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1. P 

Let D denote the rectangleD = {(x, y) : a < x < x0, b0 < y < b}, Γ1 = {a < x <
x0, y = b}, Γ2 = {x = a, b0 < y < b}. In the domainD we consider the following
integral equation

U(x, y) + λ
x∫

a

U(t,y)
(t−a)α dt− µ

b∫
y

U(x,s)
(b−s)β +

+ δ
x∫

a

dt
(t−a)α

b∫
y

U(t,s)
(b−s)β ds(x, y) = f (x, y)

(1.1)

whereα > 0, β > 0 andλ, µ, δ are constants, the right-hand side functionf (x, y) ∈
C(D̄) is a given function inD̄, such that it vanishes on the linesΓ1, Γ2.

If the integral equation (1.1) has a solution and the corresponding integrals are
convergent, then passing to the limit in (1.1) asy→ b andx→ a, we obtain onΓ2

andΓ1 the following two one-dimensional Volterra type integral equations:

U(a, y) − µ
b∫

y

U(a, s)
(b− s)β

ds= f (a, y), (1.2)

U(x,b) + λ

x∫

a

U(t, b)
(t − a)α

dt = f (x, b). (1.3)
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The equations (1.2) and (1.3) are studied in detail in [1], [2].
It should be noted that the integral equation (1.1) under the following restrictions

for the pairs of parametersα < 1, β < 1; α < 1, β = 1; α = 1, β < 1 andα > 1, β >
1 was investigated in [3], [4].

In this paper the general solution of the integral equation (1.1) is constructed for
the pairsα = 1, β > 1 andα > 1, β = 1. It will be established that for certain values
of parametersλ and µ the corresponding homogeneous integral equation (1.1) has
an infinite number of linear independent solutions and for other values ofλ, µ the
homogeneous integral equation (1.1) has no other solutions than the trivial solution.
Under some additional conditions it will be proved that the inhomogeneous integral
equation (1.1) for certain values ofλ, µ is solvable, and for some other values of
λ, µ has a unique solution. In the case whenδ = −λµ in (1.1), the solution can be
found using a well known approach.

It seems to the authors that the integral equation (1.1) with super-singularity has
not been studied yet.

2. S     -    

Theorem 2.1Let us suppose thatα = 1, β > 1, µ > 0, λ < 0,and δ = −λµ in
integral equation (1.1). Moreover, assume that the behaviour of the right-hand side
function f (x, y) ∈ C(D̄) is determined by the following asymptotic formulae

f (x, y) = o[exp(−µωβb(y))(b− y)γ1], γ1 > β (2.1)

ω
β
b(y) = [(β − 1)(b− y)β−1]−1,

asy→ b and

f (x, y) = o[(x− a)γ2], γ2 > |λ|, (2.2)

asx→ a.
Then the corresponding homogeneous integral equation (1.1) in the class of func-

tionsC(D̄) has an infinite number of linear independent solutions. The non-homoge-
neous integral equation (1.1) is always solvable inC(D̄) and its general solution
containing four arbitrary functions is given by the following formula

U(x, y) = exp[−µωβb(y)]ϕ1(x) + (x− a)−λψ1(y)+

+ (x− a)−λ exp[−µωβb(y)]

b∫

y

exp[µωβb(s)]ψ2(s)ds+

+ (x− a)−λ exp[−µωβb(y)]

x∫

a

(t − a)λϕ2(t)dt + f (x, y)−
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−λ
x∫

a

(
t − a
x− a

)λ
f (t, y)
t − a

dt + µ

b∫

y

exp[µ(ωβb(s) − ωβb(y))]

(b− s)β
f (x, s)ds−

−λµ
x∫

a

(
t − a
x− a

)λ
dt

t − a

b∫

y

exp[µ(ωβb(s) − ωβb(y))]

(b− s)β
f (t, s)ds≡

≡ T1,β[ϕ1(x), ϕ2(x), ψ1(y), ψ2(y), f (x, y)], (2.3)

In (2.3)ϕ j(x), ψ j(y) , j = 1,2 are arbitrary functions defined onΓ1, Γ2, such that
ϕ j(x) ∈ C(Γ̄1), ψ j(y) ∈ C(Γ̄2) ( j = 1,2) satisfying the following conditions asx →
a, y→ b:

ϕ1(x) = o[(x− a)γ3], γ3 > 0 asx→ a (2.4)

ψ1(y) = o[(b− y)γ4], γ4 > β − 1 as y→ b (2.5)

ϕ2(x) = o[(x− a)γ5 exp(−µωβb(y))], γ5 > |λ| as x→ a (2.5)

ψ2(y) = o[exp(−µωβb(y))(b− y)γ6], γ6 > β − 1 as y→ b. (2.7)

Proof. The proof of Theorem 2.1 essentially uses the theory of partial differential
equations of hyperbolic type with singular and super-singular lines [5], [6]. For the
values of parametersα = 1, β > 1, λ < 0, µ > 0 let the integral equation (1.1) have
a differentiable solution in the domainD. Then by differentiating (1.1) with respect
to x andy, we get the following equality

∂2U
∂x∂y

+
λ

x− a
∂U
∂x

+
µ

(b− y)β
∂U
∂x
− δ

(x− a)(b− y)β
U =

∂2 f
∂x∂y

.

Thus we reduce the given problem to finding a solution of the so-called model type
second order linear hyperbolic equation with one singular line onΓ1 and one super-
singular line onΓ2. The theory of the model equation obtained above is constructed
in [5-6]. According to [5-6], the solution of the model equation forλ < 0, µ > 0, δ =

−λµ has the form:

U(x, y) = exp[−µωβb(y)]ϕ1(x) + (x− a)−λψ1(y) +

+ (x− a)−λ exp[−µωβb(y)]

b∫

y

exp[µωβb(s)]ψ2(s)ds+

+ (x− a)−λ exp[−µωβb(y)]

x∫

a

(t − a)λϕ2(t)dt −
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−
x∫

a

(
t − a
x− a

)λdt

b∫

y

exp[µ(ωβb(s) − ωβb(y))]
∂2 f
∂t∂s

ds.

Performing the necessary transformations in this expression and using the conditions
of Theorem 2.1, we get the integral representation (2.3), which is obtained by suppos-

ing that ∂
2 f

∂x∂y ∈ C(D̄). By direct computation one can check that under the conditions
of the theorem the solution having the form (2.3) satisfies the integral equation (1.1)
even in the case whenf (x, y) ∈ C(D̄). �

Theorem 2.2Let us suppose thatα = 1, β > 1, µ < 0, λ > 0, δ = −λµ in the
integral equation (1.1) andf (x, y) ∈ C(D̄). In addition, assume that on the lines
Γ1, Γ2 the functionf (x, y) ∈ C(D̄) possesses the following asymptotic properties

f (x, y) = o[(x− a)γ7], γ7 > 0, (2.8)

asx→ a and
f (x, y) = o[(b− y)γ8], γ8 > β − 1 (2.9)

asy→ b.
Then on the one hand, the corresponding homogeneous integral equation (2.1)

has only the trivial solution in the class of functionsC(D̄). On the other hand, the
non-homogeneous integral equation (1.1) is always uniquely solvable inC(D̄) and its
solution is given by formula

U(x, y) = T1,β[0, 0,0,0, f (x, y)]. (2.10)

Theorem 2.3.Let us assume that in the integral equation (1.1)α = 1, β > 1, µ <
0, λ < 0, δ = −λµ and the asymptotic behaviour of the functionf (x, y) ∈ C(D̄)
is determined according to (2.2) and (2.9) asx → a and asy → b, respectively.
Then the corresponding homogeneous integral equation (1.1) inC(D̄) has an infinite
number of linear independent solutions. Moreover, the non-homogeneous equation
(1.1) inC(D̄) is also always solvable and its general solution contains two arbitrary
functions defined onΓ2 and given by the following formula

U(x, y) = T1,β[0,0, ψ1(y), ψ2(y), f (x, y)], (2.11)

whereψ1(y), ψ2(y) arbitrary functions defined onΓ2 such thatψ1(y) has the property
(2.5) andψ2(y) satisfy the condition

ψ2(y) = o[(b− y)γ9], γ9 > β − 1. (2.12)

asy→ b
Theorem 2.4. If in the integral equation (1.1)α = 1, β > 1, µ > 0, λ >

0, δ = −λµ and the right hand side functionf (x, y) ∈ C(D̄) vanishing onΓ2 has the
asymptotic property (2.1) asy → b, then the corresponding homogeneous integral
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equation (1.1) inC(D̄) is always solvable. In this case the general solution contains
two arbitrary functions defined onΓ1 and can be written in the form

U(x, y) = T1,β[ϕ1(x), ϕ2(x),0, 0, f (x, y)], (2.13)

whereϕ1(x), ϕ2(x) are arbitrary functions defined onΓ1 such thatϕ1(x) satisfy con-
dition (2.4) asx→ a and forϕ2(x) ∈ C(Γ̄1) holds the equality

ϕ2(x) = o[(x− a)γ10], γ10 > 0.

asx→ a.
Remark 2.1. Under the conditions of Theorem 2.1 the solution of the form(2.3)

vanishes onΓ1, Γ2 according to the following asymptotic formula

U(x, y) = o[(x− a)γ11], γ11 > 0, as x→ a,

U(x, y) = o[(b− y)γ12], γ12 > β − 1, as y→ b.

Remark 2.2. If the conditions of Theorem 2.2 hold, then the solution of the form
(2.10) vanishes onΓ1, Γ2 satisfying the following relations

U(x, y) = o[(b− y)γ13], γ13 > β − 1, (2.14)

U(a, y) = f (o, y) − f (o, y) + µ

b∫

y

exp[µ(ωβb(s) − ωβb(y))]

(b− s)β
f (a, s)ds−

−µ
b∫

y

exp[µ(ωβb(s) − ωβb(y))]

(b− s)β
f (a, s)ds= 0

asx→ a, y→ b.
Remark 2.3.Under the conditions of Theorem 2.3 the solution of the form (2.11)

vanishes onΓ1, Γ2 satisfying the following relations asx→ a, y→ b

U(x, y) = o[(x− a)|λ|], as x→ a,

U(x, y) = o[(b− y)β], as y→ b.

Remark 2.4. If the conditions of Theorem 2.4 are satisfied, then the solution (2.13)
vanishes onΓ1, Γ2 such that the following asymptotic formulae hold asx→ a, y→ b

U(x, y) = o[(x− a)γ14], γ14 > 0, as x→ a,

U(x, y) = o[exp(−µωβb(y))], as y→ b.
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3. S         

Theorem 3.1.Let us assume that in the integral equation (1.1)α > 1, β = 1, µ >
0, λ < 0, δ = −λµ, and the right hand side functionf (x, y) ∈ C(D̄) satisfies the
following asymptotic relations

f (x, y) = o[exp(λωαa(x))(x− a)γ15], γ15 > α − 1 (3.1)

asx→ a and
f (x, y) = o[(b− y)γ16], γ16 > µ, (3.2)

asy→ b.
Then the corresponding homogeneous integral equation (1.1) inC(D̄) has an infi-

nite number of linear independent solutions. Besides, the non-homogeneous integral
equation (1.1) inC(D̄) is always solvable and its general solution containing four
arbitrary functions defined onΓ1, Γ2 has the form

U(x, y) = (b− y)µϕ1(x) + exp[λωαa(x)]ψ1(y)+

+ (b− y)µ exp[λωαa(x)]

b∫

y

(b− s)−µψ2(s)ds+ (b− y)µ exp[λωαa(x)]×

×
a∫

x

exp[−λωαa(t)]ϕ2(t)dt + f (x, y) − λ
x∫

a

exp[λ(ωαa(x) − ωαa(t))]
(t − a)α

f (t, y)dt +

+ µ

b∫

y

(
b− y
b− s

)µ f (x, s)
b− s

ds− µλ
b∫

y

(
b− y
b− s

)µ
ds

b− s
×

×
x∫

a

exp[λ(ωαa(x) − ωαa(t))]
(t − a)α

f (t, s)ds≡

≡ Tα,1[ϕ1(x), ϕ2(x), ψ1(y), ψ2(y), f (x, y)], (3.3)

whereωαa(x) = [(α − 1)(x− a)α−1]−1,and the arbitrary functionsϕ j(x) ∈ C(Γ̄1) and
ψ j(y) ∈ C(Γ̄2), j = 1, 2 satisfy the following asymptotic relations asx→ a, y→ b

ϕ1(x) = o[(x− a)γ17 exp(λωαa(x))], γ17 > α − 1, as x→ a, (3.4)

ψ1(y) = o[(b− y)γ18], γ18 > 0, as y→ b, (3.5)

ϕ2(x) = o[exp(λωαa(x))(x− a)γ19], γ19 > α − 1, as x→ a, (3.6)

ψ2(y) = o[(b− y)γ20], γ20 > µ, as y→ b. (3.7)

From the integral representation (3.3) it follows:
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Remark 3.1. If the conditions of Theorem 3.1 are valid, then any solution of the
integral equation (1.1) vanishes onΓ1 and Γ2 as x → a, y → b in the following
manner

U(x, y) = o[(x− a)γ21], γ21 > α − 1, as x→ a,

U(x, y) = o[(b− y)γ22], γ22 > 0, as y→ b.

Theorem 3.2.Let us assume thatα > 1, β = 1, µ < 0, λ > 0, δ = −λµ hold in the
integral equation (1.1) and the function f(x, y) ∈ C(D̄) has the asymptotic behaviour

f (x, y) = o[(x− a)γ23], γ23 > α − 1,

asx→ a and
f (x, y) = o[(b− y)γ24], γ24 > 0

asy→ b.
Then the corresponding homogeneous integral equation (1.1) inC(D̄) has only

the trivial solution, while the inhomogeneous equation (1.1) is uniquely solvable in
C(D̄). The solution is given by the formula

U(x, y) = Tα,1[0,0,0, 0, f (x, y)]. (3.8)

From Theorem 3.2 it follows:
Remark 3.2. Under the conditions of Theorem 3.2 any solution of the integral

equation (1.1) vanishes onΓ1andΓ2 having the asymptotic behaviour

U(x, y) = o[(x− a)γ25], γ25 > α − 1,

asx→ a and

U(x,b) = f (x, b) − λ
x∫

a

exp[λ(ωαa(x) − ωαa(t))]
(t − a)α

f (t, b)dt −

− f (x, b) + λ

x∫

a

exp[λ(ωαa(x) − ωαa(t))]
(t − a)α

f (t, b)dt = 0

asy→ b.
Theorem 3.3. Let us suppose that in the integral equation (1.1) the relations

α > 1, β = 1, λ < 0, µ < 0, δ = −λµ hold and the functionf (x, y) ∈ C(D̄) fulfils the
following asymptotic relations

f (x, y) = o[(x− a)γ26], γ26 > α − 1, as x→ a

and
f (x, y) = o[(b− y)γ27], γ27 > |µ| as y→ b

Then the homogeneous integral equation (1.1) inC(D̄) has an infinite number of lin-
ear independent solutions. Moreover, the non-homogeneous equation (1.1) inC(D̄)
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is always solvable and its general solution contains two arbitrary functions and has
the form

U(x, y) = Tα,1[0,0, ψ1(y), ψ2(y), f (x, y)], (3.9)

whereψ1(y), ψ2(y) are arbitrary functions such thatψ1(y) satisfy the condition (3.5)
while for the functionψ2(y) holds the following relation

ψ2(y) = o[(b− y)γ28], γ28 > 0

asy→ b.
From the integral representation (3.9) it follows:
Remark 3.3. If the conditions of Theorem 3.3 hold then any solution of the inte-

gral equation (1.1) vanishes onΓ1, Γ2 with the following asymptotic behaviour

U(x, y) = o[exp(λωαa(x))], as x→ a,

U(x, y) = o[(b− y)γ29], γ29 > 0.

In the case when the parametersλ andµ are positive, we have the assertion:
Theorem 3.4.Let us assume that in the integral equation (1.1) the relationsα >

1, β = 1, λ > 0, µ > 0, δ = −λµ, hold and for the functionf (x, y) ∈ C(D̄) the
following asymptotic relations

f (x, y) = o[(x− a)γ30 exp[−λωαa(x)], γ30 > α − 1,

asx→ a and

f (x, y) = o[(b− y)γ31], γ31 > µ,as y→ b

hold. Then the homogeneous integral equation (1.1) has an infinite number of linear
independent solutions in the class of functionsC(D̄). The non-homogeneous equation
(1.1) is also solvable inC(D̄). The general solution contains two arbitrary functions

U(x, y) = Tα,1[ϕ1(x), ϕ2(x),0, 0, f (x, y)], (3.10)

whereϕ1(x), ϕ2(x) are arbitrary functions satisfying the following conditions

ϕ1(x) = o[(x− a)γ32], γ32 > α − 1,

ϕ2(x) = o[(x− a)γ33], γ33 > α − 1

asx→ a.
From Theorem 3.4 it follows:
Remark 3.4. Under the conditions of Theorem 3.4 any solution of the integral

equation (1.1) vanishes onΓ1, Γ2 with the following asymptotic properties

U(x, y) = o[(x− a)γ34], γ34 > α − 1, as x→ a,

U(x, y) = o[(b− y)γµ ], as y→ b.
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4. S           

It is easy to see that in the case whenδ , −λµ the problem of finding the solution
of the integral equation (1.1) is reduced to the solution of this equation withλ =

0, µ = 0.
For example in the case whenα > 1, β = 1, µ > 0, λ < 0, δ , −λµ, finding the

solution of equation (1.1) is reduced to studying the solution of the following integral
equation

V(x, y) + δ1

x∫

a

dt
(t − a)α

b∫

y

V(t, s)
b− s

ds= G(x, y), (4.1)

whereδ1 = δ + λµ,

V(x, y) = (b− y)−µ exp[−λωαa(x)]U(x, y),

G(x, y) = (b− y)−µψ1(y) + exp[−λωαa(x)]ϕ1(x) +

+

x∫

a

exp(−λωαa(t))ϕ2(t)dt +

b∫

y

(b− s)−µψ2(s)ds+

+ (b− y)−µ exp[−λωαa(x)] f (x, y) − λ(b− y)−µ ×

×
x∫

a

exp[−λωαa(t)] f (t, y)
(t − a)α

dt + µexp[−λωαa(x)] ×

×
b∫

y

f (x, s)ds

(b− s)µ+1
− λµ

b∫

y

ds

(b− s)µ+1

x∫

a

exp[−λωαa(t)]
(t − a)α

f (t, s)ds,

ϕ j(x), ψ j(y), j = 1,2 are arbitrary functions defined onΓ1, Γ2 such thatϕ j(x) ∈
C(Γ̄1), ψ j(y) ∈ C(Γ̄2), j = 1,2 and these functions satisfy the conditions (3.4)-(3.6)
asx→ a, y→ b.

Let us search the solution of the integral equation (4.1) in the following form

V(x, y) =

∞∑

k=0

(b− y)k+δVk(x), δ > 0, (4.2)

whereVk(x) are unknown functions.
Suppose that the functionG(x, y) has the following series representation

G(x, y) =

∞∑

k=0

(b− y)k+δGk(x), (4.3)

whereGk(x) are given functions. Moreover, assume that the series (4.3) converge
absolutely and uniformly.
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In this case in finding the solutions of the two-dimensional integral equation (4.1)
one should determine the solutions of the following one-dimensional Volterra type
integral equations

Vk(x) +
δ1

k + δ

x∫

a

Vk(t)dt
(t − a)α

= Gk(x), (4.4)

k = 0, 1,2, . . ., which were investigated in [1-2] in detail.
Using the technique from [1-2] for solving (4.4), we find that

Vk(x) = exp[
δ1

k + δ
ωαa(x)]ck + Gk(x)−

− δ1

k + δ

x∫

a

exp[+ δ1
k+δ (ω

α
a(x) − ωαa(t))]

(t − a)α
Gk(t)dt, (4.5)

wherec0, c1, c2, .... are arbitrary constants.
The solutions of the form (4.5) were obtained, supposing thatδ1 < 0 and the

functionsGk(x) ∈ C(Γ̄0) vanish in the pointx = c having the following asymptotic
behaviour

Gk(x) = o
[
exp

(
δ1

k + δ
ωαa(x)

)
(x− a)γ35

]
, (4.6)

γ35 > α − 1, k = 0, 1,2, . . ..
In this case, we have the following assertion.
Theorem 4.1. Let us assume that in the integral equation (4.1) relationsα >

1, µ > 0, λ < 0, δ1 = δ + λµ , 0, δ1 < 0 (δ < |λ|µ) hold and moreover for the
functionG(x, y) the series representation (4.3) holds, whereGk(x) are given functions
vanishing onΓ1 with the asymptotic behaviour (4.6), whereδ > 0. Then the corre-
sponding homogeneous integral equation (4.1) in the class of functions having the
series representation of the form (4.2) has an infinite number of linear independent
solutions of the form

Vk(x, y) = exp
[
δ1

k + δ
ωαa(x)

]
(b− y)k+δ, k = 0, 1, . . . , δ > 0.

The non-homogeneous integral equation (4.1) in the class of functions having the
series form (4.2) is always solvable and this solution is given by the following formula

V(x, y) =

∞∑

k=0

exp
[
δ1

k + δ
ωαa(x)

]
(b− y)k+δck + G(x, y)−

−
∞∑

k=0

δ1

k + δ



x∫

a

exp[ δ1
k+δ (ω

α
a(x) − ωαa(t))]

(t − a)α
Gk(t)dt

 (b− y)k+δ,

whereck (k = 0,1,2, . . .) are arbitrary constants.
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Theorem 4.2. Let us suppose that in the equation (1.1)α > 1, β = 1, µ >
0, λ < 0, δ1 = δ + λµ , 0, δ1 > 0 (δ > |λ|µ) and the functionG(x, y) is presented
in the form (4.3), whereGk(x) are given functions such thatGk(x) ∈ C(Γ̄1). Then
the corresponding homogeneous integral equation (4.1) is not solvable in the class
of functions having the series representation of the form (4.2). In this case the non-
homogeneous integral equation (4.1) has a unique solution of the series form (4.2),
which is given by the following formula

V(x, y) = G(x, y) −
x∫

a

G1(x, y, t)dt
(t − a)α

, (4.7)

where

G1(x, y, t) =

∞∑

k=0

(b− y)k+δ δ1

k + δ
exp[

δ1

k + δ
(ωαa(x) − ωαa(t))]Gk(t).

Remark 3.5. If the conditions of Theorem 4.1 are met, then the solution having the
series form (4.2) vanishes onΓ1, Γ2 and its behaviour is determined by the following
asymptotic formula

V(x, y) = o[exp(−εωαa(x))],

asx → a, whereε is a sufficiently small positive constant satisfying the conditions
ε < |δ1|

δ+k and
V(x, y) = o[(b− y)γ36], γ36 > 0, as y→ b.

Remark 3.6.Under the conditions of Theorem 4.2, the solution of the series form
(4.2) vanishes also and its asymptotic behaviour is determined from the following
equality

V(0, y) = G(0, y) −G(0, y) = 0, as x→ a,

i.e.,
V(x, y) = o((b− y)γ37), γ37 > 0, as y→ b.

The proof of the statements above can be carried out by using the technique pro-
posed in [5, 6].
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