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Abstract. Let R be a prime ring with a characteristic not equal to two, σ, τ be automor-
phisms of R, and d be a nonzero derivation of R commuting with σ and τ . It is proved that
for any (σ, τ)-left Lie ideal U of R: (1) if d(U) ⊆ Z, then σ(u) + τ(u) ∈ Z, for all u ∈ U ,
(2) if d2(U) = 0, then σ(u) + τ (u) ∈ Z, for all u ∈ U , (3) if charR 6= 2, 3, d(U) ⊆ U and
d2(U) ⊆ Z, then σ(u) + τ(u) ∈ Z, for all u ∈ U .
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1. Introduction

Let R be a ring and σ, τ be two mappings from R into itself. We write [x, y],
[x, y]σ,τ for xy − yx and xσ(y) − τ(y)x, respectively, and make extensive use of ba-
sic commutator identities: (xy, z) = x[y, z] + (x, z)y = x(y, z) − [x, z]y, [xy, z]σ,τ =
x[y, z]σ,τ + [x, τ(z)]y = x[y, σ(z)] + [x, z]σ,τy.

An additive mapping D : R→ R is called a derivation if D(xy) = D(x)y + xD(y)
holds for all x, y ∈ R. A derivation D is inner if there exists an a ∈ R such that
D(x) = [a, x] holds for all x ∈ R..

For subsets A,B ⊂ R, let [A,B] ([A,B]σ,τ ) be the additive subgroup generated
by all [a, b] ([a, b]σ,τ ) for all a ∈ A and b ∈ B. We recall that in a Lie ideal, L is
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an additive subgroup of R such that [R,L] ⊂ L. We first introduce the generalized
Lie ideal in [6] as follows. Let U be an additive subgroup of R, σ, τ : R → R two
mappings. Then (i) U is a (σ, τ)−right Lie ideal of R if [U,R]σ,τ ⊂ U. (ii) U is a
(σ, τ)−left Lie ideal of R if [R,U ]σ,τ ⊂ U. (iii) U is both a (σ, τ)−right Lie ideal and
(σ, τ)−left Lie ideal of R then U is a (σ, τ)−Lie ideal of R. Every Lie ideal of R is a
(1, 1)−left Lie ideal of R, where 1 : R→ R is the identity map. As an example, let I
be the set of integers,

R =

½µ
x y
z t

¶
| x, y, z, t ∈ I

¾
,

U =

½µ
x y
0 x

¶
| x, y ∈ I

¾
⊂ R,

and σ, τ : R → R the mappings defined by τ(x) = axa, σ(x) = bxb−1, where a =µ
1 −1
0 −1

¶
and b =

µ
1 2
0 1

¶
∈ R. Then U is a (σ, τ)−left Lie ideal but not a Lie

ideal of R. Some algebraic properties of (σ, τ)−Lie ideals are considered in [2], [3] and
[6], where further references can be found.

Let R be a prime ring with a characteristic not equal to two, d : R→ R a nonzero
derivation of R and U a Lie ideal of R. In [5] Bergen at all state that if d2(U) = 0,
then U ⊂ Z. Lee and Lee extended this result that if d2(U) ⊂ Z, then U ⊂ Z in [4].
Let d be a nonzero derivation such that σd = dσ, τd = dτ and U a (σ, τ)−Lie ideal
of R. Aydın and Soytürk [3] proved that if d2(U) = 0, then U ⊂ Z. In the present
paper, we generalize this result on (σ, τ)−left Lie ideal of R. Furthermore, we shall
extend this theorem by proving that d2(U) ⊂ Z then σ(u) + τ(u) ∈ Z, for all u ∈ U
in the case of a characteristic not equal to two and three.

Throughout, R will represent a prime ring with a characteristic not equal to 2 with
automorphisms σ, τ and non-zero derivation d such that σd = dσ, τd = dτ and Z the
center of R, U a (σ, τ)−left Lie ideal of R. Further, we often use the relations:
[xy, z]σ,τ = x[y, z]σ,τ + [x, τ(z)]y = x[y, σ(z)] + [x, z]σ,τy.

2. Results

Lemma 1. Let U a (σ, τ)−left Lie ideal of R. d2(U) = 0 and d(U) ⊂ Z then σ(u) +
τ(u) ∈ Z, for all u ∈ U .

Proof. If U ⊂ Z, then the proof is obvious. So, we assume that U 6⊂ Z. For any
u ∈ U and x ∈ R, τ(u)[x, u]σ,τ = [τ(u)x, u]σ,τ + [τ(u), τ(u)]x ∈ U. By hypothesis,
0 = d2(τ(u)[x, u]σ,τ ) = d(d(τ(u))[x, u]σ,τ + τ(u)d([x, u]σ,τ )) = 2d(τ(u))d([x, u]σ,τ ).
Since charR 6= 2, we obtain d(τ(u))d([x, u]σ,τ ) = 0, for all x ∈ R,u ∈ U. Because of
d(U) ⊂ Z we have,

d(u) = 0 or d([x, u]σ,τ ) = 0 ∀x ∈ R,u ∈ U. (2.1)

Assume d(u) 6= 0. Then d([x, u]σ,τ ) = 0, for all x ∈ R. Writing xσ(u) by x in this
equation, 0 = d([xσ(u), u]σ,τ ) = d([x, u]σ,τσ(u)) = d([x, u]σ,τ )σ(u) + [x, u]σ,τd(σ(u))
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we obtain
[x, u]σ,τd(σ(u)) = 0 ∀x ∈ R. (2.2)

Substituting xy, y ∈ R for x in (2.2), we have 0 = [xy, u]σ,τd(σ(u)) = x[y, u]σ,τd(σ(u))+
[x, τ(u)]yd(σ(u)) and so,

[R, τ(u)]Rd(σ(u)) = 0.

By primeness of R, we obtain u ∈ Z. Thus, if we return to (2.1), then we get

d(u) = 0 or u ∈ Z.

Now, let us define the subsets L = {u ∈ U | u ∈ Z} and K = {u ∈ U | d(u) =
0}. Clearly, each L and K is an additive subgroup of U . Moreover, U is the set-
theoretic union of L and K. But a group cannot be the set-theoretic union of two
proper subgroups, hence L = U or K = U. In the former case, U ⊂ Z, which is a
contradiction. Therefore, it must be d(U) = 0 and so,

0 = d([x, u]σ,τ ) = [d(x), u]σ,τ for all x ∈ R, u ∈ U.

By [7, Lemma 1], we obtain σ(u) + τ(u) ∈ Z, for all u ∈ U. Hence the proof is
complete. ¤

Theorem 1. Let U a (σ, τ)−left Lie ideal of R. If d(U) ⊂ Z then σ(u) + τ(u) ∈ Z,
for all u ∈ U .

Proof. Assume that U 6⊂ Z. For any x, y ∈ R and u, v ∈ U, by hypothesis, d([d(v)x, u]σ,τ )
= d(d(v)[x, u]σ,τ + [d(v), τ(u)]x) = d(d(v)[x, u]σ,τ ) ∈ Z and so,

d2(v)[x, u]σ,τ + d(v)d([x, u]σ,τ ) ∈ Z

Since Z is a subring of R and d(U) ⊂ Z, we have

d2(v)[x, u]σ,τ ∈ Z ∀x ∈ R,u, v ∈ U. (2.3)

Replacing x by xσ(u), u ∈ U in (2.3) and applying the above argument, we obtain

d2(v)[x, u]σ,τσ(u) ∈ Z ∀x ∈ R,u, v ∈ U.

Since d2(v)[x, u]σ,τ ∈ Z and R is prime ring, we get

d2(v)[x, u]σ,τ = 0 or u ∈ Z.

If d2(v)[x, u]σ,τ = 0 for all x ∈ R. In this equation by taking xy, y ∈ R for x and
using this equation, we have 0 = d2(v)[xy, u]σ,τ = d2(v)[x, u]σ,τy + d2(v)x[y, σ(u)] =
d2(v)x[y, σ(u)]. By the primeness of R, it implies that d2(U) = 0 or U ⊂ Z. In the
former case, we get σ(u) + τ(u) ∈ Z, for all u ∈ U by Lemma 1. Thus, we conclude
that σ(u) + τ(u) ∈ Z, for all u ∈ U. ¤

Now, suppose that U is a (σ, τ)−left Lie ideal of R. Since for all u, v ∈ U and
x ∈ R,

[x, d(u) + v]σ,τ = [x, d(u)]σ,τ + [x, v]σ,τ

= [x, d(u)]σ,τ + [d(x), u]σ,τ − [d(x), u]σ,τ + [x, v]σ,τ
= d([x, u]σ,τ )− [d(x), u]σ,τ + [x, v]σ,τ ∈ d(U) + U.
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We conclude that d(U)+U is a (σ, τ)−left Lie ideal of R. Furthermore, if d2(U) = 0
then d(d(U)+U) ⊂ d(U) ⊂ d(U)+U and d2(d(U)+U) = 0. Therefore without losing
generality, we may assume that if U is a (σ, τ)−left Lie ideal of such that d2(U) = 0,
then d(U) ⊂ U.

Lemma 2. Let U a (σ, τ)−left Lie ideal of R. d2(U) = 0 and a be an element of R.
If ad([R,U ]σ,τ ) = 0, then a = 0 or σ(u) + τ(u) ∈ Z, for all u ∈ U .

Proof. For x[σ(u), σ(u)] + [x, u]σ,τσ(u) = [xσ(u), u]σ,τ ∈ [R,U ]σ,τ by hypothesis 0 =
ad([x, u]σ,τσ(u)) = ad([x, u]σ,τ )σ(u) + a[x, u]σ,τd(σ(u)) and so

a[x, u]σ,τd(σ(u)) = 0,∀x ∈ R,u ∈ U. (2.4)

Since d2(U) = 0, from the above remark we may assume d(U) ⊂ U. So, replacing
u+ d(v), v ∈ U by u in (2.4)

0 = a[x, u+ d(v)]σ,τd(σ(u+ d(v)).

Expanding the last equation and using d2(U) = 0, σd = dσ and (2.4), we get
a[x, d(v)]σ,τd(σ(u)) = 0, for all u, v ∈ U, x ∈ R. That is,

σ−1(a[x, d(v)]σ,τ )d(U) = 0 .

By [1, Theorem 2] we have σ(u) + τ(u) ∈ Z, for all u ∈ U or a[x, d(v)]σ,τ = 0.
Replacing xy, y ∈ R in the last equation, we obtain ax[y, σ(d(v)] = 0. Since R is a
prime ring, we conclude a = 0 or d(U) ⊂ Z. It gives σ(u) + τ(u) ∈ Z, for all u ∈ U
from Theorem 1. This completes the proof. ¤

Theorem 2. Let U a (σ, τ)−left Lie ideal of R. If d2(U) = 0 then σ(u) + τ(u) ∈ Z,
for all u ∈ U .

Proof. Assume that U * Z. There exists a u0 ∈ U such that

σ(u0) + τ(u0) /∈ Z. (2.5)

For [x, u]σ,τσ(u) ∈ U,

0 = d2([x, u]σ,τσ(u))

= d2([x, u]σ,τ )σ(u) + 2d([x, u]σ,τ )d(σ(u)) + [x, u]σ,τd
2(σ(u)).

In view of the hypothesis and charR 6= 2, we have
d([x, u]σ,τ )d(σ(u)) = 0,∀x ∈ R,u ∈ U. (2.6)

Similarly for τ(u)[x, u]σ,τ ∈ U, we get

d(τ(u))d([x, u]σ,τ ) = 0,∀x ∈ R,u ∈ U. (2.7)

By hypothesis 0 = d2([u, v]σ,τ ) = [d
2(u), v]σ,τ + 2[d(u), d(v)]σ,τ + [u, d

2(v)]σ,τ . Using
d2(U) = 0 and charR 6= 2, we obtain

[d(u), d(v)]σ,τ = 0,∀u, v ∈ U.

That is
d(u)σ(d(v)) = τ(d(v))d(u),∀u, v ∈ U. (2.8)
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Now, let us linearize (2.7) on u = u+ v and use (2.8), then we have

d(τ(u))d([x, v]σ,τ + d(τ(v))d([x, u]σ,τ ) = 0,∀x ∈ R,u, v ∈ U. (2.9)

Multiply on the right by d(σ(u)) and use (2.8), (2.6), we obtain

(d(τ(u)))2d([x, v]σ,τ ) = 0,∀x ∈ R,u, v ∈ U.

The last equation reduces to (d(τ(U)))2d([R,U ]σ,τ ) = 0. By Lemma 2 and (2.5), we
get (d(U))2 = 0. Otherwise, writing d(v) for v in (2.9) and using dτ = τd, we see that

d(U)τ−1([d(x), d(v)]σ,τ ) = 0,∀x ∈ R, v ∈ U.

This means from [1, Theorem 2] σ(u)+τ(u) ∈ Z, for all u ∈ U or [d(x), d(v)]σ,τ = 0. By
our assumption, we get [d(x), d(v)]σ,τ = 0, for all x ∈ R, v ∈ U. If we write xd(u), u ∈
U for x in the last equation, we have 0 = [d(xd(u), d(v)]σ,τ = [d(x)d(u), d(v)]σ,τ =
[d(x), τ(d(v)]d(u) and so,

[d(R), τ(d(U))]d(U) = 0.

From the above argument, we have d(U) ⊂ Z by [1, Theorem 2]. That is σ(u)+τ(u) ∈
Z, for all u ∈ U from Theorem 1. ¤

Theorem 3. Let U a (σ, τ)−left Lie ideal of R and charR 6= 2, 3. If d(U) ⊂ U and
d2(U) ⊂ Z, then σ(u) + τ(u) ∈ Z, for all u ∈ U.

Proof. If U ⊂ Z, then the proof of the theorem is obvious. So, we assume that U * Z.
That is,

σ(u0) + τ(u0) /∈ Z, ∃u0 ∈ U. (2.10)

Suppose that d(Z) = 0. Thus, we have

d3(U) = d(d2(U)) ⊂ d(Z) = 0.

Now, for τ(u)[x, u]σ,τ ∈ U, where x ∈ R and u ∈ U,

0 = d3(τ(u)[x, u]σ,τ )

= 3(d2(τ(u))d([x, u]σ,τ ) + d(τ(u))d2([x, u]σ,τ ).

Since charR 6= 3, we get
d2(τ(u))d([x, u]σ,τ ) + d(τ(u))d2([x, u]σ,τ ) = 0.

Taking d(u) by u and using τd = dτ, d3(U) = 0, we obtain

d2(τ(u))d2([x, d(u)]σ,τ ) = 0.

Since d2(U) ⊂ Z, the last equation gives us

d2(u) = 0 or d2([x, d(u)]σ,τ ) = 0.

Let us defineK = {u ∈ U | d2(u) = 0} and L = {u ∈ U | d2([x, d(u)]σ,τ ) = 0,∀x ∈ R}.
Clearly, both K and L are additive subgroups of U . Moreover, U is the set-theoretic
union of K and L. But a group cannot be the set-theoretic union of two proper
subgroups, hence K = U or L = U. If K = U then σ(u) + τ(u) ∈ Z, for all u ∈ U by
Theorem 2 and it contradicts (2.10). So, we get L = U. That is,

d2([x, d(u)]σ,τ ) = 0,∀x ∈ R,u ∈ U. (2.11)
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In this equation replace x by τ(d(u))x, u ∈ U, x ∈ R, then we get

0 = d2(τ(d(u))[x, d(u)]σ,τ )

= τ(d3(u))[x, d(u)]σ,τ + 2τ(d
2(u))d([x, d(u)]σ,τ ) + τ(d(u))d2([x, d(u)]σ,τ ).

Using (2.11) and d3(U) = 0, charR 6= 2, we obtain τ(d2(u))d([x, d(u)]σ,τ ) = 0. Since
d2(U) ⊂ Z, we have

d2(u) = 0 or d([x, d(u)]σ,τ ) = 0.

Let K = {u ∈ U | d2(u) = 0} and L = {u ∈ U | d([x, d(u)]σ,τ ) = 0,∀x ∈ R}. Each of
K and L is an additive subgroup of U such that U = K ∪ L. The above trick gives
us U = K or U = L. In the former case, d2(U) = 0, which forces σ(u) + τ(u) ∈ Z,
for all u ∈ U by Theorem 2, which is a contradiction. Thus U = L and hence
d([x, d(u)]σ,τ ) = 0 for all u ∈ U. Replacing τ(d(u))x, u ∈ U,x ∈ R by x we have
τ(d2(u))[x, d(u)]σ,τ = 0. Since d2(U) ⊂ Z, we obtain

d2(u) = 0 or [x, d(u)]σ,τ = 0 for all x ∈ R. (2.12)

Again applying the above trick, we obtain [x, d(u)]σ,τ = 0. Taking xy, y ∈ R in place
of x and using (2.12), we have

0 = [xy, d(u)]σ,τ = x[y, d(u)]σ,τ + [x, σ(d(u))]y = [x, σ(d(u))]y .

Since R is a prime ring, we obtain d(U) ⊂ Z. By Theorem 1, it gives σ(u)+ τ(u) ∈ Z,
for all u ∈ U, which is a contradiction. Thus, in the case of d(Z) = 0 the proof is
completed.

Now, we would like to settle the problem when d(Z) is different from zero. There
is a non-zero d(α) ∈ d(Z) such that α ∈ Z. In view of the hypothesis for [αx, u]σ,τ =
α[x, u]σ,τ ∈ U,

d2(α[x, u]σ,τ ) = d2(α)[x, u]σ,τ + 2d(α)d([x, u]σ,τ ) + αd2([x, u]σ,τ ) ∈ Z .

Since d2(U) ⊂ Z, the third term is in the center of R. So, we get

d2(α)[x, u]σ,τ + 2d(α)d([x, u]σ,τ ) ∈ Z,∀x ∈ R,u ∈ U. (2.13)

Replace x by xα in (2.13) to get

(d2(α)[x, u]σ,τ + 2d(α)d([x, u]σ,τ ))α+ 2d(α)[x, u]σ,τd(α) ∈ Z.

However, in view of (2.13) and α ∈ Z, this equation reduces to 2d(α)[x, u]σ,τd(α) ∈ Z.
Since R is a prime ring, charR 6= 2 and 0 6= d(α) ∈ Z, we have [x, u]σ,τ ∈ Z for all
x ∈ R,u ∈ U. By [8, Lemma 1], we obtain σ(u) + τ(u) ∈ Z, for all u ∈ U. This
completes the proof. ¤
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[7] Kaya, K., Gölbaş¬, Ö. and Ayd¬n, N.: Some results for generalized Lie ideals in prime
rings with derivation II., Applied Mathematics E-Notes, 1 (2001), 24-30.

[8] Soytürk, M.: (σ, τ)−Lie ideals in prime rings with derivations, Doğa Tr. J. of Math.,
18, (1994), 280-283.


