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1. Formulation of the problem

A singularly perturbed system

ε
dx

dt
= Ax + εA1(t)x + ϕ(t), t ∈ [a, b], t 6= τi, i = 1, p, 0 < ε << 1, (1.1)

a ≡ τ0 < τ1 < · · · < τp < τp+1 ≡ b

is considered. The coefficients of system (1.1) satisfy the following conditions

H1: A is n× n matrix with constant elements. It has an eigenvalue λ = 0, whose
multiplicity is r and r linear independent eigenvectors correspond to this eigenvalue.
The remaining (n− r) eigenvalues have negative real parts, i.e.,

λj ∈ σ(A), Reλj < 0, j = 1, n− r, λj = 0, j = n− r + 1, n.

Condition H1 shows that system (1.1) is considered in a critical case [9].

H2: A1(t) is n × n matrix. Its elements are continuously differentiable functions
of class C∞[a, b].
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H3: Vector-function ϕ(t) : [a, b] → Rn is partially continuous with break points of
the first kind τi, i = 1, p , i.e.,

ϕ(t) = ϕi(t), t ∈ (τi−1, τi], i = 1, p + 1, ϕ(a) = ϕ1(τ0),

ϕ(b) = ϕp+1(τp+1), ϕi+1(τi) = lim
t→τi+0

ϕ(t), i = 1, p.

An n-dimensional vector-function x(t, ε) is sought for such that x(·, ε) is continuously
differentiable in every subinterval [a, τ0], (τi−1, τi], i = 2, p + 1, x(t, ·) ∈ C(0, ε0] and
satisfying system (1.1), the generalized initial condition

Dx(a) = v (1.2)

and the generalized impulse conditions in fixed moments of time

Nix(τi + 0) + Mix(τi − 0) = hi, i = 1, p. (1.3)

The matrix D is known s × n matrix with constant elements, v is given column
vector from Rs and Mi, Ni, i = 1, p, satisfy the following condition

H4: Mi, Ni, i = 1, p are known ki × n matrices with constant elements, hi ∈ Rki

are given column vectors.

If ε = 0 in (1.1), then the degenerate system is obtained

Ax + ϕ(t) = 0, (1.4)

which has a solution

x0(t) = P r
Aα0(t)−A+ϕ(t), t ∈ (τi−1, τi], i = 1, p + 1, (1.5)

if and only if

H5: P r
A∗ϕ(t) = 0, t ∈ (τi−1, τi], i = 1, p + 1.

Here α0(t) is a partially continuous arbitrary r-dimensional vector-function. A+

denotes a unique Moore - Penrose inverse matrix of the matrix A. According to H1
rankA = n− r, then rankPA = rankPA∗ = r, where PA and PA∗ are projectors

PA : Rn → kerA, PA∗ : Rn → ker A∗, A∗ = AT .

In n×n matrix PA there exist r linear independent columns and in n×n matrix PA∗

there exist r linear independent rows. P r
A denotes n×r matrix consisting of arbitrary r

linear independent columns of the matrix PA and P r
A∗ denotes r×n matrix consisting

of arbitrary r linear independent rows of the matrix PA∗ .

The asymptotic expansion of the solution of the problem (1.1-1.3) is sought for
so that under ε → 0 it tends to solution (1.5) of the degenerate system (1.4) when
t ∈ (τi−1, τi]. i = 1, p + 1.

The essential methods for investigating linear and nonlinear impulsive systems are
presented in [2], [7].

Initial and boundary-value problems for singularly perturbed systems of the kind

dx

dt
= f(t, x, y), ε

dy

dt
= g(t, x, y) (1.6)
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are considered in monography [8]. [9] considers a critical case for systems of the form
εdx

dt = A(t)x + εf(t, x, ε), with initial condition of the form x(a) = v. If impulse
conditions of the form

∆x|t=τi
= Six + ai, i = 1, p (1.7)

are added to (1.6), a system investigated in [1] is obtained. In the same monography
initial problems for systems of the form

ε
dx

dt
= f(t, x, ε) (1.8)

are considered in a critical case. In [7], [1] the fundamental matrix of solutions of the
impulsive system

dx

dt
= A(t)x, t 6= τi, ∆x|(t = τi) = Six, i = 1, p

is essential under condition det(Si + E) 6= 0. Making use of the fundamental matrix
solutions of system (1.6), (1.7) and system (1.8), (1.7) are constructed in [1].

In the present work generalized impulse conditions are considered and additional
requirements are not set for the matrices Mi, Ni. Therefore the fundamental matrix
from [7], [1] can not be used in this case.

In this paper the method of boundary functions is used to construct an asymptotic
expansion of the solution of the singular problem posed. The generalized inverse
matrices and projectors are also used [4], [5], [6].

2. Asymptotic expansion

The asymptotic expansion of the solution of problem (1.1-1.3) is sought for in the
form

x(t, ε) ≡ xi(t, ε) =
∞∑

k=0

εk(xi
k(t) + Πi

k(νi)), νi =
t− τi−1

ε
, (2.1)

where t ∈ [τ0, τ1] and t ∈ (τi−1, τi], under i = 2, p + 1. The elements xi
k(t) of the

expansion generate regular series and Πi
k(νi) are boundary functions in the right

neighborhood of the points τi−1, i = 1, p + 1 and generate singular series of the
solution.

For the elements of the regular series the following systems are obtained

Axi
0(t) = −ϕi(t),

Axi
k(t) = ẋi

k−1(t)−A1(t)xi
k−1(t), k = 1, 2, 3, · · · ,

(2.2)

and for the elements of the singular series - the systems

dΠi
k(νi)
dνi

= AΠi
k(νi) + f i

k(νi), k = 0, 1, 2, · · · , i = 1, p + 1, (2.3)

where the functions f i
k(νi), i = 1, p + 1 have the presentation

f i
k(νi) =

{
0, k = 0

∑k−1
j=0

A
(k−j−1)
1 (τi−1)
(k−j−1)! νk−j−1

i Πi
j(νi), k = 1, 2, · · ·
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Systems (2.2) have solutions of the form

xi
0(t) = P r

Aαi
0(t)−A+ϕi(t),

xi
k(t) = P r

Aαi
k(t) + A+(Lxi

k−1)(t), k = 1, 2, 3, · · · ,
(2.4)

if and only if H5 and

(I): P r
A∗(Lxi

k−1)(t) = 0, k = 1, 2, 3, · · · , i = 1, p + 1
are fulfilled. The condition of solvability (I) will be used for the determination of
r - dimensional vector - functions αi

k(t), k = 1, 2, 3, · · · , i = 1, p + 1. (Lx)(t) =(
d
dtx−A1(t)x

)
(t).

X(t) denotes a normal fundamental matrix of solutions of the homogeneous system
dx
dt = Ax. According to condition H1 matrix T exists such that

detT 6= 0 and A = T

(
A 0
0 0

)
T−1 ,

where A is (n− r)× (n− r) matrix, whose eigenvalues have negative real parts. Then

exp(At) = T

(
exp(At) 0

0 E

)
T−1 or exp(At)T = T

(
exp(At) 0

0 E

)
.

Let the matrix T also be presented in a block form T = [T1 T2], where T1 is n×(n−r)
matrix and T2 is n× r matrix. Then exp(At)T1 = T1 exp(At) and exp(At)T2 = T2.

A solution of system (2.3) under k = 0 has the form

Πi
0(νi) = X(νi)ci

0, ci
0 ∈ Rn.

In order to realize a condition Π0(νi) → 0 under ε → 0 the last r components of the
vector ci

0 are taken to be equal to zero. The solution of (2.3) under k = 0 becomes
the following

Πi
0(νi) = Xn−r(νi)ci

0, ci
0 ∈ Rn−r, (2.5)

where Xn−r(νi) = exp(Aνi)T1 is n × (n − r) matrix. The solution of (2.3) under
k = 1, 2, · · · is

Πi
k(νi) = Xn−r(νi)ci

k +
∫ ∞

0

K(νi, s)f i
k(s)ds,

where

K(νi, s) =
{

X(νi)PX−1(s), 0 ≤ s ≤ νi < ∞,
−X(νi)(I − P )X−1(s), 0 ≤ νi ≤ s < ∞,

P is a spectral projector of the matrix A on the left semi-plane.

A choice of K(νi, s) guarantees that the partial solutions of (2.3) are bounded
exponentially.

For definition of the vector-functions αi
k(t) the form of xi

k(t) from (2.4) is substi-
tuted in the condition of solvability (I) and the following systems are obtained

Dα̇i
k(t) = B(t)αi

k(t) + gi
k(t) = 0, k = 0, 1, 2, · · · , i = 1, p, (2.6)
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where

D = P r
A∗P

r
A, gi

k(t) =
{ −P r

A∗ (LA+ϕi) (t), k = 0
−P r

A∗
(
LA+(Lxi

k−1)(t)
)
(t), k = 1, 2, · · · ,

B(t) = P r
A∗A1(t)P r

A.

According to condition H1 rankA = r. It is easy to prove rankD = r.

A general solution of (2.6) in every subinterval ]τi−1, τi], i = 1, p + 1 is

αi
k(t) = Φ(t)Φ−1(τi−1)ηi

k +
∫ t

τi−1

Φ(t)Φ−1(s)D
−1

gi
k(s)ds, (2.7)

where Φ(t) is r × r fundamental matrix of solutions of the homogeneous system
ẋ = D

−1
B(t)x and ηi

k is r-dimensional unknown constant vector.

The initial and impulse conditions will be used for definition of unknown constant
vectors ηi

k and ci
k. Because of the generalized character of the impulsive and initial

conditions, the solution xi(ε, t) in every subinterval (τi−1, τi], i = 1, p + 1 depends on
an arbitrary constant vector ξi under successive gradation from interval to interval.
These constants take part in the elements of the singular series and also in the elements
of the regular series. Therefore in the interval (τi−1, τi] it is got accumulation of the
constants ξ1, ξ2, · · · , ξi in the solution xi(ε, t). A dependence between constants ξi,
i = 1, p + 1 exists because of the recurrent relation between the elements xi

k(t) of
the regular series and between the elements of the singular series. Difficulties are
obvious if we work by successive gradation from interval to interval. For this reason
a modification of the problem (1.1-1.3) similar to this one in [3] is needed.

The following denotations are introduced.

Q0 = [D Θ1 · · ·Θp]
T

, Q1 = [Θ0 N1Θ2 · · ·Θp]
T

, . . . , Qi = [Θ0 · · ·Θi−1 Ni Θi+1 · · ·Θp]
T

, . . .

Qp = [Θ0 · · ·Θp−1 Np]
T

,

R1 = [Θ0 M1 Θ2 · · ·Θp]
T

, . . . , Ri = [Θ0 · · ·Θi−1 Mi Θi+1 · · ·Θp]
T

, . . .

Rp = [Θ0 · · ·Θp−1 Mp]
T

, h = [v h1 · · ·hp]
T

,

where Qi, i = 0, p, Ri, i = 1, p are ν×n matrices, ν = s+k1 +k2 + · · ·+kp, Θ0 is s×n
matrix with zero elements, Θi, i = 1, 2, · · · p, are ki × n matrices with zero elements,
h is ν-dimensional vector. Then the initial and impulse conditions are rewritten as
follows

p∑

i=0

Qix
i+1(τi, ε) +

p∑

i=1

Rix
i(τi, ε) = h . (2.8)

The coefficients before identical powers of ε are equalized in (2.8). Then

∑p
i=0 Qi

(
xi+1

0 (τi) + Πi+1
0 (0)

)
+

∑p
i=1 Ri

(
xi

0(τi) + Πi
0

(
τi−τi−1

ε

))
= h,

∑p
i=0 Qi

(
xi+1

k (τi) + Πi+1
k (0)

)
+

∑p
i=1 Ri

(
xi

k(τi) + Πi
k

(
τi−τi−1

ε

))
= 0,

k = 1, 2, 3, · · · .

(2.9)
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In system (2.9) under k = 0 are substituted xi
0(t) and Πi

0(νi), i = 1, p + 1 from (2.4)
and (2.5), respectively. Then system (2.9) under k = 0 takes the form

p+1∑

i=1

(
liα

i
0(·) + Di(ε)ci

0

)
= h +

p∑

i=0

QiA
+ϕi+1(τi) +

p∑

i=1

RiA
+ϕi(τi), (2.10)

where

lix(·) = Qi−1P
r
Ax(τi−1) + RiP

r
Ax(τi), i = 1, p, lp+1x(·) = QpP

r
Ax(τi−1)

are ν × r vector functionals,

Di(ε) = Qi−1Xn−r(0) + RiXn−r

(
τi − τi−1

ε

)
, i = 1, p,Dp+1(ε) = QpXn−r(0)

are (ν × (n− r)) matrices.

Let D(ε) = [D1(ε) · · ·Dp+1(ε)] be a (ν × ((p + 1)(n− r))) matrix,
l(·) = [l1(·) · · · lp+1(·)] is (ν × ((p + 1)r)) a vector functional,
h0 = h +

∑p
i=0 QiA

+ϕi+1(τi) +
∑p

i=1 RiA
+ϕi(τi) is a ν-dimensional vector,

α0(t) =
[
α1

0(t) · · ·αp+1
0 (t)

]T

is a (p + 1)r-dimensional vector,

c0 =
[
c1
0 · · · cp+1

0

]T

is a (p + 1)(n− r)-dimensional vector.

With these notations system (2.10) may be written as follows

lα0(·) = h−D(ε)c0. (2.11)

In the last equality are substituted αi
0(t), i = 1, p + 1 from (2.7). Then we obtain

Pη0 + D(ε)c0 = h0, (2.12)

where P = [P1 · · ·Pp+1] is (ν × (n + 1)r) matrix, Pi = liΦ(·)Φ−1(τi−1), i = 1, p + 1
are (ν × r) matrices, h0 = h0−

∑p+1
i=1 li

∫ (

τi−1
·)Φ(·)Φ−1(s)D

−1
gi
0(s)ds is ν-dimensional

vector and η0 =
[
η1
0 · · · ηp+1

0

]T

is (p + 1)r-dimensional vector.

The matrix D(ε) has a structure D(ε) = D0 + O
(
εq exp

(−α
ε

))
, q ∈ N, α is a

positive constant, D0 is (ν × (p + 1)(n − r)) matrix with constant elements. The
exponentially small elements in the matrix D(ε) are rejected and system (2.12) takes
the form

M

[
η0

c0

]
= h0, (2.13)

where M =
[
P D0

]
is (ν × (p + 1)n) matrix. Let the following condition be fulfilled.

H6: rankM = m1 ≤ min(ν, (p + 1)n).

Then system (2.13) has a solution
[

η0

c0

]
= P k

Mξ0 + M+h0, (2.14)

if and only if
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H7: P d
M∗h0 = 0.

P k
M designates a matrix consisting of k = (p + 1)−m1 linear independent columns of

the matrix projector PM , PM : R(p+1)n → kerM and P d
M∗ denotes a matrix consisting

of d = ν − m1 linear independent rows of the matrix projector PM∗ , PM∗ : Rν →
kerM∗, ξ0 ∈ Rk and M+ is a unique Moore-Penrose inverse matrix of the matrix M .

Let (p + 1)r = r and (p + 1)(n− r) = n. Then

η0 =
[
P k

M

]
r
ξ0 +

[
M+h0

]
r
, c0 =

[
P k

M

]
n

ξ0 +
[
M+h0

]
n

,

where index r means the first r rows of the matrix P k
M and the vector M+h0 and

index n means the last n rows of the matrix P k
M and the vector M+h0.

According to denotations of η0 and c0 above, we obtain

ηi
0 =

[
P k

M

]ri

r
ξ0 +

[
M+h0

]ri

r
, c0 =

[
P k

M

]ni

n
ξ0 +

[
M+h0

]ni

n
, i = 1, p + 1, (2.15)

where the index ri means that under i = 1 we take the first r rows of the matrix[
P k

M

]
r

and the vector
[
M+h0

]
r
, under i = 2 the second r rows of the same matrix

and the same vector and etc. The index ni means that under i = 1 we take the first
(n− r) rows of the matrix

[
P k

M

]
n

and the vector
[
M+h0

]
n
, under i = 2- the second

(n− r) rows and etc.

According to (2.15) the forms of xi
0(t) and Πi

0(νi) become the following

xi
0(t) = Φri

r (t)ξ0 + xi
0(t), Πi

0(νi) = Xni
n−r(νi)ξ0 + Π

i

0(νi) i = 1, p + 1, (2.16)

Φri
r (t) = P r

AΦ(t)Φ−1(τi−1)
[
P k

M

]ri

r
, Xni

n−r(νi) = Xn−r(νi)
[
P k

M

]ri

r
,

Π
i

0(νi) = Xn−r(νi)
[
M+h0

]ni

n
,

xi
0(t) = P r

AΦ(t)Φ−1(τi−1)
[
M+h0

]ri

r
+ P r

A

∫ t

τi−1

Φ(t)Φ−1(s)D
−1

gi
0(s)−A+ϕi(t).

On analogy of system (2.11) the following system is obtained

lα1(·) + D(ε)c1 = h1(ε), (2.17)

where α1(t) =
[
α1

1(t) · · ·αp+1
1 (t)

]T

is (p + 1)r-dimensional vector, c1 =
[
c1
1 · · · cp+1

1

]T

is (p + 1)(n− r)-dimensional vector.

Keeping in mind the expressions from (2.16), the ν-dimensional vector h1(ε) may
be written as follows

h1(ε) = (A11 + A12(ε)) ξ0 + a1(ε), (2.18)

where

A11 = −
p+1∑

i=0

QiA
+ (LΦri+1

r ) (τi)−
p∑

i=1

RiA
+ (LΦri

r ) (τi),



32 L. I. Karandjulov and Y. P. Stoyanova

A12(ε) = −
p+1∑

i=0

Qi

∫ ∞

0

K(0, s)A1(τi)X
ni+1
n−r (s)ds−

−
p∑

i=1

Ri

∫ ∞

0

K

(
τi − τi−1

ε
, s

)
A1(τi)Xni

n−r(s)ds

a1(ε) = −
p+1∑

i=0

QiA
+

(
Lxi+1

0

)
(τi)−

p∑

i=1

RiA
+

(
Lxi

0

)
(τi)−

−
p+1∑

i=0

Qi

∫ ∞

0

K(0, s)A1(τi)Π
i+1

0 (s)ds−
p∑

i=1

Ri

∫ ∞

0

K

(
τi − τi−1

ε
, s

)
A1(τi)Π

i

0(s)ds.

According to (2.6) the functions αi
1(t), i = 1, p + 1 are defined from the systems

Dα̇i
1(t) = B(t)αi

1(t) + gi
1(t), i = 1, p + 1.

The functions gi
1(t), i = 1, p + 1 are presented in the form

gi
1(t) = Bi

11(t)ξ0 + bi
1(t), (2.19)

where Bi
11(t) = −P r

A∗ (LA+ (LΦri
r ) (t)) (t), bi

1(t) = −P r
A∗

(
LA+

(
Lxi

0

)
(t)

)
(t).

Analogously to system (2.13) the following system is obtained

M

[
η1

c1

]
= h1(ε), (2.20)

where η1 =
(
η1
1 · · · ηp+1

1

)T

is (p + 1)r-dimensional vector and

h1(ε) = A11(ε)ξ0 + a1(ε), (2.21)

A11(ε) = A11 + A12(ε)−
∑p+1

i=1 li
∫ (·)

τi−1
Φ(·)Φ−1(s)Bi

11(s)ds,

a1(ε) = a1(ε)−
∑p+1

i=1 li
∫ (·)

τi−1
Φ(·)Φ−1(s)bi

1(s)ds.

System (2.20) has solution

ηi
1 =

[
P k

M

]ri

r
ξ1 +

[
M+h1

]ri

r
, ci

1 =
[
P k

M

]ni

n
ξ1 +

[
M+h1

]ni

n
, i = 1, p + 1, (2.22)

if and only if P d
M∗h1 = 0.

Keeping in mind the form of h1(ε) from (2.21), the last condition may be written
as follows

R(ε)ξ0 = a1(ε), (2.23)

where R(ε) = P d
M∗A11(ε) is d × ν matrix and a1(ε) = −P d

M∗a1(ε) is d-dimensional
vector.

The matrix R(ε) has a structure R(ε) = R0 +O
(
εs exp

(−α
ε

))
and the vector a1(ε)

has a structure a1(ε) = a10+O
(
εq exp

(−α
ε

))
, s, q ∈ N, α-positive constant, R0-d×ν

constant matrix, a10- d-dimensional constant vector.
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The exponentially small elements in R(ε) and a1(ε) are rejected and system (2.23)
takes the form

R0ξ0 = a10. (2.24)

Let the following condition be fulfilled

H8: rankR0 = ν < d.
Then system (2.24) has a unique solution

ξ0 = R+
0 a10, (2.25)

if and only if PR∗0P
d
M∗a10 = 0.

The last requirement is always fulfilled if the following condition is real

H9: PR∗0P
d
M∗ = 0.

According to (2.25), the equalities (2.16) take the representation

xi
0(t) = Φri

r (t)R+
0 a10 +xi

0(t), Πi
0(νi) = Xni

n−r(νi)R+
0 a10 +Π

i

0(νi), i = 1, p + 1. (2.26)

From (2.4), (2.5) and (2.22) the following is obtained

xi
1(t) = Φri

r (t)ξ1 + xi
1(t), Πi

1(νi) = Xni
n−r(νi)ξ1 + Π

i

1(νi), i = 1, p + 1, (2.27)

where xi
1(t) = P r

AΦ(t)Φ−1(τi−1)
[
M+h1

]ri

r
+P r

A

∫ t

τi−1
Φ(t)Φ−1(s)D

−1
gi
1(s)ds+A+

(
Lxi

0

)
(t),

Π
i

1(νi) = Xn−r(νi)
[
M+h1

]ni

n
+

∫∞
0

K(τ, s)A1(τi)Πi
0(s)ds.

Analogously to system (2.11) the following system is obtained

lα2(·) + D(ε)c2 = h2(ε), (2.28)

where α2(t) =
(
α1

2(t) · · ·αp+1
2 (t)

)T

is (p + 1)r-dimensional vector, c2 = (c1
2 · · · cp+1

2 )T

is
(p+1)(n−r)- dimensional vector and h2(ε) = (A11 + A12(ε)) ξ1+a2(ε) is ν-dimensional
vector, a2(ε) = −∑p

i=0 QiA
+

(
Lxi+1

1

)
(τi)−

∑p
i=1 RiA

+
(
Lxi

1

)
(τi)−

−∑p
i=0 Qi

∫∞
0

K(0, s)
(
A1(τi)Π

i+1

1 (s) + A′1(τi)sΠi+1
0 (s)

)
ds−

−∑p
i=1 Ri

∫∞
0

K
(

τi−τi−1
ε , s

) (
A1(τi)Π

i

1(s) + A′1(τi)sΠi
0(s)

)
ds.

According to (2.7), the functions αi
2(t), i = 1, p + 1 have the form

αi
2(t) = Φ(t)Φ−1(τi−1)ηi

2 +
∫ t

τi−1

Φ(t)Φ−1(s)D
−1

gi
2(s)ds,

where gi
2(t) has the form

gi
2(t) = Bi

11(t)ξ1 + bi
2(t), (2.29)

bi
2(t) = −P r

A∗
(
LA+

(
Lxi

1

)
(t)

)
(t) .

A system

M

[
η2

c2

]
= h2(ε, ξ1), (2.30)
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is obtained analogously to system (2.11). From solvability condition P d
M∗h2(ε, ξ1) = 0

of system (2.30) and by analogy to (2.23), the following system is obtained

R(ε)ξ1 = a2(ε), (2.31)

where a2(ε) = −P d
M∗a2(ε), a2(ε) = a2(ε)−

∑p+1
i=1 li

∫ (·)
τi−1

Φ(·)Φ−1(s)D
−1

bi
2(s)ds, and

a2(ε) = a20 + O
(
εs exp

(−α
ε

))
s ∈ N , α - positive constant, a20 - d-dimensional

vector.

The exponentially small elements in R(ε) and a2(ε) are rejected and system (2.31)
takes the form

R0ξ1 = a20.

The last system under condition H8 has a unique solution

ξ1 = R+
0 a20.

if and only if condition H9 is fulfilled. The last equality is substituted in (2.27). Then
the following expressions for xi

1(t) and Πi
1(νi) are obtained

xi
1(t) = Φri

r (t)R+
0 a20 + xi

1(t), Πi
1(νi) = Xni

n−rR
+
0 a20 + Π

i

1(νi), i = 1, p + 1. (2.32)

Analogously to the statement above for k = 2, 3, · · · the following is obtained

xi
k(t) = Φri

r (t)R+
0 ak+1,0 + xi

k(t), Πi
k(νi) = Xni

n−rR
+
0 ak+1,0 + Π

i

k(νi), i = 1, p + 1.
(2.33)

xi
k(t) = P r

AΦ(t)Φ−1(τi−1)
[
M+hk

]ri

r
+ P r

A

∫ t

τi−1

Φ(t)Φ−1(s)D
−1

gi
k(s)ds + A+

(
Lxi

k−1

)
(t),

Π
i

k(νi) = Xn−r(νi)
[
M+hk

]ni

n
+

∫ ∞

0

K(τ, s)
k−1∑

j=0

Ak−j−1
1 (τi)

(k − j − 1)!
sk−j−1Πi

j(s)ds,

ak(ε) = −P d
M∗ak(ε), ak(ε) = ak(ε)−

p+1∑

i=1

li

∫ (·)

τi−1

Φ(·)Φ−1(s)D
−1

bi
k(s)ds,

bi
k(t) = −P r

A∗
(
LA+

(
Lxi

k−1

)
(t)

)
(t), ak(ε) = −∑p

i=0 QiA
+

(
Lxi+1

k−1

)
(τi)−

−∑p
i=1 RiA

+
(
Lxi

k−1

)
(τi)−

∑p
i=0 Qi

∫∞
0

K(0, s)
(∑k−2

j=0
A

(k−j−1)
1 (τi)
(k−j−1)! sk−j−1Πi+1

j (s)+

+A1(τi)Π
i+1

k−1(s)
)

ds−∑p
i=1 Ri

∫∞
0

K
(

τi−τi−1
ε , s

) (∑k−2
j=0

A
(k−j−1)
1 (τi)
(k−j−1)! sk−j−1Πi+1

j (s)+

+A1(τi)Π
i

k−1(s)
)

ds, hk(ε) = A11(ε)ξk−1+ak(ε), hk(ε) = (A11 + A12(ε)) ξk−1+ak(ε),

gi
k(t) = Bi

11(t)R
+
0 ak+1,0 + bi

k(t).

Let
u(t, ε) = x(t, ε)−Xn(t, ε), (2.34)

where x(t, ε) is the exact solution of (1.1), (1.2), (1.3) and

Xn(t, ε) =
n∑

k=0

εk(xi
k(t) + Πi

kx(νi)), i = 1, p + 1.
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It is easy to show that under some conditions ‖u(t, ε)‖ ≤ cεn+1, using the scheme
of proof in [8], [1] with the necessary changes originating from the generalized initial
and impulse conditions.

On this way the following theorem is proved.

Theorem 1: Let the conditions H1-H4, H6 and H8 be fulfilled. The initial impul-
sive problem (1.1),(1.2), (1.3) has a unique asymptotic expansion of the solution in
the form (2.1). The coefficients of the regular and singular series have the represen-
tation (2.26), under k = 0 and (2.32), (2.33) under k = 1, 2, 3, · · · if and only if ϕ(t)
satisfies the condition H5 and v, hi, i = 1, p satisfy H7 and H9.

The next bound is true for the boundary functions

‖Πi
k(νi)‖ ≤ σexp(−κνi), i = 1, p + 1, k = 0, 1, · · · ,

where σ and κ are positive constants.

Remark 1: Let, instead of H6, the following condition be fulfilled

H10: ν = (p + 1)n, rankM = m1 < min(ν, (p + 1)n).

Then rankPM = rankPM∗ = ν−m1 = k = d. The matrix rankPM∗ is k×ν matrix
and the matrix R0 is a rectangular matrix. According to H8 (d = k), system (2.23)
is always solvable as condition H9 is always real and R+

0 = R−1
0 . The solution of

problem (1.1),(1.2), (1.3) is presented in series (2.1) whose coefficients have the form
(2.26), (2.32), (2.33).

Remark 2: Let instead of H6 the following condition be fulfilled

H11: ν = (p + 1)n, detM 6= 0.

Then systems (2.13), (2.30) are always solvable, PM∗ = 0, M+ = M−1. The
coefficients of the formally asymptotic solution of the problem (1.1),(1.2), (1.3) have
the representation

xi
k(t) = xi

k(t), Πi
k(νi) = Π

i

k(νi), k = 0, 1, 2, · · · , i = 1, p + 1.

3. Example

Let t ∈ [0, 2], t 6= τ1, τ1 = 1 and problem (1.1-1.3) have the following coefficients:

A =
( −1 2

1 −2

)
, A1(t) =

( −t 2t + 1
2t −4t + 2

)
, ϕ(t) =

{ (
1 −1

)
, t ∈ [0, 1]

0, t ∈ (1, 2] ,

D =
(

2 6
)
, v = 1, N1 =




0 0
1 3
2 1


 , M1 =



−1 2
0 0
1 −2


 , h1 =



−1
1
4


 .

Then

A+ =
1
10

( −1 1
2 −2

)
, P 1

A =
1
5

(
2
1

)
, P 1

A∗ =
1
2

(
1 1

)
,
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Obviously the requirement H5 is fulfilled. Further D = 3
10 , D

−1
= 10

3 , B(t) = 3
10 ,

Φ(t) = et, Φ−1(t) = e−t,

X(t) =
1
3

(
2 + e−3t 2− 2e−3t

1− e−3t 1 + 2e−3t

)
, X−1(t) =

1
3

(
2 + e3t 2− 2e3t

1− e3t 1 + 2e3t

)
,

X1(t) =
(

1
−1

)
e−3t, P =

1
3

(
1 −2

−1 2

)
, I − P =

1
3

(
2 2
1 1

)
,

K(νi, s) =





1
3

(
e−3(νi−s) −2e−3(νi−s)

−e−3(νi−s) 2e−3(νi−s),

)
0 ≤ s ≤ νi < ∞,

1
3

(
2 2
1 1

)
, 0 ≤ νi ≤ s < ∞.

Q0 =




2 6
0 0
0 0
0 0


 , Q1 =




0 0
0 0
1 3
2 1


 , R1 =




0 0
−1 2
0 0
1 −2


 , h0 =




1
−1
1
4


 ,

P =




2 0
0 0
0 1
0 1


 , D(ε) =




−4 0
−3e−

3
ε 0

0 −2
3e−

3
ε 1


 , M =




2 0 −4 0
0 0 0 0
0 1 0 −2
0 1 0 1


 .

then M+ =
2
30




3 0 0 0
0 0 10 20
−6 0 0 0
0 0 −10 10


 , P 1

M =
1
5




2
0
1
0


 , P 1

M∗ =
(

0 1 0 0
)
,

h0 = (3 0 1 3)T
, P 1

M∗h0 = 0, i.e., the condition H7 is fulfilled.

Let t ∈ [0, 1], then ν1 = t
ε and in accordance with (2.7) for α1

0(t) and α2
0(t) the

following is obtained

α1
0(t) = etη1

0 +
1
3
et +

5
3
t− 1

3
, α2

0(t) = et−1η2
0

x1
0(t) =

1
5

(
2
1

)
etη1

0+
1
5

(
2
1

)(
1
3
et +

5
3
t− 1

3

)
−1

5

( −1
2

)
, Π1

0(ν1) =
(

1
−1

)
e−3ν1c1

0,

and under t ∈ (1, 2], then ν2 = t−1
ε

x2
0(t) =

1
5

(
2
1

)
et−1η2

0 , Π2
0(ν2) =

(
1
−1

)
e−3ν2c2

0.

From (2.14) the following is obtained

η1
0 =

2
5
ξ0 +

3
10

, η2
0 =

7
3
, c1

0 =
1
5
ξ0 − 3

5
, c2

0 =
2
3
.

Further

R(ε) = − 2
25

e +
3
ε
e−

3
ε , a1(ε) =

19
150

e +
24
15
− 9

5
e
−3
ε

ε
.
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Then R0 = − 2
25e and a10 = 19

150e + 24
15 . In this case R+

0 = R−1
0 = − 25

2e , ξ0 = − 19
12 − 20

e
and PR∗0 = 0, i.e., the condition H9 is fulfilled.

x1(t, ε) = −8
5
e

(
2
1

)
et +

(
10t + 1
5t− 7

)
+

(
1
−1

) (
−11

12
− 4

e

)
e−3 t

ε + O(ε),

t ∈ [0, 1].

x2(t, ε) =
7
15

(
2
1

)
et−1 +

2
3

(
1
−1

)
e−3 t−1

ε + O(ε),

t ∈ (1, 2].
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