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1. Formulation of the problem

A singularly perturbed system

ECL% =Az+eAi(t)x+ o), t €a,b], t #£7, i=1,p, 0<e<<1, (1.1)

a=To< T < <Tp<Tpy1 =D

is considered. The coefficients of system (1.1) satisfy the following conditions

H1: A is n x n matrix with constant elements. It has an eigenvalue A\ = 0, whose
multiplicity is  and r linear independent eigenvectors correspond to this eigenvalue.
The remaining (n — r) eigenvalues have negative real parts, i.e.,

Aj €0(A), Re)j <O, j=Ln—r, Aj=0,j=n—r+1n.

Condition H1 shows that system (1.1) is considered in a critical case [9].

H2: A,(t) is n x n matrix. Its elements are continuously differentiable functions
of class C*[a, b].
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H3: Vector-function ¢(t) : [a,b] — R™ is partially continuous with break points of
the first kind 7;, i = 1,p , i.e.,

(p(t) - @i(t)a te (Ti—l’TiL t=1,p+1, (P(a) - 301(7—0)7

() = Yp11(Tpr1), wir1(m) =  im o(t), i=1,p.

An n-dimensional vector-function x(¢, €) is sought for such that z(-, ) is continuously
differentiable in every subinterval [a, 10, (Ti—1, 7], 1 =2,p+ 1, 2(¢,-) € C(0,20] and
satisfying system (1.1), the generalized initial condition

Dz(a) = v (1.2)
and the generalized impulse conditions in fixed moments of time

Nim(Ti—l—O)-i-Mi.’E(Ti—O) =h;, 1 =1,p. (13)

The matrix D is known s X n matrix with constant elements, v is given column
vector from R® and M;, N;, i = 1, p, satisfy the following condition

H4: M;, N;, i = 1,p are known k; x n matrices with constant elements, h; € R*:
are given column vectors.

If e =0in (1.1), then the degenerate system is obtained
Az + ¢(t) =0, (1.4)
which has a solution

l’o(t) = Pgao(t) — A+gﬁ(t), te (TiflaTi}a 1= 1,p+ 1, (15)

if and only if
H5: PL.o(t) =0, te€ (1i-1,7), i =1,p+ 1L
Here ag(t) is a partially continuous arbitrary r-dimensional vector-function. A™
denotes a unique Moore - Penrose inverse matrix of the matrix A. According to H1
rankA = n — r, then rank Py = rank P4~ = r, where P4 and Pa- are projectors
Py:R" —ker A, Ps:R"™ —ker A*, A* = AT,

In n X n matrix P4 there exist r linear independent columns and in n X n matrix P«
there exist r linear independent rows. P} denotes nxr matrix consisting of arbitrary r
linear independent columns of the matrix P4 and PJ. denotes 7 X n matrix consisting
of arbitrary r linear independent rows of the matrix Pa-«.

The asymptotic expansion of the solution of the problem (1.1-1.3) is sought for
so that under e — 0 it tends to solution (1.5) of the degenerate system (1.4) when
te(r-1,ml.i=Lp+1

The essential methods for investigating linear and nonlinear impulsive systems are
presented in [2], [7].

Initial and boundary-value problems for singularly perturbed systems of the kind

o g(t,w,y) (1.6)
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are considered in monography [8]. [9] considers a critical case for systems of the form
edt = A(t)z + ef(t,z,¢), with initial condition of the form z(a) = v. If impulse
conditions of the form

Az|t=n = Sil‘ + a;, 1= H (17)
are added to (1.6), a system investigated in [1] is obtained. In the same monography
initial problems for systems of the form

d
o = flt..e) (1.8)
are considered in a critical case. In [7], [1] the fundamental matrix of solutions of the
impulsive system

d
dfatc =A(t)x, t#7, Az|t=m)=Sz, i=1p
is essential under condition det(S; + E) # 0. Making use of the fundamental matrix

solutions of system (1.6), (1.7) and system (1.8), (1.7) are constructed in [1].

In the present work generalized impulse conditions are considered and additional
requirements are not set for the matrices M;, N;. Therefore the fundamental matrix
from [7], [1] can not be used in this case.

In this paper the method of boundary functions is used to construct an asymptotic
expansion of the solution of the singular problem posed. The generalized inverse
matrices and projectors are also used [4], [5], [6].

2. Asymptotic expansion

The asymptotic expansion of the solution of problem (1.1-1.3) is sought for in the
form
o t—Ti—1

o0
a(t,e) =a'(te) = Y " (wh(t) + Mi(w)), vi = — (2.1)
k=0
where t € [r9,71] and ¢ € (7,1, 7], under i = 2,p+ 1. The elements z}(¢) of the
expansion generate regular series and II}(r;) are boundary functions in the right
neighborhood of the points 7;,_1, ¢ = 1,p+ 1 and generate singular series of the
solution.

For the elements of the regular series the following systems are obtained

Azi(t) = —i(0),
AT (6) = 21 (8) = A (2, (6 = 12,3, (22)

and for the elements of the singular series - the systems

dIli (v; , ,
;(V ) = AH}C(VZ) + flz:(yz)v k= 0,1,2,---, i=1p+1, (23)
Vi
where the functions fi(v;), i = I,p + 1 have the presentation

0, k=0

f;i(l/z) = k=1 ARV () k—ji—117s
Y35 et T ), k=12,
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Systems (2.2) have solutions of the form

xg(t) = Pgag(t) — At oy(t), (2.4)
2}, (t) = Phog (t) + AT (Lay_y)(t), k=1,2,3,--, '

if and only if H5 and

@): Py.(Lai_)(t) =0, k=1,2,3,---, i=T,p+1
are fulfilled. The condition of solvability (I) will be used for the determination of
r - dimensional vector - functions of(t), k = 1,2,3,---, i = 1,p+1. (Lz)(t) =

(2 — A)z) ().
X (t) denotes a normal fundamental matrix of solutions of the homogeneous system

dt = Azx. According to condition H1 matrix 7" exists such that

detT #£0 and A:T(S1 8 )Tl,

where A is (n—r) X (n —r) matrix, whose eigenvalues have negative real parts. Then

exp(At) = T< eXpéZt) EO >T1 or  exp(A)T = T( eXpéZt) EO ) .

Let the matrix T also be presented in a block form T = [T} T3], where T} is n X (n—1)
matrix and T is n x 7 matrix. Then exp(At)Ty = Ty exp(At) and exp(At)Ty = Ts.
A solution of system (2.3) under & = 0 has the form

HB(Z@) = X(I/i)Cé, Cé e R".

In order to realize a condition IIp(v;) — 0 under € — 0 the last » components of the
vector ¢ are taken to be equal to zero. The solution of (2.3) under & = 0 becomes
the following

M (v3) = Xo_r(m)ch, ch € R, (2.5)
where X,,_(v;) = exp(Ay;)Ty is n x (n — r) matrix. The solution of (2.3) under
k=1,2,.-- is

0y (03) = Xm0k + [ K 9)fi()ds
0

where
K(vi,s) = X(v)PX~(s), 0<s <y <oo,
PUT =X - P)XY(s), 0<w<s<oo

P is a spectral projector of the matrix A on the left semi-plane.

A choice of K(v;,s) guarantees that the partial solutions of (2.3) are bounded
exponentially.

For definition of the vector-functions o (¢) the form of x% () from (2.4) is substi-
tuted in the condition of solvability (I) and the following systems are obtained
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where

[ =Py (LA (), k=0
b= PA*PA,gk(t) B { _PA* (LA+(in:—l)(t)) (t)7 k= 1727 cee
B(t) = Py. A1 (1) Py

According to condition H1 rankA = r. It is easy to prove rankD = r.

A general solution of (2.6) in every subinterval |7;,_1,7;], i =1,p+ 1 is

ai(t) = ()2~ (1i-1)1; +/ B(H)D 1 (s)D " gi(s)ds, (2.7)

Ti—1

where ®(t) is r x r fundamental matrix of solutions of the homogeneous system

. -1 . . .
¢ =D "B(t)r and 7}, is r-dimensional unknown constant vector.

The initial and impulse conditions will be used for definition of unknown constant
vectors 77,iC and c};. Because of the generalized character of the impulsive and initial
conditions, the solution (e, t) in every subinterval (7;_1,7;], i = 1,p + 1 depends on
an arbitrary constant vector & under successive gradation from interval to interval.
These constants take part in the elements of the singular series and also in the elements
of the regular series. Therefore in the interval (7;_1,7;] it is got accumulation of the
constants &, &, ,& in the solution z(e,t). A dependence between constants &;,
i = 1,p+ 1 exists because of the recurrent relation between the elements z%(t) of
the regular series and between the elements of the singular series. Difficulties are
obvious if we work by successive gradation from interval to interval. For this reason
a modification of the problem (1.1-1.3) similar to this one in [3] is needed.

The following denotations are introduced.

Qo—D@1 ] Q1—[90N1@2 ] N C "'9i—1Nz‘@i+1"'@p]T;~~

[
=100 0, 1N]
=[6g M; O - @p]T
= [

, (@0 - @11M®Z+1 0,7 ,...
Q0 -+ Op1 My|", b=

R; =
[0l Ry

where Q;, i = 0,p, R;, i = 1, p are v x n matrices, v = s+ ki +ka+---+kp, Op is sxn
matrix with zero elements, ©;, ¢ = 1,2,---p, are k; X n matrices with zero elements,
h is v-dimensional vector. Then the initial and impulse conditions are rewritten as
follows

P
ZQil‘H_l(Tl, Z Riz'(r;,e) =h. (2.8)
i=0

The coefficients before identical powers of € are equalized in (2.8). Then

ol Qs 00 + 00 + X0 P () + (==2=)) =1

0@ (e () + TG 0) + S0y R () + 10 (2222 ) ) =0, (29)
k =1,2,3,---
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In system (2.9) under k = 0 are substituted = (¢) and II}(v;), i = 1,p + 1 from (2.4)
and (2.5), respectively. Then system (2.9) under k& = 0 takes the form

p+1 P P
Z (Liah(-) + Ds(e)ch) = h + Z QiAY i1 (m) + Z Ri AT pi(Ti), (2.10)
i=1 i=0 i=1

where

Lix(-) = Qi1 Pyx(ri—1) + RiPx(m;),i = 1,p, lpp12(-) = QpPra(ri—1)

are v X r vector functionals,

Dl(s) = Qi—an—r(O) + Ran—T' (7-2_;-1_1) 7i = 15p7 Dp-l-l(a) = Qan—r(O)

are (v X (n — r)) matrices.
Let D(e) = [D1(g) -+ Dpt1(e)] be a (v x ((p+ 1)(n — r))) matrix,
1) =11(¢) - lpy1()] is (v x ((p+ 1)r)) a vector functional,

ho=h+>"%  QiATpiy1(m) + > 51 RiAT¢;(7;) is a v-dimensional vector,
T
ap(t) = {a%(t) e ozgﬂ(t)} is a (p + 1)r-dimensional vector,
T
co = [Cé e Cngl] is a (p+ 1)(n — r)-dimensional vector.
With these notations system (2.10) may be written as follows
lag(+) = h — D(g)co. (2.11)
In the last equality are substituted of(¢), i = 1,p + 1 from (2.7). Then we obtain
Pro + D(e)co = ho, (2.12)
where P = [Py -+ Pyiq] is (v X (n+ 1)r) matrix, P, = ;®(-)® ' (r_1), i =1,p+1
are (v x ) matrices, ho = ho—Y."1; fT(;l ~)<I>(~)<I>_1(s)ﬁ_lgé(s)ds is v-dimensional
T
vector and 79 = [né e ngﬂ} is (p 4+ 1)r-dimensional vector.
The matrix D(e) has a structure D(¢) = Do + O (e%exp (—2)), ¢ € N, a'is a
positive constant, Dg is (v x (p + 1)(n — r)) matrix with constant elements. The

exponentially small elements in the matrix D(e) are rejected and system (2.12) takes
the form

M[ Zg } = o, (2.13)

where M = [P Dy] is (v x (p+ 1)n) matrix. Let the following condition be fulfilled.
H6: rankM = my < min(y, (p + 1)n).
Then system (2.13) has a solution

| = Pl + 3 (2.14)

if and only if
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HT7: P{.ho=0.
PY, designates a matrix consisting of k = (p+ 1) —m; linear independent columns of
the matrix projector Py, Py : RPHD™ — ker M and Pjé[* denotes a matrix consisting
of d = v — m; linear independent rows of the matrix projector Pys«, Py : RV —
ker M*, &, € R¥ and M is a unique Moore-Penrose inverse matrix of the matrix M.

Let (p+ 1)r =7 and (p+ 1)(n —r) =7n. Then
no = [PJICI]Fﬁo + [MJFEO}J co = [PJI\Z]H&) + [MJrEO]J

where index 7 means the first 7 rows of the matrix Py, and the vector M +ho and
index 7 means the last 7 rows of the matrix PY, and the vector M hy.

According to denotations of 79 and ¢y above, we obtain

m= [Py &+ [M¥ho| " o= [Py 6o+ M) T i=Tp L (215)
where the index r; means tllat under 7 = 1 we take the first » rows of the matrix
[PJ’\Z]F and the vector {M +EOL, under ¢ = 2 the second r rows of the same matrix
and the same vector and etc. Trhe index n; means thatﬁunder 1 = 1 we take the first
(n —r) rows of the matrix [P]’f/l]ﬁ and the vector [M*EO} , under ¢ = 2- the second
(n — ) rows and etc.

According to (2.15) the forms of z{(¢) and IIj(;) become the following

wh(t) = i (£)€o + To(t), Th(vi) = X0, (vi)éo + My(wi) i=T,p+ 1, (2.16)
Q7 (t) = PRo(t)® (i) [PR]L X1 (vi) = X (vs) PR

(i) = Xnr (1) [M*ﬁo}: :
(1) = PAe(@ (r) [MR] 4 Py [ @02 (9D gi(s) - AT

On analogy of system (2.11) the following system is obtained
lai () + D(e)er = M (e), (2.17)

T T
where o (t) = [a%(t) e a’fH(t)} is (p + 1)r-dimensional vector, ¢; = {C% e Cﬁ)ﬂ}
is (p + 1)(n — r)-dimensional vector.

Keeping in mind the expressions from (2.16), the v-dimensional vector h;(g) may
be written as follows

El(f) = (All + Alg(E)) &o + a1(€), (2.18)

where
p+1 P
Ay ==Y QAT (LOI+) (1) = Y RAT (LE)) (7y),

=0 i=1
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p+1

As(e ZQZ/ K(0,8) A1 (1) X1+ (s)ds—

_ZRi/O K (Tl_gm,s) Ay (i) X7 (s)ds
=1

p+1 2

ZQZAJF L71+1 Ti) _ ZR1A+ (Lfé) (Ti),
i=1

pt+1

_ZQZ/ K(0,s)A; (m;)IT ds—ZR / K (Tz_;ll,s) Al(Ti)ﬁé(s)ds.

According to (2.6) the functions i (t), i = 1,p + 1 are defined from the systems
Dé(t) = B(t)ai(t) +gi(t), i=T,p+1.
The functions gi(t), i = 1,p + 1 are presented in the form
g1(t) = Biy (t) + b (1), (2.19)
where BY, (t) = —Pj. (LAY (L} (1)) (t), bi(t) = —Pj. (LAT (L7p) (1)) (1)
Analogously to system (2.13) the following system is obtained

M[ n } =T (e), (2.20)

where 1, = (n i H) s (p + 1)r-dimensional vector and

u(e) = Ma)go +a(e), (2.21)
Ai(e) = A 4 Aa(e) P+1l fT( B (s)Bi1(s)ds,
ai(e) = ar(e) — 0 U fT )bl( )ds.
System (2.20) has solution

— 1M,

mh= [PhE o+ M = [P+ (M) i=TeF T, (222)

if and only if PI(\i/[*ﬁl =0.

Keeping in mind the form of T (€) from (2.21), the last condition may be written
as follows

R(e)éo = a1 (e), (2.23)
where R(¢) = P A11(¢) is d x v matrix and @;(¢) = —P{.a;(¢) is d-dimensional
vector.

The matrix R(¢) has a structure R(e) = Ro+O (e* exp (—2)) and the vector @ (e)
has a structure @ (¢) = @19+0 (6q exp (—g)) s, q € N, a-positive constant, Ro-d X v
constant matrix, aio- d-dimensional constant vector.
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The exponentially small elements in R(¢) and @; () are rejected and system (2.23)
takes the form
Rofo = 610. (2.24)
Let the following condition be fulfilled

HS8: rankRy =v < d.
Then system (2.24) has a unique solution

&0 = Ry @, (2.25)
if and only if PRS P&*Elo =0.
The last requirement is always fulfilled if the following condition is real
H9: Pg; P{. =0.
According to (2.25), the equalities (2.16) take the representation
wh(t) = O (DRI T0+Th (1), TWh(vs) = Xp, (vi) R Tro + T (1), i = T,p T 1. (2.26)
From (2.4), (2.5) and (2.22) the following is obtained

where 7 () = PLo () (r,_,) [Mﬁl]fw; [Y et (s)D gi(s)ds+ A+ (Lad) (1),

t
Ti—1
T (05) = X () [MFTn] 4[5 K (7 5) As (7))
Analogously to system (2.11) the following system is obtained
lag(+) 4+ D(g)ca = ha(e), (2.28)

T
where az(t) = (a%(t) e o/é“(t)) is (p 4 1)r-dimensional vector, ¢y = (¢} ---&™HT
is
(p+1)(n—r)- dimensional vector and ha(e) = (A11 + A12(e)) &1+az(e) is v-dimensional
vector, as(e) = — Y 0 QAT (Lfﬁl) () = > b R AT (LE’l) (1:)—

=500 Qi fy K (0,5) (AT (s) + AL (m)sIG (s) ) ds—

According to (2.7), the functions o (t), i = 1,p + 1 have the form
¢
03(t) = BOP (o + [ @007 (D gh(s)ds,
where g4 (t) has the form
92(t) = Biy (t)€1 + b3(t), (2.29)
by(t) = —Ph- (LA™ (L&) (1) (1)
A system

M [ Zj ] = Ta(e, 1), (2.30)
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is obtained analogously to system (2.11). From solvability condition P{. ha(e,&1) = 0
of system (2.30) and by analogy to (2.23), the following system is obtained

R(e)é1 = aa(e), (2.31)
where @y(e) = —P{,.as (), aa(e) = as(e) — S04 1 fT( O (s)D b”( )ds, and

G2(e) = Ggo + O (53 exp (—%)) s € N, « - positive constant, Qoo - d-dimensional
vector.

The exponentially small elements in R(g) and @y(e) are rejected and system (2.31)
takes the form

Ro&1 = ago.
The last system under condition H8 has a unique solution
& = R .
if and only if condition H9 is fulfilled. The last equality is substituted in (2.27). Then
the following expressions for 2% () and IT¢(1;) are obtained
©h(t) = O (RS Too + T4 (1), T (v) = X RiTiao + Ty (1), i = Lp+ 1. (2.32)

Analogously to the statement above for k = 2,3, --- the following is obtained

2y (t) = U () Ry @pr1,0 + Tp(t), i (vs) = X0 R G0 + (i), i =1, p J(r L. |
2.33

t

Ti(t) = PRo(t)®(1_1) [M*hk} +PA/ @(t)@*l(s)ﬁ_l L(s)ds + AT (Lzj,_y) (),

. k—1 k—j—1
O, (v) = Xp_r(v ) MJrh;C / KTs E;lc—]—(l))Sk I (s)ds,

p+1

0 .
Te(e) = — Py (e), (e Zz / B()d1(s)D bl (s)ds,

bj.(t) = —Ph. (LA (LT}, _,) (1)) (1), an(e) = = 207 QAT (L) (i)~
, o (k=j=1) (. ;

— > RAT (L) (1) = >0, Qi [y K(0,5) (Zf 5%&@ I (5) 4
il o0 Ti—Ti—1 - A(lkijil) Ti —j—11yi
+A1(Ti)Hk_1(s)) ds—Y " | R; fo K (f,s) (Z;“:g (kT—l()!)sk j 11‘[j+1(s)+
+A1(Ti)ﬁ2—1(5)) ds, hi(e) = A11(e)€k—1+ar(e), hi(e) = (Anr + A1a(€)) &1 +an(e),

9k(t) = By (t) Rg Gr1,0 + b, (1).
Let
u(t,e) = x(t,e) — X, (t,€), (2.34)
where x(t, €) is the exact solution of (1.1), (1.2), (1.3) and

n

= Zsk(xZ(t) +Mix(y)), i=1,p+ 1.

k=0
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It is easy to show that under some conditions |Ju(t,¢)|| < ce™*!, using the scheme
of proof in [8], [1] with the necessary changes originating from the generalized initial
and impulse conditions.

On this way the following theorem is proved.

Theorem 1: Let the conditions H1-H4, H6 and HS be fulfilled. The initial impul-
siwe problem (1.1),(1.2), (1.3) has a unique asymptotic expansion of the solution in
the form (2.1). The coefficients of the regular and singular series have the represen-
tation (2.26), under k =0 and (2.52), (2.83) under k = 1,2,3,--- if and only if p(t)
satisfies the condition H5 and v, h;, i = 1,p satisfy H7 and H9.

The next bound is true for the boundary functions

ML ()| < oexp(—rvs), i=Tp+1, k=01,
where o and Kk are positive constants.
Remark 1: Let, instead of H6, the following condition be fulfilled
H10: v = (p+ 1)n, rankM = my < min(v, (p + 1)n).

Then rankPy; = rank Py« = v—mq = k = d. The matriz rank Py« is k X v matriz
and the matriz Ry is a rectangular matriz. According to H8 (d = k), system (2.23)
s always solvable as condition HY9 is always real and RS‘ = Ral. The solution of
problem (1.1),(1.2), (1.3) is presented in series (2.1) whose coefficients have the form
(2.26), (2.32), (2.33).

Remark 2: Let instead of H6 the following condition be fulfilled
Hi1: v=(p+ 1)n, detM # 0.

Then systems (2.18), (2.30) are always solvable, Ppy» = 0, MT = M~Y. The
coefficients of the formally asymptotic solution of the problem (1.1),(1.2), (1.3) have
the representation

2i(t) =7 (t), M (v;) = My (i), k=0,1,2,--+, i=1,p+ L

3. Example

Let t € [0,2], t # 7, 71 = 1 and problem (1.1-1.3) have the following coefficients:
(-1 2 (-t 2t+1 (1 1), telo,1]
A( 1 —2>’ Al(t)( 21 —4t+2>’ ‘P(t){ 0, te(1,2

M= 0 o |, m=] 1

)
I
—~
]
(@)
S~—
<
I
—
=
Il
N = O
_=w o
— |
—
\
N [\
e e |
—
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Obviously the requirement H5 is fulfilled. Further D = 1%, D = %, B(t) = 3
O(t) =el, dL(t) = et

1/ 243 2273 1 1/ 24e3 2—2e%
X(t)_3< 17673t 1+2673t ) X (t>_§ 176315 1+2€3t )

(LN e, L1 =2 12 2
—3(vi—s) _9,—3(vi—s)
: e, S 26, o 0<s<y <oo,
3 —e 3(vi—s) 2 3(vi—s)
K(Vi,s): 9 9 ’
é(l 1>a OSI/Z'SS<OO.
2 6 0 0 0 0 1
0 0 0 0 -1 2 — -1
QO_ 0 0 ) Ql_ 1 3 ) Rl_ 0 0 ) h’O_ 1 )
0 0 2 1 1 =2 4
2 0 -4 0 2 0 -4 0
00 —3¢7¢ 0 00 0 0
P= 0 1 0 -2 » M= 01 0 =2
0 1 372 1 01 0 1
3 0 0 0 2
2 0 0 10 20 1 0
+_ = 1 _ - 1
then = | T TS Ph=2 | | P =(0 1 0 0),
0 0 —10 10 0

o= (3013)T, PL.y =0, i.e., the condition H7 is fulfilled.
Let ¢ € [0,1], then 11 = £ and in accordance with (2.7) for a(t) and aj(t) the
following is obtained

1 5 1 _
ag(t) = e'np + Jrgt*g ag(t) = e tng

03 (1)t (1) (e 3 (2) =)

and under ¢t € (1,2], then vy =

1/2\ , 1\ s,
x%(t) = 5< 1 >et 177(2), H%(yg) = < 1 )e 3 20(2).

From (2.14) the following is obtained

2 3 7 1 3 2
1_ = _ 2 = — 1 = — —_ = 2 =
770—5504'10,770 3a00 550 5700 3
Further
_ 19 24 Qe
R(e)———e—kfe*%, a1(e) = — = Z2C
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Then Ry = —236 and @i = %e—l—%. In this case R = Ro_l = —%, & = —% — %

and Prs =0, i.e., the condition H9 is fulfilled.

8 (2 10t +1 1 11 4\ g
1 _° t = _Z 3¢
(he) = 58(1)e ( 5t—7) (—1>< 12 e>€ o),

t e [0,1].

7 2 2 ]_ t—1
2 t—1 —3L
x(t,s)_15<1>e +3< 1)6 + O(e),
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