

Sign-changing solutions and W-solutions to singular Dirichlet boundary value problems

SIGN-CHANGING SOLUTIONS AND W-SOLUTIONS TO SINGULAR DIRICHLET BOUNDARY VALUE PROBLEMS

Svatoslav Staněk

Department of Mathematical Analysis, Faculty of Science Palacký University, Tomkova 40, 779 00 Olomouc, Czech Republic stanek@risc.upol.cz

Stanekerist.upoi.c.

[Received: May 9, 2002]

Abstract. The singular Dirichlet problem (r(x)x')' = q(t)f(t,x), x(0) = x(T) = 0, $\lambda \max\{x(t) : 0 \le t \le T\} = -\min\{x(t) : 0 \le t \le T\}$ is considered. Here f is singular at the point x = 0 of the phase variable x and λ is a positive parameter. The notions of a solution and a w-solution of the above problem changing its sign exactly once on (0,T)are introduced. Effective conditions for the existence and multiplicity results are presented. Next, the notion of an exceptional n-sign-changing w-solution of our problem with $\lambda = 1$ is given and for such solutions existence and multiplicity results are proved.

Mathematical Subject Classification: 34B15, 34B16

Keywords: singular Dirichlet problem, sign-changing solution, w-solution, exceptional solution, existence, multiplicity

1. Introduction

Consider the problem

$$(r(x(t))x'(t))' = q(t)f(t, x(t)),$$
(1.1)

$$x(0) = 0, \quad x(T) = 0,$$
 (1.2)

$$\lambda \max\{x(t) : 0 \le t \le T\} = -\min\{x(t) : 0 \le t \le T\},\tag{1.3}$$

where T is a positive number, λ is a positive parameter and f is singular at the point x = 0 of the phase variable x in the following sense

$$\lim_{x \to 0^{-}} f(t, x) = -\infty, \quad \lim_{x \to 0^{+}} f(t, x) = \infty \quad \text{for } t \in [0, T].$$
(1.4)

Definition 1.1. We say that $x \in C^1([0,T])$ is a solution of problem (1.1) - (1.3) if x has precisely one zero t_0 on (0,T), $r(x)x' \in C^1((0,T) \setminus \{t_0\})$, (1.1) is satisfied for $t \in (0,T) \setminus \{t_0\}$, x fulfils (1.2) and there exists $\lambda_0 \in (0,\infty)$ such that (1.3) holds with $\lambda = \lambda_0$.

Besides a solution of problem (1.1)-(1.3), we introduce in accordance with [15] the notion of a *w*-solution of problem (1.1)-(1.3).

Definition 1.2. Let $\lambda \in (0, \infty)$. A function $x \in C^0([0,T])$ is called a *w*-solution of problem (1.1) - (1.3) if x has precisely one zero $t_0 \in (0,T)$, $x \in C^1([0,T] \setminus \{t_0\})$, there exist finite $\lim_{t\to t_0^-} x'(t)$ and $\lim_{t\to t_0^+} x'(t)$, $r(x)x' \in C^1((0,T) \setminus \{t_0\})$, x fulfils (1.2), (1.3), and (1.1) holds on $(0,T) \setminus \{t_0\}$.

We note that in contrast to a solution x of problem (1.1)-(1.3) which belongs to the class $C^1([0,T])$ and satisfies (1.3) with a suitable value of λ , a w-solution x of problem (1.1)-(1.3) is continuous on [0,T], has continuous derivative on $[0,t_0) \cup (t_0,T]$ where t_0 is the unique zero of x in (0,T) and (1.3) holds with a given value of λ . Naturaly, any solution of problem (1.1)-(1.3) is also a w-solution of this problem.

In the paper we will use the following assumptions:

- (H_1) $r \in C^0(\mathbb{R}), r(x) \ge r_0 > 0$ for $x \in \mathbb{R}$;
- $(H_2) q \in C^0((0,T)), q(t) < 0 \text{ for } t \in (0,T) \text{ and } Q = \sup\{|q(t)| : 0 \le t \le T\} < \infty;$
- (H₃) $f \in C^0([0,T] \times D)$, where $D = (-\infty, 0) \cup (0,\infty)$, $f(t, \cdot)$ is nonincreasing on D for $t \in [0,T]$ and

$$0 < f(t, x)$$
sign $x \le g(x)$ for $(t, x) \in [0, T] \times D$,

where $g \in C^0(D)$ and

$$\int^0 g(s) \, ds < \infty, \quad \int_0 g(s) \, ds < \infty;$$

(H₄) for each $(t_0, x_0, x_1) \in (0, T) \times D \times \mathbb{R}$, there exists a unique solution x of (1.1) satisfying the initial conditions $x(t_0) = x_0$, $x'(t_0) = x_1$ defined in a neighbourhood of $t = t_0$.

Remark 1.3. If f satisfies (H_3) then for each M > 0 there exists a positive function $k_M \in C^0([0,T])$ such that

$$0 < k_M(t) \le f(t, x) \operatorname{sign} x \le g(x)$$
 on $(t, x) \in [0, T] \times ([-M, 0) \cup (0, M]).$

Next under the assumption that f is a locally Lipschitz function on $(0, T) \times D$, assumption (H_4) is satisfied.

In many papers (see, e.g., [1]-[13], [16]-[22] and references therein) only positive (negative) solutions on (0, T) of the Dirichlet boundary value problems with the singularity at the point x = 0 of the phase variable x in nonlinearities of considered secondorder differential equations have been studied. Solutions were considered either in the class $C^0([0,T]) \cap C^2((0,T))$ ([1]-[3], [7], [11], [12], [18], [19]) or $C^1([0,T]) \cap C^2((0,T))$ ([4]-[6], [12], [13], [16]-[19], [22]) or $C^0([0,T]) \cap AC^1_{loc}((0,T))$ ([8]-[10], [20], [21]). Here $AC^1_{loc}((0,T))$ denotes the set of functions having absolutely continuous first derivatives on any compact subintervals of (0,T). The nonlinearities of equations are usually nonpositive ([1], [2], [6]-[8], [11], [12], [16]-[20], [22]), but in [3]-[5], [9], [10],[13] and [21] this assumption is overcome. For the first time in [14] solutions of singular Dirichlet boundary value problems changing their signs exactly once on (0, T) were considered. Here differential equations of the form

$$(r(x(t))x'(t))' = \mu q(t)f(t, x(t))$$
(1.5)

together with the condition

$$\max\{x(t): 0 \le t \le T\} \min\{x(t): 0 \le t \le T\} < 0, \tag{1.6}$$

were studied where μ is a positive parameter and f is singular at the point x = 0of the phase variable x. A function $x \in C^1([0,T])$ is called a solution of problem (1.5), (1.2), (1.6) if x has precisely one zero t_0 on $(0,T), r(x)x' \in C^1((0,T) \setminus \{t_0\}), x$ fulfils (1.2) and (1.6) and there exists $\mu_0 > 0$ such that (1.5) with $\mu = \mu_0$ is satisfied for $t \in (0,T) \setminus \{t_0\}$. In [14] under assumptions $(H_1) - (H_3)$ it is proved among others that for each $A \in (0,\infty)$ there exists a solution x of problem (1.5), (1.2), (1.6) such that $\max\{x(t): 0 \le t \le T\} = A$. We see that any solution of problem (1.5), (1.2), (1.6) depends on a value of the parameter μ in equation (1.5) unlike our definition of a solution of problem (1.1)-(1.3) depending on a value of the parameter λ appearing in condition (1.3).

A generalization of the notion of a solution of problem (1.5), (1.2), (1.6) was given in [15]. Here $x \in C^0([0,T])$ is said to be a *w*-solution of problem (1.5), (1.2), (1.6) if xhas precisely one zero t_0 in $(0,T), x \in C^1([0,T] \setminus \{t_0\})$, there exist finite $\lim_{t \to t_0-} x'(t)$, $\lim_{t \to t_0+} x'(t), r(x)x' \in C^1((0,T) \setminus \{t_0\}), x$ fulfils (1.2) and (1.6), and finally there exists $\mu_0 > 0$ such that (1.5) with $\mu = \mu_0$ is satisfied for $t \in (0,T) \setminus \{t_0\}$. It is proved among others that under assumptions $(H_1) - (H_3)$ for A > 0 and $t_0 \in (0,T)$ problem (1.5), (1.2), (1.6) has just two *w*-solutions vanishing at t_0 and having their maximum values on [0,T] equal to A.

This paper is a continuation of [15] and in comparison with (1.5) our equation (1.1) does not depend on the parameter μ . By our definitions any solution as well as any *w*-solution *x* of problem (1.1)-(1.3) have precisely one zero in (0, *T*) where they change their signs. Hence any solution and any *w*-solution of problem (1.1)-(1.3) 'pass through' the singularity of *f* at a point of the interval (0, *T*).

The paper is organized as follows. In Section 2 we define functions Λ_+ , Φ_+ , $\Lambda_$ and Φ_- by (2.6)-(2.9) and present some of their important properties. By these functions we prove existence and uniqueness results for *w*-solutions of problem (1.1)-(1.3) in Section 3 (Theorems 3.1 and 3.2). Section 4 is devoted to the study of existence and multiplicity results for solutions of problem (1.1)-(1.3) (Theorem 4.5). In Section 5 we first give the notion of an exceptional *n*-sign-changing *w*-solution *x* of problem (1.1), (1.2), (5.1) which changes its sign exactly *n* times on [0, T] and on each maximum subinterval of [0, T] where *x* keeping its sign the function |x| has the same maximum value. Existence and multiplicity results for the *n*-sign-changing *w*-solution of problem (1.1), (1.2), (5.1) are given in Theorem 5.7.

2. Lemmas, notation

Let $0 \le a < b \le T$. In our consideration we will work with the following auxiliary boundary conditions

$$x(a) = x(b) = 0, \quad x(t) > 0 \quad \text{for } t \in (a, b),$$
(2.1)

$$x(a) = x(b) = 0, \quad x(t) < 0 \quad \text{for } t \in (a, b)$$
 (2.2)

and we will use the function $H : \mathbb{R} \to \mathbb{R}$ defined by

$$H(u) = \int_0^u r(s) \, ds \tag{2.3}$$

with r occurring in (1.1) and satisfying assumption (H_1) . Clearly, $H \in C^1(\mathbb{R})$ is increasing on \mathbb{R} and the inverse function to H denoted by H^{-1} is increasing on \mathbb{R} .

We say that x is a solution of problem (1.1), (j), $j \in \{2.1, 2.2\}$ if $x \in C^1([a, b])$, $r(x)x' \in C^1((a, b))$, x satisfies the boundary conditions (j) and (1.1) is fulfilled for $t \in (a, b)$.

Remark 2.1. Let the function $\tilde{q}: (0,T) \to (-\infty,0)$ and $\tilde{f}: [0,T] \times D \to \mathbb{R}$ be defined by

$$\tilde{q}(t) = q(T-t), \quad \tilde{f}(t,x) = f(T-t,x).$$

Then

$$0 < \tilde{f}(t, x) \operatorname{sign} x < g(x), \quad (t, x) \in [0, T] \times D$$

and assumptions (H_2) - (H_4) are satisfied with \tilde{q} and \tilde{f} instead of q and f. If we consider the differential equation

$$(r(x(t))x'(t))' = \tilde{q}(t)\tilde{f}(t, x(t)),$$
(2.4)

we see that a function x is a solution of problem (1.1), (j) with a = 0, b = c (< T) and $j \in \{2.1, 2.2\}$ if the function $\tilde{x}(t) = x(T-t)$, $t \in [T-c, T]$, is a solution of problem (2.4), (j) with a = T - c, b = T. Conversely, if \tilde{x} is a solution of problem (2.4), (j) with a = T - c (> 0), b = T and $j \in \{2.1, 2.2\}$, then the function $x(t) = \tilde{x}(T-t)$, $t \in [0, c]$, is a solution of problem (1.1), (j) with a = 0, b = c.

Remark 2.2. Let $r^* : \mathbb{R} \to [r_0, \infty), f_* : [0, T] \times D \to \mathbb{R}$ and $g^* : D \to \mathbb{R}$ be defined by the formulas (see [14])

$$r^*(x) = r(-x), \quad f^*(t,x) = -f(t,-x), \quad g^*(x) = g(-x).$$

Then

$$0 < f^*(t, x) \operatorname{sign} x \le g^*(x), \quad (t, x) \in [0, T] \times D$$

and assumptions $(H_1) - (H_4)$ are satisfied with r^* , f^* and g^* instead of r, f and g. It is easily seen that a function x is a solution of problem $(1.1), (j), j \in \{2.1, 2.2\}$, if and only if $x^* = -x$ on [a, b] is a solution of problem (2.5), (j), where

$$(r^*(x(t))x'(t))' = q(t)f^*(t, x(t)).$$
(2.5)

Lemma 2.3. Let assumptions $(H_1) - (H_3)$ be satisfied. Then for each $a, b \in [0, T]$, a < b, there exists a unique solution of problem (1.1), (2.1).

Proof. The assertion of our lemma follows from Theorem 2.1 in [14] with $\mu = 1$.

Corollary 2.4. Under assumptions of Lemma 2.3, for each $a, b \in [0, T]$, a < b, there exists a unique solution of problem (1.1), (2.2).

Proof. Fix $0 \le a < b \le T$. Since assumptions $(H_1) - (H_3)$ are satisfied with the functions r^* , f^* and g^* defined in Remark 2.2 instead of r, f and g, problem (2.5), (2.1) has a unique solution \tilde{x} by Lemma 2.3. Now the function $x = -\tilde{x}$ on [a, b] is the unique solution of problem (1.1), (2.2).

For each $\alpha \in (0,T]$ and $\beta \in [0,T)$, we denote throughout this paper by u_{α} and v_{β} the unique solution of problem (1.1), (2.1) with $a = 0, b = \alpha$ and $a = \beta, b = T$, respectively. Next by \overline{u}_{α} and \overline{v}_{β} we denote the unique solution of problem (1.1), (2.2) with $a = 0, b = \alpha$ and $a = \beta, b = T$, respectively. The existence and uniqueness of u_{α}, v_{β} and $\overline{u}_{\alpha}, \overline{v}_{\beta}$ follow from Lemma 2.3 and Corollary 2.4, respectively.

Lemma 2.5. (Lemma 2.7 in [14]. Let assumptions $(H_1) - (H_3)$ be satisfied and let $0 < \alpha_1 < \alpha_2 \leq T$. Then

$$u_{\alpha_1}(t) \leq u_{\alpha_2}(t) \quad for \ t \in [0, \alpha_1].$$

By the solutions u_{α} , v_{β} , \overline{u}_{α} and \overline{v}_{β} define the functions $\Lambda_{+} : (0,T] \to (0,\infty)$, $\Phi_{+} : [0,T) \to (0,\infty)$, $\Lambda_{-} : (0,T] \to (-\infty,0)$, $\Phi_{-} : [0,T) \to (-\infty,0)$ by the formulas

$$\Lambda_{+}(\alpha) = \max\{u_{\alpha}(t) : 0 \le t \le \alpha\},\tag{2.6}$$

$$\Phi_{+}(\beta) = \max\{v_{\beta}(t) : \beta \le t \le T\},\tag{2.7}$$

$$\Lambda_{-}(\alpha) = \min\{\overline{u}_{\alpha}(t) : 0 \le t \le \alpha\}$$
(2.8)

and

$$\Phi_{-}(\beta) = \min\{\overline{v}_{\beta}(t) : \beta \le t \le T\}.$$
(2.9)

Properties of the functions Λ_+ , Φ_+ , Λ_- and Φ_- are presented in the following lemmas.

Lemma 2.6. Let assumptions $(H_1) - (H_3)$ be satisfied. Then Λ_+ is continuous nondecreasing on (0,T] and

$$\lim_{\alpha \to 0^+} \Lambda_+(\alpha) = 0$$

S. Staněk

Proof. As a direct consequence of Lemma 2.5 we get that Λ_+ is nondecreasing on (0,T]. Suppose that Λ_+ is discontinuous on the right at a point $\alpha_0 \in (0,T)$, i.e. there is a decreasing sequence $\{\alpha_n\} \subset (\alpha_0,T)$ such that $\lim_{n\to\infty} \alpha_n = \alpha_0$ and

$$\lim_{n \to \infty} \Lambda_+(\alpha_n) > \Lambda_+(\alpha_0).$$
(2.10)

Consider the sequence $\{u_{\alpha_n}\}$. Since $(r(u_{\alpha_n}(t))u'_{\alpha_n}(t))' = q(t)f(t, u'_{\alpha_n}(t)) < 0$ for $t \in (0, \alpha_n), r(u_{\alpha_n})u'_{\alpha_n}$ is decreasing on $[0, \alpha_n]$ and therefore there exists a (unique) $\xi_n \in (0, \alpha_n)$ such that $u'_{\alpha_n} > 0$ on $[0, \xi_n), u'_{\alpha_n} < 0$ on $(\xi_n, \alpha_n]$ and $u'_{\alpha_n}(\xi_n) = 0$. Integrating the inequalities

$$\begin{aligned} r(u_{\alpha_n}(t))u'_{\alpha_n}(t))'r(u_{\alpha_n}(t))u'_{\alpha_n}(t) \\ \ge -Qg(u_{\alpha_n}(t))r(u_{\alpha_n}(t))u'_{\alpha_n}(t), \quad t \in (0,\xi_n) \end{aligned}$$

$$(2.11)$$

and

$$r(u_{\alpha_n}(t))u'_{\alpha_n}(t))'r(u_{\alpha_n}(t))u'_{\alpha_n}(t)$$

$$\leq -Qg(u_{\alpha_n}(t))r(u_{\alpha_n}(t))u'_{\alpha_n}(t), \quad t \in (\xi_n, \alpha_n)$$
(2.12)

over $[0, \xi_n]$ and $[\xi_n, \alpha_n]$, we obtain

$$(r(0)u'_{\alpha_n}(0))^2 \le 2Q \int_0^{\Lambda_+(\alpha_n)} g(s)r(s) \, ds \le 2Q \int_0^{\Lambda_+(\alpha_1)} g(s)r(s) \, ds$$

and

$$(r(0)u'_{\alpha_n}(\alpha_n))^2 \le 2Q \int_0^{\Lambda_+(\alpha_n)} g(s)r(s) \, ds \le 2Q \int_0^{\Lambda_+(\alpha_1)} g(s)r(s) \, ds$$

respectively. Hence

$$r(u_{\alpha_n}(t))u'_{\alpha_n}(t)| \le r(0) \max\{u'_{\alpha_n}(0), |u'_{\alpha_n}(\alpha_n)|\}$$

$$\le \sqrt{2Q \int_0^{\Lambda_+(\alpha_1)} g(s)r(s) \, ds}, \quad t \in [0, \alpha_n], \ n \in \mathbb{N}$$

$$(2.13)$$

and

$$|u_{\alpha_n}'(t)| \le \frac{1}{r_0} \sqrt{2Q \int_0^{\Lambda_+(\alpha_1)} g(s)r(s) \, ds} \quad \text{for } t \in [0, \alpha_n], \ n \in \mathbb{N}.$$
(2.14)

In addition, by Lemma 2.5,

$$u_{\alpha_0}(t) \le u_{\alpha_n}(t) \le u_{\alpha_{n+1}}(t) \quad \text{for } t \in [0, \alpha_0], \ n \in \mathbb{N}.$$

$$(2.15)$$

From (2.14) and (2.15) we deduce that $\{u_{\alpha_n}(t)\}\$ is uniformly convergent on $[0, \alpha_0]$ and let $\lim_{n\to\infty} u_{\alpha_n}(t) = u(t), t \in [0, \alpha_0]$. Then $u \in C^0([0, \alpha_0]), u(0) = 0, u(t) \ge u_{\alpha_0}(t) > 0$ for $t \in (0, \alpha_0)$. Moreover, $u(\alpha_0) = 0$, since in the case that $u(\alpha_0) > 0$ it may be concluded from

$$u(\alpha_0) \le u_{\alpha_n}(\alpha_0) = u_{\alpha_n}(\alpha_0) - u_{\alpha_n}(\alpha_n) = u'_{\alpha_n}(\eta_n)(\alpha_0 - \alpha_n),$$

where $\eta_n \in (\alpha_0, \alpha_n)$ that

$$\lim_{n \to \infty} u'_{\alpha_n}(\eta_n) \le \lim_{n \to \infty} \frac{u(\alpha_0)}{\alpha_0 - \alpha_n} = -\infty,$$

contrary to (2.14). As

$$0 < f(t, u_{\alpha_{n+1}}(t)) \le f(t, u_{\alpha_n}(t)), \quad \lim_{n \to \infty} f(t, u_{\alpha_n}(t) = f(t, u(t)), \quad t \in (0, \alpha_0)$$

and (see (2.13))

$$0 > \int_{0}^{\alpha_{0}} q(t)f(t, u_{\alpha_{n}}(t)) dt = r(u_{\alpha_{n}}(\alpha_{0}))u'_{\alpha_{n}}(\alpha_{0}) - r(0)u'_{\alpha_{n}}(0)$$

$$\geq -2\sqrt{2Q}\int_{0}^{\Lambda_{+}(\alpha_{1})} g(s)r(s) ds$$

for $n \in \mathbb{N}$, Fatou's and Levi's theorems give $q(\cdot)f(\cdot, u(\cdot)) \in L_1([0, \alpha_0])$ and

$$\lim_{n \to \infty} \int_0^t q(s) f(s, u_{\alpha_n}(s) \, ds = \int_0^t q(s) f(s, u(s) \, ds, \quad t \in [0, \alpha_0]$$

By (2.14), $\{u'_{\alpha_n}(0)\}\$ is bounded and we may assume that it is convergent. Let $\lim_{n\to\infty} u'_{\alpha_n}(0) = A$. Letting $n \to \infty$ in

$$H(u_{\alpha_n}(t)) = r(0)u'_{\alpha_n}(0)t + \int_0^t \int_0^s q(v)f(v, u_{\alpha_n}(v)) \, dv \, ds \quad \text{for } t \in [0, \alpha_0], \quad (2.16)$$

where H is given by (2.3), we get

$$H(u(t)) = r(0)At + \int_0^t \int_0^s q(v)f(v, u(v)) \, dv \, ds, \quad t \in [0, \alpha_0].$$

Then

$$u(t) = H^{-1}\Big(r(0)At + \int_0^t \int_0^s q(v)f(v, u(v)\,dv\,ds\Big),$$

and so $u \in C^1([0,\alpha_0])$. Now from $r(u(t))u'(t) = r(0)A + \int_0^t q(s)f(s,u(s)) ds$, $t \in [0,\alpha_0]$, and the above proved properties of u, we see that u is a solution of problem (1.1), (2.1) with a = 0 and $b = \alpha_0$, and consequently $u = u_{\alpha_0}$ by Lemma 2.3.

We have proved that $\lim_{n\to\infty} u_{\alpha_n}(t) = u_{\alpha_0}(t)$ uniformly on $[0, \alpha_0]$, which implies $\lim_{n\to\infty} \Lambda_+(\alpha_n) = \Lambda_+(\alpha_0)$, contrary to (2.10). Hence Λ_+ is continuous on the right on (0, T).

Assume now that Λ_+ is discontinuous on the left at a point $\alpha_0 \in (0, T]$, i.e., there is an increasing sequence $\{\alpha_n\} \subset (0, \alpha_0)$ such that $\lim_{n \to \infty} \alpha_n = \alpha_0$ and

$$\lim_{n \to \infty} \Lambda_+(\alpha_n) < \Lambda_+(\alpha_0). \tag{2.17}$$

Then

$$u_{\alpha_n}(t) \le u_{\alpha_{n+1}}(t) \le u_{\alpha_0}(t) \quad \text{for } t \in [0, \alpha_n], \ n \in \mathbb{N}$$

$$(2.18)$$

140

by Lemma 2.5 and as above it can be verified that

$$|r(u_{\alpha_{n}}(t))u_{\alpha_{n}}'(t)| \leq \sqrt{2Q \int_{0}^{\Lambda_{+}(\alpha_{0})} g(s)r(s) \, ds},$$

$$|u_{\alpha_{n}}'(t)| \leq \frac{1}{r_{0}} \sqrt{2Q \int_{0}^{\Lambda_{+}(\alpha_{0})} g(s)r(s) \, ds}$$
(2.19)

and

$$0 \ge \int_0^t q(s)f(s, u_{\alpha_n}(s)) \, ds \ge -2\sqrt{2Q \int_0^{\Lambda_+(\alpha_0)} g(s)r(s) \, ds} \tag{2.20}$$

for $t \in [0, \alpha_n]$ and $n \in \mathbb{N}$. By (2.18) and (2.19), $\{u_{\alpha_n}(t)\}$ is locally uniformly convergent on $[0, \alpha_0)$ and let $\lim_{n\to\infty} u_{\alpha_n}(t) = u(t), t \in [0, \alpha_0)$. Then $u \in C^0([0, \alpha_0))$, $u(0) = 0, 0 < u(t) \le u_{\alpha_0}(t)$ for $t \in [0, \alpha_0)$ and $\lim_{t\to\alpha_0^-} u(t) = 0$. From the inequalities $f(t, u_{\alpha_n}(t)) \ge f(t, u_{\alpha_{n+1}}(t)) \ge f(t, u_{\alpha_0}(t)) \ge 0$, (2.20), $\lim_{n\to\infty} f(t, u_{\alpha_n}(t)) = f(t, u(t))$ for $t \in (0, \alpha_0)$ and Fatou's theorem we obtain $q(\cdot)f(\cdot, u(\cdot)) \in L_1([0, \alpha_0])$. Define $u^* \in C^0([0, \alpha_0])$ by

$$u^*(t) = \begin{cases} u(t) & \text{ for } t \in [0, \alpha_0) \\ 0 & \text{ for } t = \alpha_0. \end{cases}$$

Without violating generality, we can assume that $\{u'_{\alpha_n}(0)\}\$ is convergent and let $\lim_{n\to\infty} u'_{\alpha_n}(0) = B$. Taking the limit as $n\to\infty$ in (2.16) which now holds on $[0,\alpha_n]$, we obtain

$$H(u^*(t)) = r(0)Bt + \int_0^t \int_0^s q(v)f(v, u^*(v)) \, dv \, ds \quad \text{for } t \in [0, \alpha_0].$$

Then $u^* \in C^1([0, \alpha_0])$ and u^* is a solution of problem (1.1), (2.1) with a = 0 and $b = \alpha_0$. Hence $u^* = u_{\alpha_0}$ and from $\lim_{n\to\infty} u_{\alpha_n}(t) = u_{\alpha_0}(t)$ locally uniformly on $[0, \alpha_0)$ we deduce that $\lim_{n\to\infty} \Lambda_+(\alpha_n) = \Lambda_+(\alpha_0)$, contrary to (2.17). It follows that Λ_+ is continuous on the left on (0, T]. Consequently, Λ_+ is continuous on (0, T].

Finally, assume that $\lim_{\alpha\to 0^+} \Lambda_+(\alpha) = \mu > 0$. Let $\{\alpha_n\} \subset (0,T)$ be a decreasing sequence and $\lim_{n\to\infty} \alpha_n = 0$. Let $\Lambda_+(\alpha_n) = u_{\alpha_n}(\xi_n)$ with a $\xi_n \in (0,\alpha_n)$. Then $u_{\alpha_n}(\xi_n) \ge \mu$ and from $\mu \le u_{\alpha_n}(\xi_n) = u_{\alpha_n}(\xi_n) - u_{\alpha_n}(0) = u'_{\alpha_n}(\tau_n)\xi_n$, where $\tau_n \in (0,\xi_n)$, we have $u'_{\alpha_n}(\tau_n) \ge \mu/\xi_n$ for $n \in \mathbb{N}$. Therefore $\lim_{n\to\infty} u'_{\alpha_n}(\tau_n) \ge \lim_{n\to\infty} \mu/\xi_n = \infty$, contrary to (2.14). Hence $\lim_{\alpha\to 0^+} \Lambda_+(\alpha) = 0$.

Lemma 2.7. Let assumptions $(H_1) - (H_3)$ be satisfied. Then Φ_+ is continuous nonincreasing on [0,T) and

$$\lim_{\beta \to T^-} \Phi_+(\beta) = 0$$

Proof. By Remark 2.1, for each $\gamma \in (0,T]$ the function $\tilde{u}_{\gamma}(t) = v_{\gamma}(T-t), t \in [0, T-\gamma]$, is a (unique) solution of problem (2.4), (2.1) with a = 0 and $b = T - \gamma$. Set $\tilde{\Lambda}_{+}(\gamma) = \max{\{\tilde{u}_{\gamma}(t) : 0 \leq t \leq \gamma\}}$ for $\gamma \in (0,T]$. Applying Lemma 2.6 to equation (2.4), we see that $\tilde{\Lambda}_{+}$ is continuous and nondecreasing on (0,T] and $\lim_{\gamma \to 0^{+}} \tilde{\Lambda}_{+}(\gamma) =$ 0. The assertion of our lemma now follows from the equality $\Phi_+(\beta) = \hat{\Lambda}_+(T-\beta)$ for $\beta \in [0,T)$.

Lemma 2.8. Let assumptions $(H_1) - (H_3)$ be satisfied. Then Λ_- is continuous nonincreasing on (0, T], Φ_- is continuous nondecreasing on [0, T) and

$$\lim_{\alpha \to 0^+} \Lambda_-(\alpha) = \lim_{\beta \to T^-} \Phi_-(\beta) = 0.$$

Proof. Let $\tilde{\Lambda}_+$ and $\tilde{\Phi}_+$ be associated to problem (2.5), (2.1) analogously as Λ_+ and Φ_+ are to problem (1.1), (2.1). Then $\tilde{\Lambda}_+$ is continuous and nondecreasing on (0, T], $\tilde{\Phi}_+$ is continuous and nonincreasing on [0, T) and $\lim_{\alpha \to 0^+} \tilde{\Lambda}_+(\alpha) = \lim_{\beta \to T^-} \tilde{\Phi}_+(\beta) = 0$ by Lemmas 2.6 and 2.7. The assertions of the lemma follow immediately from the equalities $\Lambda_- = -\tilde{\Lambda}_+$ on (0, T] and $\Phi_- = -\tilde{\Phi}_+$ on [0, T) which we get applying Remark 2.2.

Lemma 2.9. Let assumptions $(H_1) - (H_4)$ be satisfied. Then for each $\alpha_1, \alpha_2 \in (0, T]$, $\alpha_1 < \alpha_2$, the inequality

$$u_{\alpha_1}(t) < u_{\alpha_2}(t) \quad for \ t \in (0, \alpha_1]$$
 (2.21)

141

holds.

Proof. Fix $0 < \alpha_1 < \alpha_2 \leq T$. Then $0 = u_{\alpha_1}(\alpha_1) < u_{\alpha_2}(\alpha_1)$ and, by Lemma 2.5, $u_{\alpha_1}(t) \leq u_{\alpha_2}(t)$ for $t \in (0, \alpha_1]$. If $u_{\alpha_1}(\xi) = u_{\alpha_2}(\xi)$ for some $\xi \in (0, \alpha_1)$, then $u'_{\alpha_1}(\xi) = u'_{\alpha_2}(\xi)$, and consequently $u_{\alpha_1} = u_{\alpha_2}$ in a neighbourhood of $t = \xi$ by assumption (H_4) . Repeated application of this result enables us to prove that $u_{\alpha_1} = u_{\alpha_2}$ on $[0, \alpha_1)$, which is impossible. Hence (2.21) holds.

Lemma 2.10. Under assumptions $(H_1) - (H_4)$, Λ_+ is increasing on (0, T], Φ_+ is decreasing on [0, T), Λ_- is decreasing on (0, T] and Φ_- is increasing on [0, T).

Proof. By Lemma 2.9, for each $0 < \alpha_1 < \alpha_2 \leq T$, inequality (2.21) holds and from the definition of Λ_+ we have $\Lambda_+(\alpha_1) < \Lambda_+(\alpha_2)$. Hence Λ_+ is increasing on (0, T]. The other three assertions of the lemma can be verified from strict inequalities between solutions $v_{\alpha_1}, v_{\alpha_2}; \overline{u}_{\alpha_1}, \overline{u}_{\alpha_2}$ and $\overline{v}_{\alpha_1}, \overline{v}_{\alpha_2}$ with different α_1 and α_2 .

3. Existence results for w-solutions of problem (1.1)-(1.3)

Theorem 3.1. Let assumptions $(H_1) - (H_3)$ be satisfied. Then for each $\lambda \in (0, \infty)$ there exist at least two *w*-solutions of problem (1.1)-(1.3).

Proof. Fix $\lambda \in (0, \infty)$. By Lemmas 2.6 and 2.8, the function $\lambda \Lambda_+ + \Phi_-$ is continuous and nondecreasing on (0, T) and $\lim_{\alpha \to 0^+} (\lambda \Lambda_+(\alpha) + \Phi_-(\alpha)) = \Phi_-(0) < 0$,

 $\lim_{\alpha \to T^-} (\lambda \Lambda_+(\alpha) + \Phi_-(\alpha)) = \lambda \Lambda_+(T) > 0.$ Hence the equation $\lambda \Lambda_+(\alpha) + \Phi_-(\alpha) = 0$ has at least one solution $\alpha_1 \in (0,T)$. Setting

$$x_1(t) = \begin{cases} u_{\alpha_1}(t) & \text{for } t \in [0, \alpha_1] \\ \overline{v}_{\alpha_1}(t) & \text{for } t \in (\alpha_1, T], \end{cases}$$
(3.1)

 x_1 is a *w*-solution of problem (1.1)-(1.3). Analogously, the equation $\lambda \Phi_+(\alpha) + \Lambda_-(\alpha) = 0$ has at least one solution $\alpha_2 \in (0, T)$ since $\lambda \Phi_+ + \Lambda_-$ is continuous and nonincreasing on (0, T) and $\lim_{\alpha \to 0^+} (\lambda \Phi_+(\alpha) + \Lambda_-(\alpha)) = \lambda \Phi_+(0) > 0$, $\lim_{\alpha \to T^-} (\lambda \Phi_+(\alpha) + \Lambda_-(\alpha)) = \Lambda_-(T) < 0$ by Lemmas 2.7 and 2.8. Then setting

$$x_2(t) = \begin{cases} \overline{u}_{\alpha_2}(t) & \text{for } t \in [0, \alpha_2] \\ v_{\alpha_2}(t) & \text{for } t \in (\alpha_2, T], \end{cases}$$
(3.2)

 x_2 is the second w-solution of problem (1.1)-(1.3). From $x_1 > 0$ on $(0, \alpha_1)$ and $x_2 < 0$ on $(0, \alpha_2)$ we see that $x_1 \neq x_2$.

Theorem 3.2. Let assumptions $(H_1) - (H_4)$ be satisfied. Then for each $\lambda \in (0, \infty)$ there exist precisely two *w*-solutions of problem (1.1)-(1.3).

Proof. Fix $\lambda \in (0, \infty)$. It follows from Lemma 2.10 and the properties of the functions Λ_+ , Φ_+ , Λ_- and Φ_- given in Lemmas 2.6–2.8 that the equations $\lambda \Lambda_+(\alpha) + \Phi_-(\alpha) = 0$ and $\lambda \Phi_+(\alpha) + \Lambda_-(\alpha) = 0$ have in (0,T) the unique solutions α_1 and α_2 , respectively. Now x_1 and x_2 defined by (3.1) and (3.2) are unique w-solutions of problem (1.1)-(1.3).

4. Existence results for solutions of problem (1.1)–(1.3)

Let assumptions $(H_1) - (H_4)$ be satisfied. By Theorem 3.2, for each $\lambda \in (0, \infty)$ there exist precisely two *w*-solutions $x_1(t; \lambda)$ and $x_2(t; \lambda)$ of problem (1.1)-(1.3). If c_{λ} is the (unique) solution of the equation $\lambda \Lambda_+(c) + \Phi_-(c) = 0$ and α_{λ} is the (unique) solution of the equation $\lambda \Phi_+(\alpha) + \Lambda_-(\alpha) = 0$, then

$$x_1(t;\lambda) = \begin{cases} u_{c_\lambda}(t) & \text{ for } t \in [0,c_\lambda] \\ \overline{v}_{c_\lambda}(t) & \text{ for } t \in (c_\lambda,T] \end{cases}$$

and

$$x_2(t;\lambda) = \begin{cases} \overline{u}_{\alpha_{\lambda}}(t) & \text{ for } t \in [0,\alpha_{\lambda}] \\ v_{\alpha_{\lambda}}(t) & \text{ for } t \in (\alpha_{\lambda},T]. \end{cases}$$

Here solutions u_{α} , v_{β} , \overline{u}_{α} and \overline{v}_{β} were defined in Section 2. Of course,

$$\lambda \max\{u_{c_{\lambda}}(t) : 0 \le t \le c_{\lambda}\} = -\min\{\overline{v}_{c_{\lambda}} : c_{\lambda} \le t \le T\}$$

$$\lambda \max\{v_{\alpha_{\lambda}}(t) : \alpha_{\lambda} \le t \le T\} = -\min\{\overline{u}_{\alpha_{\lambda}} : 0 \le t \le \alpha_{\lambda}\}$$

and c_{λ} (resp. α_{λ}) is the (unique) zero of $x_1(t;\lambda)$ (resp. $x_2(t;\lambda)$) in (0,T).

Lemma 4.1. Let assumptions $(H_1) - (H_4)$ be satisfied. Then

a) c_{λ} is continuous and decreasing on $(0, \infty)$,

$$\lim_{\lambda \to \infty} c_{\lambda} = 0, \quad \lim_{\lambda \to 0^+} c_{\lambda} = T,$$

b) $u_{c_{\lambda_1}}(t) > u_{c_{\lambda_2}}(t)$ for $t \in (0, c_{\lambda_2}]$ and $0 < \lambda_1 < \lambda_2.$

Proof. We know (see the proof of Theorem 3.2) that c_{λ} is the (unique) solution of the equation $\lambda \Lambda_{+}(c) + \Phi_{-}(c) = 0$. Hence the equality $\lambda \Lambda_{+}(c_{\lambda}) + \Phi_{-}(c_{\lambda}) = 0$ holds for $\lambda \in (0, \infty)$. Let $0 < \lambda_{1} < \lambda_{2}$. If $c_{\lambda_{1}} \leq c_{\lambda_{2}}$, then from the properties of the functions Λ_{+} and Φ_{-} given in Lemmas 2.6–2.10 it follows that $0 = \lambda_{1}\Lambda_{+}(c_{\lambda_{1}}) + \Phi_{-}(c_{\lambda_{1}}) < \lambda_{2}\Lambda_{+}(c_{\lambda_{2}}) + \Phi_{-}(c_{\lambda_{2}})$, contrary to $\lambda_{2}\Lambda_{+}(c_{\lambda_{2}}) + \Phi_{-}(c_{\lambda_{2}}) = 0$. Therefore c_{λ} is decreasing on $(0, \infty)$.

Assume that c_{λ} is discontinuous at a point $\lambda_0 \in (0, \infty)$. Then there is a sequence $\{\lambda_n\} \subset (0, \infty)$, $\lim_{n\to\infty} \lambda_n = \lambda_0$ such that $\lim_{n\to\infty} c_{\lambda_n} = \mu_0 \neq c_{\lambda_0}$. Letting $n \to \infty$ in the equalities $\lambda_n \Lambda_+(c_{\lambda_n}) + \Phi_-(c_{\lambda_n}) = 0$, $n \in \mathbb{N}$, we get

$$\lambda_0 \Lambda_+(\mu_0) + \Phi_-(\mu_0) = 0 \tag{4.1}$$

since Λ_+ and Φ_- are continuous. But the equation $\lambda_0 \Lambda_+(c) + \Phi_-(c) = 0$ has the unique solution $c = c_{\lambda_0}$, contrary to (4.1). Hence c_{λ} is continuous on $(0, \infty)$.

Suppose $\lim_{\lambda\to\infty} c_{\lambda} = \mu > 0$. Then $\Lambda_+(c_{\lambda}) \ge \Lambda_+(\mu) > 0$ and $\Phi_-(c_{\lambda}) \le \Phi_-(\mu) < 0$ for $\lambda \in (0, \infty)$, and so $\lim_{\lambda\to\infty} (\lambda \Lambda_+(c_{\lambda}) + \Phi_-(c_{\lambda})) = \infty$, contrary to

$$\lambda \Lambda_+(c_\lambda) + \Phi_-(c_\lambda)) = 0 \quad \text{for } \lambda \in (0,\infty).$$

$$(4.2)$$

Therefore $\lim_{\lambda\to\infty} c_{\lambda} = 0$. If $\lim_{\lambda\to0^+} c_{\lambda} = \varrho < T$, then $\lim_{\lambda\to0^+} \Lambda_+(c_{\lambda}) = \Lambda_+(\varrho) > 0$, $\lim_{\lambda\to0^+} \Phi_-(c_{\lambda}) = \Phi_-(\varrho) < 0$, and so $\lim_{\lambda\to0^+} (\lambda\Lambda_+(c_{\lambda}) + \Phi_-(c_{\lambda})) = \Phi_-(\varrho) < 0$, contrary to (4.2). Hence $\lim_{\lambda\to0^+} c_{\lambda} = T$.

Finally, if $0 < \lambda_1 < \lambda_2$, then $c_{\lambda_1} > c_{\lambda_2}$ and $u_{c_{\lambda_1}}(t) > u_{c_{\lambda_2}}(t)$ for $t \in (0, c_{\lambda_2}]$ by Lemma 2.9.

Lemma 4.2. Let assumptions $(H_1) - (H_4)$ be satisfied and let $\{\lambda_n\} \subset (0, \infty)$, $\lim_{n\to\infty} \lambda_n = \lambda_0 > 0$. Then

$$\lim_{n \to \infty} u_{c_{\lambda_n}}(t) = u_{c_{\lambda_0}}(t) \quad \text{locally uniformly on } [0, c_{\lambda_0}).$$

Proof. First from (2.14) it follows that

$$|u_{c_{\lambda_n}}'(t)| \le \frac{1}{r_0} \sqrt{2Q \int_0^{\Lambda_+(T)} g(s)r(s) \, ds} \quad \text{for } t \in [0, c_{\lambda_n}], \ n \in \mathbb{N}.$$
(4.3)

Now from (4.3) and using the fact that for $\{\lambda_n\}$ decreasing, $\{c_{\lambda_n}\}$ is increasing and

$$u_{c_{\lambda_{n+1}}}(t) > u_{c_{\lambda_n}}(t), \quad t \in [0, c_{\lambda_n}], \ n \in \mathbb{N}$$

and for $\{\lambda_n\}$ increasing, $\{c_{\lambda_n}\}$ is decreasing and

$$u_{c_{\lambda_{n+1}}}(t) < u_{c_{\lambda_n}}(t), \quad t \in [0, c_{\lambda_{n+1}}], \ n \in \mathbb{N}$$

(see Lemma 4.1), we deduce the assertion of our lemma.

Define the function $S_+: (0,\infty) \to (-\infty,0]$ by the formula

$$S_{+}(\lambda) = u_{c_{\lambda}}'(c_{\lambda}),$$

where $u'_{c_{\lambda}}(c_{\lambda})$ denotes the derivative of $u_{c_{\lambda}}(t)$ on the left at the point $t = c_{\lambda}$.

Lemma 4.3. Let assumptions $(H_1) - (H_4)$ be satisfied. Then S_+ is continuous on $(0, \infty)$ and

$$\lim_{\lambda \to \infty} S_+(\lambda) = 0, \quad \limsup_{\lambda \to 0^+} S_+(\lambda) < 0.$$

Proof. Assume, on the contrary, that S_+ is discontinuous at a point $\lambda_0 \in (0, \infty)$. Then there exist $\varepsilon_0 > 0$ and a sequence $\{\lambda_n\} \subset (\lambda_0/2, 2\lambda_0)$, $\lim_{n\to\infty} \lambda_n = \lambda_0$ such that $|S_+(\lambda_n) - S_+(\lambda_0)| \ge \varepsilon_0$ for $n \in \mathbb{N}$, that is

$$|u_{c_{\lambda_n}}'(c_{\lambda_n}) - u_{c_{\lambda_0}}'(c_{\lambda_0})| \ge \varepsilon_0 \quad \text{for } n \in \mathbb{N}.$$

$$(4.4)$$

We claim that there exists $\nu > 0$ such that

$$|u_{c_{\lambda_n}}'(t) - u_{c_{\lambda_n}}'(c_{\lambda_n})| < \frac{\varepsilon_0}{2} \quad \text{for } t \in [c_{\lambda_n} - \nu, c_{\lambda_n}], \ n \in \mathbb{N}.$$

$$(4.5)$$

If not, without restriction of generality we can assume that there is a sequence $\{\tau_n\} \subset (0,T), \tau_n < c_{\lambda_n}, \lim_{n\to\infty} (\tau_n - c_{\lambda_n}) = 0$ such that

$$|u'_{c_{\lambda_n}}(\tau_n) - u'_{c_{\lambda_n}}(c_{\lambda_n})| = \frac{\varepsilon_0}{2} \quad \text{for } n \in \mathbb{N}.$$

$$(4.6)$$

If $u'_{c_{\lambda_n}}(\tau_n) \leq 0$, then $r(u_{c_{\lambda_n}}(t))u'_{c_{\lambda_n}}(t) \leq 0$ for $t \in [\tau_n, c_{\lambda_n}]$ and integrating the inequality

$$(r(u_{c_{\lambda_n}}(t))u'_{c_{\lambda_n}}(t))'r(u_{c_{\lambda_n}}(t))u'_{c_{\lambda_n}}(t) \le -Qg(u_{c_{\lambda_n}}(t))r(u_{c_{\lambda_n}}(t))u'_{c_{\lambda_n}}(t)$$
(4.7)

from τ_n to c_{λ_n} we get

$$(0 \le) (r(0)u'_{c_{\lambda_n}}(c_{\lambda_n}))^2 - (r(u_{c_{\lambda_n}}(\tau_n))u'_{c_{\lambda_n}}(\tau_n))^2$$
$$\le -2Q \int_{u_{c_{\lambda_n}}(\tau_n)}^0 g(s)r(s) \, ds = 2Q \int_0^{u_{c_{\lambda_n}}(\tau_n)} g(s)r(s) \, ds.$$
(4.8)

If $u'_{c_{\lambda_n}}(\tau_n) > 0$, then there exists $\xi_n \in (\tau_n, c_{\lambda_n})$ such that $u'_{c_{\lambda_n}}(\xi_n) = 0$ and then integrating the inequality

$$(r(u_{c_{\lambda_n}}(t))u'_{c_{\lambda_n}}(t))'r(u_{c_{\lambda_n}}(t))u'_{c_{\lambda_n}}(t) \ge -Qg(u_{c_{\lambda_n}}(t))r(u_{c_{\lambda_n}}(t))u'_{c_{\lambda_n}}(t)$$

from τ_n to ξ_n and inequality (4.7) from ξ_n to c_{λ_n} , we have

$$(r(u_{c_{\lambda_n}}(\tau_n))u'_{c_{\lambda_n}}(\tau_n))^2 \le 2Q \int_{u_{c_{\lambda_n}}(\tau_n)}^{u_{c_{\lambda_n}}(\xi_n)} g(s)r(s) \, ds \tag{4.9}$$

and

$$(r(0)u'_{c_{\lambda_n}}(c_{\lambda_n}))^2 \le 2Q \int_0^{u_{c_{\lambda_n}}(\xi_n)} g(s)r(s) \, ds.$$
(4.10)

Let \mathbb{N}_+ be the set of all $n \in \mathbb{N}$ such that $u'_{c_{\lambda_n}}(\tau_n) > 0$. Assume \mathbb{N}_+ is infinite. Using (4.3) and the equalities $\lim_{n\to\infty} (\xi_n - c_{\lambda_n}) = 0$, $\lim_{n\to\infty} (\xi_n - \tau_n) = 0$, we have

$$\lim_{n \in \mathbb{N}_+, n \to \infty} (u_{c_{\lambda_n}}(\xi_n) - u_{c_{\lambda_n}}(\tau_n)) = 0,$$

$$\lim_{n \in \mathbb{N}_+, n \to \infty} u_{c_{\lambda_n}}(\xi_n) = \lim_{n \in \mathbb{N}_+, n \to \infty} (u_{c_{\lambda_n}}(\xi_n) - u_{c_{\lambda_n}}(c_{\lambda_n})) = 0,$$

and so (4.9), (4.10) and $r(x) \ge r_0 > 0$ for $x \in \mathbb{R}$ yield

$$\lim_{n \in \mathbb{N}_+, n \to \infty} u'_{c_{\lambda_n}}(\tau_n) = \lim_{n \in \mathbb{N}_+, n \to \infty} u'_{c_{\lambda_n}}(c_{\lambda_n}) = 0$$

contrary to (4.6). Hence \mathbb{N}_+ is finite and there is no loss of generality in assuming $u'_{c_{\lambda_n}}(\tau_n) \leq 0$ for $n \in \mathbb{N}$ and then (see (4.8))

$$(0 \le) (r(0)u'_{c_{\lambda_n}}(c_{\lambda_n}))^2 - (r(u_{c_{\lambda_n}}(\tau_n))u'_{c_{\lambda_n}}(\tau_n))^2 \le 2Q \int_0^{u_{c_{\lambda_n}}(\tau_n)} g(s)r(s) \, ds \quad (4.11)$$

for $n \in \mathbb{N}$. From Lemma 1.2 in [14] (with $\mu = 1$) it follows that

$$u_{c_{\lambda_n}}'(c_{\lambda_n}) \le -\frac{2K}{Vc_{\lambda_0/2}} \quad \text{for } n \in \mathbb{N} , \qquad (4.12)$$

where

$$V = \max\left\{r(x) : 0 \le x \le \max\{u_T(t) : 0 \le t \le T\}\right\},$$
(4.13)

$$K = \min\left[\min\left\{\int_{0}^{t/2} s|q(s)|k(s)\,ds, \int_{t/2}^{t} (t-s)|q(s)|k(s)\,ds\right\} : \frac{\lambda_0}{2} \le t \le 2\lambda_0\right]$$

and $k \in C^0([0,T])$ is a positive function such that

$$0 < k(t) \le f(t, x) \operatorname{sign} x \quad \text{for } (t, x) \in [0, T] \times ([-\|u_T\|, 0) \cup (0, \|u_T\|])$$
(4.14)

with $||u_T|| = \max\{u_T(t) : 0 \le t \le T\}$ (for the function k see Remark 1.3). By (4.3), $\{u'_{c_{\lambda_n}}(c_{\lambda_n})\}$ and $\{u'_{c_{\lambda_n}}(\tau_n)\}$ are bounded, and so going if necessary to subsequences, we can assume that they are convergent, say

$$\lim_{n \to \infty} u'_{c_{\lambda_n}}(c_{\lambda_n}) = A, \quad \lim_{n \to \infty} u'_{c_{\lambda_n}}(\tau_n) = B.$$

By virtue of (4.6), we have

$$|A - B| = \frac{\varepsilon_0}{2}.\tag{4.15}$$

In addition, $\lim_{n\to\infty} u_{c_{\lambda_n}}(\tau_n) = \lim_{n\to\infty} (u_{c_{\lambda_n}}(\tau_n) - u_{c_{\lambda_n}}(c_{\lambda_n})) = 0$ since (4.3) holds and $\lim_{n\to\infty} (\tau_n - c_{\lambda_n}) = 0$. Letting $n \to \infty$ in (4.11), we get $0 \le (r(0))^2 (A^2 - B^2) = 0$. Therefore $A^2 - B^2 = 0$ and since $A \le -2K/(Vc_{\lambda_0/2})$ by (4.12) and $B \le 0$, we have A = B, contrary to (4.15). We have proved that (4.5) holds. Let

$$|u_{c_{\lambda_0}}'(t) - u_{c_{\lambda_0}}'(c_{\lambda_0})| \le \frac{\varepsilon_0}{4} \quad \text{for } t \in [c_{\lambda_0} - \gamma, c_{\lambda_0}] , \qquad (4.16)$$

where γ is a positive constant. Set $\kappa = \min\{\nu, \gamma\}$. Using (4.4) and (4.5) we have

$$|u'_{c_{\lambda_n}}(t) - u'_{c_{\lambda_0}}(c_{\lambda_0})| \ge |u'_{c_{\lambda_n}}(c_{\lambda_n}) - u'_{c_{\lambda_0}}(c_{\lambda_0})| - |u'_{c_{\lambda_n}}(t) - u'_{c_{\lambda_n}}(c_{\lambda_n})| > \frac{\varepsilon_0}{2}$$

S. Staněk

for $t \in [c_{\lambda_n} - \kappa, c_{\lambda_n}]$ and $n \in \mathbb{N}$. Assume that

$$\mathbb{N}^* = \left\{ n : n \in \mathbb{N}, \, u'_{c_{\lambda_n}}(t) - u'_{c_{\lambda_0}}(c_{\lambda_0}) > \frac{\varepsilon_0}{2} \text{ for } t \in [c_{\lambda_n} - \kappa, c_{\lambda_n}] \right\}$$

is an infinite set (analogously for $\mathbb{N} \setminus \mathbb{N}^*$ infinite). Then

$$u_{c_{\lambda_n}}(t) = \int_{c_{\lambda_n}}^t u'_{c_{\lambda_n}}(s) \, ds \le \left(u'_{c_{\lambda_0}}(c_{\lambda_0}) + \frac{\varepsilon_0}{2}\right)(t - c_{\lambda_n}) \tag{4.17}$$

for $t \in [c_{\lambda_n} - \kappa, c_{\lambda_n}]$ and $n \in \mathbb{N}^*$. On the other hand, (4.16) gives

$$\left(u_{c_{\lambda_0}}'(c_{\lambda_0}) + \frac{\varepsilon_0}{4}\right)(t - c_{\lambda_0}) \le u_{c_{\lambda_0}}(t) \\
= \int_{c_{\lambda_0}}^t u_{c_{\lambda_0}}'(s) \, ds \le \left(u_{c_{\lambda_0}}'(c_{\lambda_0}) - \frac{\varepsilon_0}{4}\right)(t - c_{\lambda_0})$$
(4.18)

for $t \in [c_{\lambda_0} - \kappa, c_{\lambda_0})$. Since $\lim_{n \to \infty} (c_{\lambda_n} - \kappa) = c_{\lambda_0} - \kappa$, there exists $n_0 \in \mathbb{N}$ such that for $n \in \mathbb{N}^*$, $n \ge n_0$, we have $c_{\lambda_n} - \kappa \le c_{\lambda_0} - \kappa/2$ and then letting $n \to \infty$ in (4.17) and using Lemmas 4.1 and 4.2,

$$u_{c_{\lambda_0}}(t) \le \left(u_{c_{\lambda_0}}'(c_{\lambda_0}) + \frac{\varepsilon_0}{2}\right)(t - c_{\lambda_0}), \quad t \in \left[c_{\lambda_0} - \frac{\kappa}{2}, c_{\lambda_0}\right],$$

contrary to (4.18). We have proved that S_+ is continuous on $(0, \infty)$.

Let $\{\lambda_n\} \subset (0,\infty)$, $\lim_{n\to\infty} \lambda_n = \infty$. Then $\lim_{n\to\infty} c_{\lambda_n} = 0$ by Lemma 4.1, and there exists $\{\xi_n\}$, $0 < \xi_n < c_{\lambda_n}$, such that $u'_{c_{\lambda_n}}(\xi_n) = 0$ and $r(u_{c_{\lambda_n}}(t))u'_{c_{\lambda_n}}(t) < 0$ on $(\xi_n, c_{\lambda_n}]$ and $n \in \mathbb{N}$. Integrating (4.7) from ξ_n to c_{λ_n} we get

$$(r(0)u'_{c_{\lambda_n}}(c_{\lambda_n}))^2 \le 2Q \int_0^{u_{c_{\lambda_n}}(\xi_n)} g(s)r(s) \, ds \quad \text{for } n \in \mathbb{N}.$$
 (4.19)

By Lemma 1.2 in [14] (with $\mu = 1$), $u_{c_{\lambda_n}}(t) \leq L_n$ for $t \in [0, c_{\lambda_n}]$ where $L_n > 0$ is an arbitrary constant satisfying the inequality

$$1 \le \frac{2\Big(\int_0^{L_n} r(s) \, ds\Big)^2}{(c_{\lambda_n})^2 Q \int_0^{L_n} g(s) r(s) \, ds}$$

From the last inequality we see that L_n can be chosen such that $\lim_{n\to\infty} L_n = 0$ and then (4.19) yields $\lim_{n\to\infty} u'_{c_{\lambda_n}}(c_{\lambda_n}) = 0$. Hence $\lim_{\lambda\to\infty} S_+(\lambda) = 0$.

Let $\{\lambda_n\} \subset (0,\infty)$, $\lim_{n\to\infty} \lambda_n = 0$. Then $\lim_{n\to\infty} c_{\lambda_n} = T$ by Lemma 4.1, and from Lemma 1.2 in [14] (with $\mu = 1$) we deduce that for each $n \in \mathbb{N}$ such that $c_{\lambda_n} \geq T/2$,

$$u'_{c_{\lambda_n}}(c_{\lambda_n}) \le -\frac{2K_1}{VT}, \quad n \in \mathbb{N}$$

where V is given by (4.13) and

$$K_1 = \min\left[\min\left\{\int_0^{t/2} s|q(s)|k(s)\,ds, \int_{t/2}^t (t-s)|q(s)|k(s)\,ds\right\} : \frac{T}{2} \le t \le T\right]$$

with $k \in C^0([0,T])$ satisfying (4.14). Hence $\limsup_{\lambda \to 0^+} S_+(\lambda) \leq -2K_1/(VT)$. \Box

Define the functions $S_-: (0,\infty) \to (0,\infty)$, $Z_+: (0,\infty) \to (0,\infty)$ and $Z_-: (0,\infty) \to (-\infty,0)$ by the formulas

$$S_{-}(\lambda) = \overline{u}_{\alpha_{\lambda}}'(\alpha_{\lambda}),$$

$$Z_{+}(\lambda) = v_{c_{\lambda}}'(\alpha_{\lambda}),$$

$$Z_{-}(\lambda) = \overline{v}_{\alpha_{\lambda}}'(c_{\lambda}).$$

We observe that c_{λ} (resp. α_{λ}) is the (unique) solution of the equation $\lambda \Lambda_{+}(c) + \Phi_{-}(c) = 0$ (resp. $\lambda \Phi_{+}(\alpha) + \Lambda_{-}(\alpha) = 0$). From the properties of the functions Λ_{+} , Λ_{-} , Φ_{+} , Φ_{-} , using Remarks 2.1 and 2.2 and applying procedures analogical to those in the proofs of Lemmas 4.1–4.3, we can show properties of the functions S_{-} , Z_{+} and Z_{-} which are given in the following lemma.

Lemma 4.4. Let assumptions $(H_1) - (H_4)$ be satisfied. Then the functions S_- , Z_+ and Z_- are continuous on $(0, \infty)$ and

$$\lim_{\lambda \to 0^+} \inf S_-(\lambda) > 0, \quad \lim_{\lambda \to \infty} S_-(\lambda) = 0,$$
$$\lim_{\lambda \to 0^+} Z_+(\lambda) = 0, \quad \liminf_{\lambda \to \infty} Z_+(\lambda) > 0,$$
$$\lim_{\lambda \to 0^+} Z_-(\lambda) = 0, \quad \limsup_{\lambda \to \infty} Z_-(\lambda) < 0.$$

Theorem 4.5. Let assumptions $(H_1) - (H_4)$ be satisfied. Then problem (1.1)-(1.3) has at least two solutions.

Proof. Define the function $k, p: (0, \infty) \to \mathbb{R}$ by

$$k(\lambda) = S_+(\lambda) - Z_-(\lambda), \quad p(\lambda) = S_-(\lambda) - Z_+(\lambda).$$

By Lemmas 4.3 and 4.4, the functions k and p are continuous on $(0, \infty)$ and

$$\begin{split} &\limsup_{\lambda\to 0^+} k(\lambda) < 0, \ \ \liminf_{\lambda\to\infty} k(\lambda) > 0, \\ &\liminf_{\lambda\to 0^+} p(\lambda) > 0, \ \ \limsup_{\lambda\to\infty} p(\lambda) < 0. \end{split}$$

Hence there exist $\lambda_1, \lambda_2 \in (0, \infty)$ such that $k(\lambda_1) = 0$ and $p(\lambda_2) = 0$, that is $S_+(\lambda_1) = Z_-(\lambda_1)$ and $S_-(\lambda_2) = Z_+(\lambda_2)$. Then the functions

$$x_1(t) = \begin{cases} u_{c_1}(t) & \text{ for } t \in [0, c_1] \\ \overline{v}_{c_1}(t) & \text{ for } t \in (c_1, T] \end{cases}$$

and

$$x_2(t) = \begin{cases} \overline{u}_{\alpha_1}(t) & \text{for } t \in [0, \alpha_1] \\ v_{\alpha_1}(t) & \text{for } t \in (\alpha_1, T) \end{cases}$$

are solutions of problem (1.1)-(1.3), where c_1 (resp. α_1) is the (unique) solution of the equation $\lambda_1 \Lambda_+(c) + \Phi_-(c) = 0$ (resp. $\lambda_2 \Phi_+(\alpha) + \Lambda(\alpha) = 0$). Clearly, $x_1 \neq x_2$.

5. Exceptional *n*-sign-changing *w*-solutions of problem (1.1), (1.2), (5.1)

Let $c \in (0, T]$. In this Section we will use the following conditions

$$\max\{x(t): 0 \le t \le T\} = -\min\{x(t): 0 \le t \le T\},\tag{5.1}$$

$$x(0) = 0, \quad x(c) = 0 \tag{5.2}$$

and

$$\max\{x(t): 0 \le t \le c\} = -\min\{x(t): 0 \le t \le c\}.$$
(5.3)

We note that (5.1) is (1.3) with $\lambda = 1$.

Definition 5.1. Let $n \in \mathbb{N}$, $n \geq 2$. We say that x is an *n*-sign-changing w-solution of problem (1.1), (5.2), (5.3) if x has precisely n - 1 zeros $t_1 < t_2 < \cdots < t_{n-1}$ in $(0, c), x \in C^0([0, c]) \cap C^1([0, c] \setminus \{t_1, t_2, \cdots, t_{n-1}\})$, there exist finite $\lim_{t \to t_i^-} x'(t)$, $\lim_{t \to t_i^+} x'(t)$ for $i = 1, 2, \cdots, n-1, r(x)x' \in C^1([0, c] \setminus \{t_1, t_2, \cdots, t_{n-1}\})$, x satisfies (5.2), equality (1.1) holds on $(0, c) \setminus \{t_1, t_2, \cdots, t_{n-1}\}$ and finally

$$\max\{x(t): t_i \le t \le t_{i+2}\} \min\{x(t): t_i \le t \le t_{i+2}\} < 0$$

for $i = 0, 1, \dots, n-2$ with $t_0 = 0$ and $t_n = c$.

If, in addition,

$$\max\{|x(t)|: 0 \le t \le t_1\} = \max\{|x(t)|: t_j \le t \le t_{j+1}\}$$

for $j = 1, 2, \dots, n-1$, we say that x is an exceptional n-sign-changing w-solution of problem (1.1), (5.2), (5.3). In case of c = T, x is called an exceptional n-sign-changing w-solution of problem (1.1), (1.2), (5.1).

Remark 5.2. We observe, that the notion of the *w*-solution of problem (1.1)-(1.3) with $\lambda = 1$ stated in Section 1 corresponds to the notion of exceptional 2-sign-changing *w*-solution of problem (1.1), (1.2), (5.1).

Before we give existence results for exceptional *n*-sign-changing *w*-solutions of problem (1.1), (1.2), (5.1), we will define a function Δ_+ whose properties are important in our next considerations.

Let assumptions $(H_1) - (H_4)$ be satisfied. Then, by Theorem 3.2 (with $\mu = 1$) and its proof, for each $c \in (0,T]$ there exists the unique *w*-solution of problem (1.1), (5.2), (5.3), which is positive in the right neighbourhood of t = 0. This solution we will denote throughout this Section by w_c . Using w_c we define the function $\Delta_+ : (0,T] \to (0,\infty)$ by

$$\Delta_+(c) = \max\{w_c(t) : 0 \le t \le c\}$$

Lemma 5.3. Let assumptions $(H_1) - (H_4)$ be satisfied. Then Δ_+ is continuous and increasing on (0,T] and

$$\lim_{c \to 0^+} \Delta_+(c) = 0. \tag{5.4}$$

Proof. To prove that Δ_+ is increasing on (0, T] we assume, on the contrary, that $\Delta_+(a) \ge \Delta_+(b)$ for some $0 < a < b \le T$. Let $w_a(t_a) = 0$ and $w_b(t_b) = 0$ with unique $t_a \in (0, a)$ and $t_b \in (0, b)$. From Lemma 2.9 and our assumption $\Delta_+(a) \ge \Delta_+(b)$ we deduce that $t_a \ge t_b$. We claim that

$$w_b(t) < w_a(t) \quad \text{for } t \in (t_a, a]. \tag{5.5}$$

If not, since $0 = w_a(t_a) \ge w_b(t_a)$ and $0 = w_a(a) > w_b(a)$ we have either $w_a(\xi) = w_b(\xi)$ for some $\xi \in (t_a, a)$ and $w_b(t) \le w_a(t)$ for $t \in [t_a, a]$ or there exist $t_a \le \nu < \tau < a$ such that $w_a(\nu) = w_b(\nu)$, $w_a(\tau) = w_b(\tau)$ and $w_b(t) > w_a(t)$ for $t \in (\nu, \tau)$. In the first case $w'_a(\xi) = w'_b(\xi)$ and $w_a = w_b$ in a neighbourhood of $t = \xi$ by (H_4) , and then by repeated application of (H_4) we get $w_a = w_b$ on (t_a, a) , which is impossible. In the second case, we have $r(w_a(\nu))w'_a(\nu) \le r(w_b(\nu))w'_b(\nu)$ and $f(t, w_a(t)) \ge f(t, w_b(t))$ for $t \in (\nu, \tau]$. Hence

$$\left(\int_{w_a(t)}^{w_b(t)} r(s) \, ds\right)'' = q(t)(f(t, w_b(t)) - f(t, w_a(t))) \ge 0, \quad t \in (\nu, \tau].$$

and so $\left(\int_{w_a(t)}^{w_b(t)} r(s) \, ds\right)'$ is nondecreasing on $[\nu, \tau]$ and then the equalities $w_a(\nu) = w_a(t)$

 $w_b(\nu), w_a(\tau) = w_b(\tau) \text{ imply } \int_{w_a(t)}^{w_b(t)} r(s) \, ds = 0 \text{ for } t \in [\nu, \tau], \text{ contrary to } w_b > w_a$ on (ν, τ) . Now (5.5) yields $\min\{w_b(t) : 0 \le t \le b\} < \min\{w_a(t) : 0 \le t \le a\}, \text{ hence } \Delta_+(b) > \Delta_+(a), \text{ contrary to our assumption } \Delta_+(a) \ge \Delta_+(b).$ We have proved that Δ_+ is increasing on (0, T].

Suppose that Δ_+ is discontinuous on the right at a point $c_0 \in (0, T)$, i.e., there is a decreasing sequence $\{c_n\} \subset (c_0, T)$ such that $\lim_{n\to\infty} c_n = c_0$ and

$$\lim_{n \to \infty} \Delta_+(c_n) = \mu > \Delta_+(c_0). \tag{5.6}$$

Let $w_{c_n}(t_n) = 0$ for the (unique) $t_n \in (0, c_n)$, $n \in \mathbb{N} \cup \{0\}$. Since $\mu < \Delta_+(c_{n+1}) < \Delta_+(c_n)$ for $n \in \mathbb{N}$, Lemma 2.9 shows that $t_0 < t_{n+1} < t_n$ for $n \in \mathbb{N}$. There is no loss of generality in assuming $t_1 < c_0$. Moreover, $\Delta_+(c_n) = \Lambda_+(t_n)$ for $n \in \mathbb{N} \cup \{0\}$ and from $\Delta_+(c_0) < \mu < \Lambda_+(t_n)$ and the continuity of Λ_+ by Lemma 2.6, we see that $\lim_{n\to\infty} t_n = t_* > t_0$. Applying the procedure as in the proof of Lemma 2.6 (now on $[t_n, c_n]$), we get

$$|r(w_{c_n}(t))w'_{c_n}(t)| \le \sqrt{2Q\int_0^{\Lambda_+(t_n)} g(s)r(s)\,ds} \le \sqrt{2Q\int_0^{\Lambda_+(t_1)} g(s)r(s)\,ds} \qquad (5.7)$$

for $t \in [t_n, c_n]$, $n \in \mathbb{N}$, and then

ſ

$$0 \leq \int_{t_n}^{t} q(s)f(s, w_{c_n}(s)) \, ds = r(w_{c_n}(t))w'_{c_n}(t) - r(0)w'_{c_n}(t_n)$$

$$\leq 2\sqrt{2Q}\int_{0}^{\Lambda_+(t_1)} g(s)r(s) \, ds$$
(5.8)

for $t \in [t_n, c_n]$ and $n \in \mathbb{N}$. By (5.7),

$$|w_{c_n}'(t)| \le S \quad \text{for } t \in [t_n, c_n], \ n \in \mathbb{N},$$
(5.9)

where

$$S = \frac{1}{r_0} \sqrt{2Q \int_0^{\Lambda_+(t_1)} g(s)r(s) \, ds}.$$
 (5.10)

From (5.9), $0 \ge w_{c_n}(t) \ge -\Lambda_+(t_1)$ for $t \in [t_n, c_n]$, $n \in \mathbb{N}$, and the Arzelà-Ascoli theorem, we deduce that there exists a subsequence of $\{w_{c_n}\}$, which we denote by $\{w_{c_n}\}$ again, such that $\lim_{n\to\infty} w_{c_n}(t) = w(t)$ locally uniformly on $(t_*, c_0]$. Then $w \in C^0((t_*, c_0)), w \le 0$ on $(t_*, c_0]$ and $w(c_0) = 0$ since in the case that $w(c_0) < 0$ from the relations

$$\frac{w(c_0)}{2} \ge w_{c_n}(c_0) = w_{c_n}(c_0) - w_{c_n}(c_n) = w'_{c_n}(\xi_n)(c_0 - c_n)$$

which are satisfied for sufficiently large n and where $\xi_n \in (c_0, c_n)$, we obtain

$$\lim_{n \to \infty} w'_{c_n}(\xi_n) \ge \lim_{n \to \infty} \frac{w(c_0)}{2(c_0 - c_n)} = \infty$$

contrary to (5.9). We are going to show that w(t) < 0 on (t_*, c_0) and

$$\lim_{t \to t_*^+} w(t) = 0. \tag{5.11}$$

By (H_3) (see Remark 1.3), there exists a positive function $k \in C^0([0,T])$ such that

$$k(t) \le f(t, x) \operatorname{sign} x$$
 for $(t, x) \in [0, T] \times [-\Delta_+(c_1), 0) \cup (0, \Delta_+(c_1)].$

Now using our Remark 2.2 and Lemma 1.2 in [14] with $\mu = 1$, we get (for $n \in \mathbb{N}$)

$$w_{c_n}(t) \leq \begin{cases} H^{-1} \left(-\frac{2K_n(t-t_n)}{c_n - t_n} \right) & \text{for } t \in \left[t_n, \frac{t_n + c_n}{2} \right] \\ H^{-1} \left(-\frac{2K_n(c_n - t)}{c_n - t_n} \right) & \text{for } t \in \left(\frac{t_n + c_n}{2}, c_n \right], \end{cases}$$
(5.12)

where

$$K_n = \min\left\{\int_{t_n}^{(t_n + c_n)/2} (s - t_n) |q(s)| k(s) \, ds, \int_{(t_n + c_n)/2}^{c_n} (c_n - s) |q(s)| k(s) \, ds\right\}$$

and H^{-1} is the inverse to H given by (2.3). Let $t_n \leq (3t_* + c_0)/4$ and $t_n + c_n \leq (t_* + 3c_0)/2$ for $n \geq n_1$ with an $n_1 \in \mathbb{N}$. Then (for $n \geq n_1$)

$$\int_{t_n}^{(t_n+c_n)/2} (s-t_n) |q(s)| k(s) \, ds \ge \int_{(3t_*+c_0)/4}^{(t_*+c_0)/2} \left(s - \frac{3t_*+c_0}{4}\right) |q(s)| k(s) \, ds,$$

$$\int_{(t_n+c_n)/2}^{c_n} (c_n-s)|q(s)|k(s)\,ds \ge \int_{(t_*+3c_0)/4}^{c_0} (c_0-s)|q(s)|k(s)\,ds$$

and from (5.12) it follows that

$$w_{c_n}(t) \leq \begin{cases} H^{-1}\Big(-\frac{2K(t-t_n)}{c_n-t_n}\Big) & \text{ for } t \in \left[t_n, \frac{t_n+c_n}{2}\right] \\ H^{-1}\Big(-\frac{2K(c_n-t)}{c_n-t_n}\Big) & \text{ for } t \in \left(\frac{t_n+c_n}{2}, c_n\right], \end{cases}$$

where

$$K = \min\left\{\int_{(3t_*+c_0)/4}^{(t_*+c_0)/2} \left(s - \frac{3t_*+c_0}{4}\right) |q(s)|k(s)\,ds, \int_{(t_*+3c_0)/4}^{c_0} (c_0-s)|q(s)|k(s)\,ds\right\}.$$

Consequently,

$$w(t) = \lim_{n \to \infty} w_{c_n}(t) \le \begin{cases} H^{-1} \left(-\frac{2K(t-t_*)}{c_0 - t_*} \right) < 0 & \text{for } t \in \left(t_*, \frac{t_* + c_0}{2} \right] \\ H^{-1} \left(-\frac{2K(c_0 - t)}{c_0 - t_*} \right) < 0 & \text{for } t \in \left(\frac{t_* + c_0}{2}, c_0 \right), \end{cases}$$

and we see that w < 0 on (t_*, c_0) . If (5.11) is not true, then there exist $\delta < 0$ and a decreasing sequence $\{\nu_n\} \subset (t_*, c_0)$ such that $\lim_{n\to\infty} \nu_n = t_*$ and $w(\nu_n) \leq \delta$ for $n \in \mathbb{N}$. Now let

$$\nu_{n_*} < t_* - \frac{r_0 \delta}{4\sqrt{2Q \int_0^{\Lambda_+(t_1)} g(s)r(s) \, ds}}$$

for some $n_* \in \mathbb{N}$. Then there exists $n_2 \in \mathbb{N}$ such that $w_{c_n}(\nu_{n_*}) < \delta/2$ and

$$\frac{\delta}{2} > w_{c_n}(\nu_{n_*}) = w_{c_n}(\nu_{n_*}) - w_{c_n}(t_n) = w'_{c_n}(\varphi_n)(\nu_{n_*} - t_n)$$

for $n \ge n_2$, where $\varphi_n \in (t_n, \nu_{n_*})$. Therefore

$$w_{c_n}'(\varphi_n) < \frac{\delta}{2(\nu_{n_*} - t_n)} < \frac{\delta}{2(\nu_{n_*} - t_*)} < -\frac{2}{r_0} \sqrt{2Q \int_0^{\Lambda_+(t_1)} g(s)r(s) \, ds}$$

for $n \ge n_2$, contrary to (5.9).

Define $w_*: [t_*, c_0] \to (-\infty, 0]$ by

$$w_*(t) = \begin{cases} w(t) & \text{ for } t \in (t_*, c_0] \\ 0 & \text{ for } t = t_*. \end{cases}$$

Then $w_* \in C^0([t_*, c_0])$, $w_*(t_*) = w_*(c_0) = 0$ and $w_* < 0$ for $t \in (t_*, c_0)$. We are now in a position to show that w_* is a solution of problem (1.1), (2.2) with $a = t_*$ and $b = c_0$. For this, we define for each $n \in \mathbb{N}$ the function $p_n : [t_*, c_0] \to (-\infty, 0]$ by

$$p_n(t) = \begin{cases} f(t, w_{c_n}(t)) & \text{ for } t \in (t_n, c_0] \\ 0 & \text{ for } t \in [t_*, t_n]. \end{cases}$$

Since

$$0 \le \int_{t_*}^{c_0} q(t) p_n(t) \, dt = \int_{t_n}^{c_0} q(t) f(t, w_{c_n}(t)) \, dt \le 2\sqrt{2Q} \int_0^{\Lambda_+(t_1)} g(s) r(s) \, ds$$

by (5.8) and $\lim_{n\to\infty} p_n(t) = f(t, w_*(t))$ for $t \in (t_*, c_0)$, Fatou's theorem gives $q(\cdot)f(\cdot, w_*(\cdot)) \in L_1([t_*, c_0])$. Fix $\beta \in (t_1, c_0)$. Going if necessary to a subsequence, we can assume that $\{r(w_{c_n}(\beta))w'_{c_n}(\beta)\}$ is convergent, $\lim_{n\to\infty} r(w_{c_n}(\beta))w'_{c_n}(\beta) = A$. Letting $n \to \infty$ in

$$\int_{w_{c_n}(\beta)}^{w_{c_n}(t)} r(s) \, ds = r(w_{c_n}(\beta))w'_{c_n}(\beta)(t-\beta) + \int_{\beta}^{t} \int_{\beta}^{s} q(v)f(v, w_{c_n}(v)) \, dv \, ds, \ t \in [t_n, c_n]$$

and using the Lebesgue dominated theorem, we get

$$\int_{w_*(\beta)}^{w_*(t)} r(s) \, ds = A(t-\beta) + \int_{\beta}^t \int_{\beta}^s q(v) f(v, w_*(v)) \, dv \, ds, \quad t \in [t_*, c_0]$$

Whence

$$w_*(t) = H^{-1}\Big(H(w_*(\beta)) + A(t-\beta) + \int_{\beta}^{t} \int_{\beta}^{s} q(v)f(v, w_*(v)) \, dv \, ds\Big), \quad t \in [t_*, c_0]$$

and we see that $w_* \in C^1([t_*, c_0])$ and $(r(w_*(t))w'_*(t))' = q(t)f(t, w_*(t))$ for $t \in (t_*, c_0)$. Therefore w_* is a solution of problem (1.1), (2.2) with $a = t_*$ and $b = c_0$. Finally, applying Remarks 2.1 and 2.2 to Lemma 2.9, we have $w_{c_0}(t) < w_*(t)$ for $t \in [t_*, c_0)$, and consequently

$$-\Delta_{+}(c_{0}) = \min\{w_{c_{0}}(t) : t_{0} \le t \le c_{0}\} < \min\{w_{*}(t) : t_{*} \le t \le c_{0}\} = -\mu$$

contrary to (5.6). Hence Δ_+ is continuous on the right on (0, T).

The continuity of Δ_+ on the left on (0,T] can be proved similarly.

Now, define the 'dual' function $\Delta_-: (0,T] \to (0,\infty)$ to Δ_+ by the formula

$$\Delta_{-}(c) = \min\{\overline{w}_{c}(t) : 0 \le t \le c\},\$$

where \overline{w}_c is the unique solution of problem (1.1), (5.2), (5.3) such that $\overline{w}_c < 0$ in the right neighbourhood of t = 0.

Lemma 5.4. Let assumptions $(H_1) - (H_4)$ be satisfied. Then Δ_- is continuous decreasing on (0, T] and

$$\lim_{c \to 0^+} \Delta_-(c) = 0.$$

Proof. Since the proof of the lemma is similar to that of Lemma 5.3, we will omit it. \Box

Lemma 5.5. Let assumptions $(H_1) - (H_4)$ be satisfied. Then there exist exactly two exceptional 3-sign-changing w-solutions of problem (1.1), (1.2), (5.1).

$$x_{+}(t) = \begin{cases} w_{c_{+}}(t) & \text{for } t \in [0, c_{+}] \\ v_{c_{+}}(t) & \text{for } t \in (c_{+}, T] \end{cases}$$

is an exceptional 3-sign-changing w-solution of problem (1.1), (1.2), (5.1), which is positive in the right neighbourhood of t = 0. Assume that \overline{x}_+ is an additional exceptional 3-sign-changing w-solution of problem (1.1), (1.2), (5.1) having positive values in the right neighbourhood of t = 0 and let $\overline{x}_+(t_j) = 0$, j = 1, 2, with $0 < t_1 < t_2 < T$. Since $\overline{x}_+ \neq x_+$, it is necessary $t_2 \neq c_+$, say $t_2 > c_+$. Then $\Delta_+(t_2) - \Phi_+(t_2) > 0$ and from this inequality we deduce that

$$\max\{\overline{x}_{+}(t): 0 \le t \le t_{2}\} = \Delta_{+}(t_{2}) > \Phi_{+}(t_{2}) = \max\{\overline{x}_{+}(t): t_{2} \le t \le T\},\$$

contrary to the definition of an exceptional 3-sign-changing w-solution of problem (1.1), (1.2), (5.1).

By Lemmas 2.8, 2.10 and 5.4, Φ_{-} is continuous increasing on [0, T), Δ_{-} is continuous decreasing on (0, T] and $\lim_{c \to T^{-}} \Phi_{-}(c) = \lim_{c \to 0^{+}} \Delta_{-}(c) = 0$. Set $p_{-}(c) = \Delta_{-}(c) - \Phi_{-}(c)$ for $c \in (0, T)$. Then $p_{-} \in C^{0}((0, T))$, $\lim_{c \to 0^{+}} p_{-}(c) = -\Phi_{-}(0) > 0$, $\lim_{c \to T^{-}} p_{-}(c) = \Delta_{-}(T) < 0$ and since p_{-} is decreasing on (0, T), there is the unique $c_{-} \in (0, T)$ such that $p_{-}(c_{-}) = 0$. The function

$$x_{-}(t) = \begin{cases} \overline{w}_{c_{-}}(t) & \text{ for } t \in [0, c_{-}] \\ \overline{v}_{c_{-}}(t) & \text{ for } t \in (c_{-}, T] \end{cases}$$

is an exceptional 3-sign-changing w-solution of problem in the right neighbourhood of t = 0 and x_{-} is the unique exceptional 3-sign-changing w-solution of problem (1.1), (1.2), (5.1) having negative value in the right neighbourhood of t = 0.

Remark 5.6. Let assumptions $(H_1) - (H_4)$ be satisfied and let $c \in (0, T]$. Then $(H_1) - (H_4)$ are satisfied with c instead of T, and so there exist exactly two exceptional 3-sign-changing w-solutions of problem (1.1), (5.2), (5.3) by Lemma 5.5.

Theorem 5.7. Let assumptions $(H_1) - (H_4)$ be satisfied. Then for each $n \in \mathbb{N}$, $n \geq 2$, there exist exactly two exceptional *n*-sign-changing *w*-solutions of problem (1.1), (1.2), (5.1).

Proof. We proceed by induction. By Theorem 3.2 (with $\lambda = 1$) and Lemma 5.5, there exist exactly two exceptional *j*-sign-changing *w*-solutions of problem (1.1), (1.2), (5.1), j = 2, 3. In addition (see Remark 5.6), for each $c \in (0, T]$ there exists exactly two exceptional 3-sign-changing *w*-solutions of problem (1.1), (5.2), (5.3). Assuming that this result holds for $n = k \ge 3$, we will prove it for n = k + 1. Since the proof is similar to that of Lemma 5.5, we give only its main ideas.

S. Staněk

First, we assume that for each $c \in (0, T]$ there exist exactly two exceptional ksign-changing w-solutions w_{kc} and \overline{w}_{kc} of problem (1.1), (5.2), (5.3) such that w_{kc} is positive and \overline{w}_{kc} is negative in the right neighbourhood of t = 0. Now define $\Delta^k_+ : (0, T] \to (0, \infty)$ and $\Delta^k_- : (0, T] \to (0, \infty)$ by

$$\Delta_{+}^{k}(c) = \max\{w_{kc}(t) : 0 \le t \le c\}$$

and

$$\Delta_{-}^{k}(c) = \max\{\overline{w}_{kc}(t) : 0 \le t \le c\}$$

Further, we can proceed as in the proof of Lemmas 5.3 and 5.4 to verify that Δ^k_+ and Δ^k_- are continuous increasing on (0,T], $\lim_{c\to 0^+} \Delta^k_+(c) = \lim_{c\to 0^+} \Delta^k_-(c) = 0$. Finally, if k is an even positive integer, set

$$p_k^+(c) = \Delta_+^k(c) - \Phi_+(c), \quad p_k^-(c) = \Delta_-^k(c) + \Phi_-(c) \text{ for } c \in (0,T).$$

Since p_k^+ and p_k^- are continuous increasing on (0, T), $\lim_{c \to 0^+} p_k^+(c) = -\Phi_+(0) < 0$, $\lim_{c \to T^-} p_k^+(c) = \Delta_+^k(T) > 0$, $\lim_{c \to 0^+} p_k^-(c) = \Phi_-(0) < 0$ and $\lim_{c \to T^-} p_k^-(c) = \Delta_-^k(T) > 0$, there exists the unique solution c_+ (resp. c_-) of the equation $p_k^+(c) = 0$ (resp. $p_k^-(c) = 0$). Then

$$x_{+}(t) = \begin{cases} w_{kc_{+}}(t) & \text{for } t \in [0, c_{+}] \\ v_{c_{+}}(t) & \text{for } t \in (c_{+}, T], \end{cases}$$
$$x_{-}(t) = \begin{cases} \overline{w}_{kc_{-}}(t) & \text{for } t \in [0, c_{-}] \\ \overline{v}_{c_{-}}(t) & \text{for } t \in (c_{-}, T] \end{cases}$$

are the unique two exceptional (k + 1)-sign-changing w-solutions of problem (1.1), (1.2), (5.1).

If k is an odd positive integer, we now set

$$p_k^+(c) = \Delta_+^k(c) + \Phi_-(c), \quad p_k^-(c) = \Delta_-^k(c) - \Phi_+(c) \quad \text{for } c \in (0,T).$$

Then p_k^+ and p_k^- are continuous increasing on (0,T), the equations $p_k^+(c) = 0$ and $p_k^-(c) = 0$ have the unique solutions c_+ and c_- , respectively, and

$$x_{+}(t) = \begin{cases} w_{kc_{+}}(t) & \text{ for } t \in [0, c_{+}] \\ \overline{v}_{c_{+}}(t) & \text{ for } t \in (c_{+}, T], \end{cases}$$

and

$$x_{-}(t) = \begin{cases} \overline{w}_{kc_{-}}(t) & \text{ for } t \in [0, c_{-}] \\ v_{c_{-}}(t) & \text{ for } t \in (c_{-}, T] \end{cases}$$

are the unique two exceptional (k + 1)-sign-changing *w*-solutions of problem (1.1), (1.2), (5.1).

Acknowledgement. Supported by grant No. 201/01/1451 of the Grant Agency of the Czech Republic and by the Council of the Czech Government J14/98:153100011

REFERENCES

- AGARWAL, R. P. and O'REGAN, D.: Singular boundary value problems for superlinear second order ordinary and delay differential equations, J. Differential Equations, 130, (1996), 333-355.
- [2] AGARWAL, R. P. and O'REGAN, D.: Positive solutions to superlinear singular boundary value problems, J. Comput. Appl. Math., 88, (1998), 129–147.
- [3] AGARWAL, R. P. and O'REGAN, D.: Some new results for singular problems with sign changing nonlinearities, J. Comput. Appl. Math., 113, (2000), 1–15.
- [4] AGARWAL, R. P., O'REGAN, D. and LAKSHMIKANTHAM V.: An upper and lower solution approach for nonlinear singular boundary value problems with y' dependence, J. Inequal. & Appl., to appear
- [5] AGARWAL, R. P. and STANĚK, S.: Nonnegative solutions of singular boundary value problems with sign changing nonlinearities, Math. Modelling and Computation (in press).
- [6] GATICA, J. A., OLIKER, V. and WALTMAN, P.: Singular nonlinear boundary value problems for second order ordinary differential equations, J. Differential Equations, 79, (1989), 62–78.
- [7] KANNAN, R. and O'REGAN, D.: Singular and nonsingular boundary value problems with sign changing nonlinearities, J. Inequal. & Appl., 5, (2000), 621–637.
- [8] KIGURADZE, I. T. and SHEKHTER, B. L.: Singular boundary value problems for second order ordinary differential equations. In "Current Problems in Mathematics: Newest Results", **30**, 105–201, Moscow, 1987 (in Russian); English translation: J. Soviet Math. **43**, (1988), 2340–2417.
- [9] LOMTATIDZE, A.: Positive solutions of boundary value problems for second order differential equations with singular points, Differentsial'nye Uravneniya, 23, (1987), 1685– 1692. (in Russian)
- [10] LOMTATIDZE, A. and TORRES, P.: On a two-point boundary value problem for second order singular equations, Czech. Math. J. (in press).
- [11] O'REGAN, D.: Theory of Singular Boundary Value Problems, World Scientific Publishing, Singapore, 1994.
- [12] O'REGAN, D.: Existence principles and theory for singular Dirichlet boundary value problems, Differential Eqns. Dyn. Systems, 3, (1995), 289–304.
- [13] O'REGAN, D. and AGARWAL, R. P.: Singular problems: an upper and lower solution approach, J. Math. Anal. Appl. 251, (2000), 230–250.
- [14] RACHUNKOVÁ, I. and STANĚK, S.: Sign-changing solutions of singular Dirichlet boundary value problems, J. Inequal. & Appl. (in press)
- [15] RACHUNKOVÁ, I. and STANĚK, S.: Connection between the type of singularity and smoothness of solutions for Dirichlet BVPs, Dyn. Conti. Discrete Impulsive Syst. (in press)
- [16] STANĚK, S.: Positive solutions of singular Dirichlet boundary value problems, Math. Computer Modelling, 33, (2001), 341–351.
- [17] STANĚK, S.: Positive solutions of singular Dirichlet and periodic boundary value problems, Computers Math. Appl., 43, (2002), 681–692.

- [18] TALIAFERRO, S. D.: A nonlinear singular boundary value problem. Nonlin. Anal., 3, (1979), 897–904.
- [19] TINEO, A.: Existence theorems for a singular two-point Dirichlet problem, Nonlin. Anal., 19, (1992), 323–333.
- [20] WANG, J.: Solvability of singular nonlinear two-point boundary value problems, Nonlin. Anal., 24, (1995), 555-561.
- [21] WANG, J. and GAO, W.: A note on singular nonlinear two-point boundary-value problems, Nonlin. Anal., 39, (2000), 281–287.
- [22] ZENGQUIN, Z.: Uniqueness of positive solutions for singular nonlinear second-order boundary-value problems, Nonlin. Anal., 23, (1994), 755-765.