

�
is a convex function are of interest. Such

an example is provided below.
Consider the Kullback-Leibler divergence defined in (4.2). If p;q 2 P such that

there exists constants 0 < s < 1 < S <1 with

s �
p .x/

q .x/
� S for �-a.e. x 2˝:: (4.14)

then we get from (4.12) that

s
�
ln
�
D�2 .p;q/C1

�
�DKL .q;p/

�
(4.15)

�DKL .p;q/

� S
�
ln
�
D�2 .p;q/C1

�
�DKL .q;p/

�
:

Similar results for f -divergence measures can be stated by utilizing the inequality
(2.13), however the details are not presented here.
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[27] A. Rényi, “On measures of entropy and information,” in Proc. 4th Berkeley Symp. Math. Stat.

Probab., vol. 1, 1961, pp. 547–561.
[28] A. Sen, On economic inequality. London: Oxford University Press, 1973.
[29] B. D. Sharma and D. P. Mittal, “New non-additive measures of relative information,” J. Comb. Inf.

Syst. Sci., vol. 2, pp. 122–132, 1977.
[30] H. Shioya and T. Da-Te, “A generalisation of Lin divergence and the derivative of a new informa-

tion divergence,” Elec. and Comm. in Japan, vol. 78, no. 7, pp. 37–40, 1995.
[31] I. J. Taneja, Generalized Information Measures and Their Applications. electronic, 2001.

[Online]. Available: www.mtm.ufsc.br/$nsim$taneja/book/book.html
[32] H. Theil, Economics and information theory. Amsterdam: North-Holland, 1967.
[33] H. Theil, Statistical decomposition analysis. With applications in the social and administrative

sciences, ser. Studies in Mathematical and Managerial Economics. Amsterdam-Lond: North-
Holland Publishing Comp., 1972, vol. 14.

[34] F. Topsoe, “Some inequalities for information divergence and related measures of discrimination,”
Res. Rep. Coll., RGMIA, vol. 2, no. 1, pp. 85–98, 1999.

[35] I. Vajda, Theory of statistical inference and information, ser. Theory and Decision Library, Series
B: Mathematical and Statistical Methods. Dordrecht: Kluwer Academic Publishers, 1989,
vol. 11.

Author’s address

S. S. Dragomir
Mathematics, School of Engineering & Science, Victoria University, PO Box 14428, Melbourne

City, MC 8001, Australia, School of Computational & Applied Mathematics, University of the Wit-
watersrand, Private Bag 3, Johannesburg 2050, South Africa.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir

www.mtm.ufsc.br/$\sim $taneja/book/book.html

