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Abstract. The singular Dirichlet problem (r(z)z')’ = q(t)f(t,z), z(0) = z=(T) = 0,
Amax{z(t) : 0 <t < T} = —min{a(t) : 0 <t < T} is considered. Here f is singular
at the point x = 0 of the phase variable z and )\ is a positive parameter. The notions of
a solution and a w-solution of the above problem changing its sign exactly once on (0,7T)
are introduced. Effective conditions for the existence and multiplicity results are presented.
Next, the notion of an exceptional n-sign-changing w-solution of our problem with A =1 is
given and for such solutions existence and multiplicity results are proved.
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1. Introduction

Consider the problem

(r(z(®)2' ()" = q(t) f (¢, 2(t)), (1.1)
z(0) =0, =z(T)=0, (1.2)
Amax{x(t):0<t<T}=—min{z(t): 0 <t < T}, (1.3)

where T is a positive number, A is a positive parameter and f is singular at the point
x = 0 of the phase variable z in the following sense

lirg_ f(t,z) = —o0, lirg+ ft,x) =00 fortel0,T]. (1.4)

Definition 1.1. We say that € C*([0,T]) is a solution of problem (1.1) — (1.3) if
x has precisely one zero ty on (0,T), r(z)z’ € C*((0,T) \ {to}), (1.1) is satisfied for
€ (0,T)\ {to}, = fulfils (1.2) and there exists A\g € (0,00) such that (1.3) holds with

A= Ao

Besides a solution of problem (1.1)-(1.3), we introduce in accordance with [15] the
notion of a w-solution of problem (1.1)-(1.3).
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Definition 1.2. Let A € (0,00). A function z € C°([0,T]) is called a w-solution of
problem (1.1) — (1.3) if  has precisely one zero ty € (0,T), z € C*([0,T]\ {to}), there
exist finite lim,_, - x'(t) and lim, .+ 2/ (t), r(x)x’ € CH((0,T)\ {to}), z fulfils (1.2),
(1.3), and (1.1) holds on (0,7) \ {to}-

We note that in contrast to a solution x of problem (1.1)-(1.3) which belongs to the
class C*([0, T]) and satisfies (1.3) with a suitable value of \, a w-solution x of problem
(1.1)-(1.3) is continuous on [0, 77, has continuous derivative on [0,tg) U (to, T'] where
to is the unique zero of z in (0,7") and (1.3) holds with a given value of A. Naturaly,
any solution of problem (1.1)-(1.3) is also a w-solution of this problem.

In the paper we will use the following assumptions:

(Hy) r € C°(R), r(x) > 79 > 0 for v € R;

(Hs2) q € C°((0,T)), q(t) <0 for t € (0,T) and Q = sup{|q(t)] : 0 <t < T} < o0;

(H3) f € C°%[0,T] x D), where D = (—o00,0) U (0,00), f(t,-) is nonincreasing on
D for t € [0,T] and

0< f(t,z)signz < g(z) for (¢t,z) €[0,T] x D,
where g € CY(D) and

[t oo [ateras < o

(Hy) for each (tg,z0,21) € (0,T7) x D x R, there exists a unique solution x of
(1.1) satisfying the initial conditions x(ty) = =g, 2'(tg) = x; defined in a
neighbourhood of t = t.

Remark 1.3. If f satisfies (Hs) then for each M > 0 there exists a positive function
kar € C°([0,T]) such that

0 < kp(t) < f(t,x)signa < g(x) on (¢,z) €[0,T] x ([-M,0)U (0, M]).

Next under the assumption that f is a locally Lipschitz function on (0,7) x D,
assumption (Hy) is satisfied.

In many papers (see, e.g., [1]-[13], [16]-[22] and references therein) only positive
(negative) solutions on (0, T') of the Dirichlet boundary value problems with the singu-
larity at the point x = 0 of the phase variable x in nonlinearities of considered second-
order differential equations have been studied. Solutions were considered either in the
class C°([0, T))NC2((0,T)) ( [1]-[3], [7], [11], [12], [18], [19]) or C*([0,T])NC?((0,T))
([4]-[6], [12], [13], [16]-[19], [22]) or C°([0,T]) N AC},.((0,T)) ([8]-[10], [20], [21]).
Here ACL_((0,T)) denotes the set of functions having absolutely continuous first
derivatives on any compact subintervals of (0,7"). The nonlinearities of equations are
usually nonpositive ([1], [2], [6]-]8], [11], [12], [16]-[20], [22]), but in [3]-[5], [9], [10],
[13] and [21] this assumption is overcome.



Srgn-changing and w-solutions to singular Dirichlet BV ES 135

For the first time in [14] solutions of singular Dirichlet boundary value problems
changing their signs exactly once on (0, T') were considered. Here differential equations
of the form

(r(2(2)2'(t))" = pa(t) f(t,=(t)) (1.5)

together with the condition
max{x(t): 0 <t <T}min{x(t):0<t<T} <0, (1.6)

were studied where p is a positive parameter and f is singular at the point x = 0
of the phase variable z. A function z € C'([0,7]) is called a solution of problem
(1.5),(1.2), (1.6) if = has precisely one zero tq on (0,7T), r(z)z’ € C1((0,T)\ {to}), =
fulfils (1.2) and (1.6) and there exists po > 0 such that (1.5) with p = i is satisfied for
t € (0,7)\{to}. In [14] under assumptions (H;)— (Hs3) it is proved among others that
for each A € (0,00) there exists a solution = of problem (1.5),(1.2),(1.6) such that
max{z(t) : 0 <t < T} = A. We see that any solution of problem (1.5),(1.2), (1.6)
depends on a value of the parameter p in equation (1.5) unlike our definition of a
solution of problem (1.1)-(1.3) depending on a value of the parameter A\ appearing in
condition (1.3).

A generalization of the notion of a solution of problem (1.5), (1.2), (1.6) was given
in [15]. Here z € CY([0, T)) is said to be a w-solution of problem (1.5), (1.2), (1.6) if z
has precisely one zero to in (0,T), x € C*([0, T]\{to}), there exist finite lim; ., _ '(t),
lim; ., @'(t), 7(z)z’ € C'((0,T) \ {to}), = fulfils (1.2) and (1.6), and finally there
exists o > 0 such that (1.5) with u = uo is satisfied for t € (0,7)\ {to}. It is proved
among others that under assumptions (H;) — (Hs) for A > 0 and ¢ € (0,7") problem
(1.5),(1.2),(1.6) has just two w-solutions vanishing at t, and having their maximum
values on [0, 7] equal to A.

This paper is a continuation of [15] and in comparison with (1.5) our equation
(1.1) does not depend on the parameter . By our definitions any solution as well as
any w-solution x of problem (1.1)-(1.3) have precisely one zero in (0,7") where they
change their signs. Hence any solution and any w-solution of problem (1.1)-(1.3) ‘pass
through’ the singularity of f at a point of the interval (0, 7).

The paper is organized as follows. In Section 2 we define functions Ay, &, A_
and ®_ by (2.6)-(2.9) and present some of their important properties. By these
functions we prove existence and uniqueness results for w-solutions of problem (1.1)-
(1.3) in Section 3 (Theorems 3.1 and 3.2). Section 4 is devoted to the study of
existence and multiplicity results for solutions of problem (1.1)-(1.3) (Theorem 4.5).
In Section 5 we first give the notion of an exceptional n-sign-changing w-solution z of
problem (1.1),(1.2), (5.1) which changes its sign exactly n times on [0, T] and on each
maximum subinterval of [0, 7] where x keeping its sign the function |z| has the same
maximum value. Existence and multiplicity results for the n-sign-changing w-solution
of problem (1.1), (1.2), (5.1) are given in Theorem 5.7.
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2. Lemmas, notation

Let 0 < a < b <T. In our consideration we will work with the following auxiliary
boundary conditions

z(a) =x(b) =0, x(t) >0 forte (a,b),

z(a) =z(b) =0, z(t) <0 forte (a,b) (2.2)
and we will use the function H : R — R defined by
H(u) = / r(s) ds (2.3)
0

with 7 occurring in (1.1) and satisfying assumption (H;). Clearly, H € C*(R) is
increasing on R and the inverse function to H denoted by H~' is increasing on RR.

We say that z is a solution of problem (1.1),(j), j € {2.1, 2.2} if z € C([a,b]),
r(z)x’ € C((a,b)), x satisfies the boundary conditions (j) and (1.1) is fulfilled for
t € (a,b).

Remark 2.1. Let the function ¢ : (0,7) — (—00,0) and f : [0,7] x D — R be
defined by 3
q(t) =q(T =), f(t,x)=f(T —t,x).
Then
0 < f(t,z)signz < g(z), (t,z)€[0,T] x D
and assumptions (Hy)-(H,) are satisfied with ¢ and f instead of ¢ and f. If we
consider the differential equation

(r(z(®)2' ()" = q(t) f (¢, (1)), (2.4)
we see that a function z is a solution of problem (1.1), (j) witha =0, b =c(< T) and
j€ {2.1, 2.2} if the function #(t) = x(T —t), t € [T — ¢, T}, is a solution of problem
(2.4),(j) with @ =T — ¢, b = T. Conversely, if Z is a solution of problem (2.4), (j)
witha =T —c(>0), b =T and j€ {2.1,2.2}, then the function z(t) = (T — t),
t € [0, ¢], is a solution of problem (1.1), (j) with a =0, b = c.

Remark 2.2. Let r* : R — [rg,00), fi : [0,T] x D — R and ¢g* : D — R be defined
by the formulas (see [14])

ri(@) =r(-z), f'(tx)=—f =), g"(z)=g(-2)
Then
0< f*(t,z)signa < g"(z), (t,z) €[0,T]x D
and assumptions (Hy) — (Hy) are satisfied with r*, f* and ¢g* instead of r, f and g.

It is easily seen that a function z is a solution of problem (1.1), (j), j€ {2.1, 2.2}, if
and only if +* = —z on [a, b] is a solution of problem (2.5), (j), where

(r*(@(t)' ()" = q(®) £ (¢, (2))- (2.5)
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Lemma 2.3. Let assumptions (H;) — (Hs) be satisfied. Then for each a, b € [0,T],
a < b, there exists a unique solution of problem (1.1), (2.1).

Proof. The assertion of our lemma follows from Theorem 2.1 in [14] with p© = 1.
O

Corollary 2.4. Under assumptions of Lemma 2.3, for each a, b € [0,T], a < b, there
exists a unique solution of problem (1.1), (2.2).

Proof. Fix 0 < a < b < T. Since assumptions (H;) — (Hs) are satisfied with
the functions r*, f* and g¢* defined in Remark 2.2 instead of r, f and g, problem
(2.5), (2.1) has a unique solution Z by Lemma 2.3. Now the function 2 = —% on [a, b]
is the unique solution of problem (1.1), (2.2). O

For each o € (0,7] and 8 € [0,T), we denote throughout this paper by u, and
vg the unique solution of problem (1.1),(2.1) witha =0, b=canda=§,b=T,
respectively. Next by T, and T3 we denote the unique solution of problem (1.1), (2.2)
with a =0, b = @ and a = B, b = T, respectively. The existence and uniqueness of
Uq, Vg and Uy, Vg follow from Lemma 2.3 and Corollary 2.4, respectively.

Lemma 2.5. (Lemma 2.7 in [14]. Let assumptions (Hy) — (Hs) be satisfied and let
0 <o <ag <T. Then

Ugy () < ug,(t)  forte€[0,aq].

By the solutions uy, vg, Uy and Tg define the functions Ay : (0,7] — (0,00),
&, :[0,T) — (0,00), A_: (0,T] — (—00,0), _ : [0,T) — (—00,0) by the formulas

Ay(a) = max{u,(t) : 0 <t < al, (2.6)

®4(6) = max{vp(t) : f <t <T}, (2.7)

A_(a) =min{u,(t): 0 <t < a} (2.8)
and

®_(B) = min{ovg(t) : 6 <t <T}. (2.9)

Properties of the functions A, &, A_ and ®_ are presented in the following lemmas.

Lemma 2.6. Let assumptions (H;) — (H3) be satisfied. Then A4 is continuous
nondecreasing on (0,7 and

lim Ay(a)=0.

a—0t
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Proof. As a direct consequence of Lemma 2.5 we get that A, is nondecreasing on
(0,T). Suppose that A is discontinuous on the right at a point ag € (0,7, i.e. there
is a decreasing sequence {a,} C (ap,T) such that lim, o, = ap and

lim Ay (an) > Ag(ap). (2.10)

Consider the sequence {uq,}. Since (r(uq, (t))uy, (1)) = q(t)f(t, ug, (t) < 0 for
€ (0,an), r(uq, )ug, is decreasing on [0, a,] and therefore there exists a (unique)
¢n € (0,ay) such that w, > 0 on [0,&,), u, < 0 on (&, ] and wu, (§,) = 0.

Integrating the inequalities

(r(ta, () ua, (1) (ua, (t))uq,, ()

(2.11)
2 —Qg(ta,, (1))7(ua, (t)uq,, (£), t € (0,8)
and
(r(ua, (1) ug,, (£))'r(ua, (1) ug,, (£) (2.12)
< —Qg(ua, ()7 (ta, ())ug,, (), T € (En,an) '
over [0,&,] and [, o], we obtain
A+(an A+(Oé1
(r(0)ul,, (0))* < ZQ/ s)ds < ZQ/ (s)r(s)ds
and N ) A )
ot e <20 [ goras <20 [ g s
respectively. Hence
Ir(ua, (t)ug,, ()] < 7(0) max{ug,, (0), ug,, ([}
Ap(a1) (2.13)
< \/2@/ g(s)r(s)ds, tel0,a,), neN
0
and
Ay (o)
()] < —\/2Q/ s)ds forte[0,an], neN. (2.14)
In addition, by Lemma 2.5,
Uao (1) < Uq, (t) < U, (t) forte[0,a0], n € N. (2.15)

From (2.14) and (2.15) we deduce that {uq, ()} is uniformly convergent on [0, «
and let lim, oo U, (t) = u(t), t € [0,a0]. Then u € C°([0, ]), u(0) = 0, u(t)

Uae (t) > 0 for t € (0,ap). Moreover, u(ag) = 0, since in the case that u(ag) > 0 i
may be concluded from

=1V el

u(ao) < Uq, (aO) = Uq,, (aO) - Uq,, (an) = u:)zn (nn)(ao - an)v
where 7, € (ag, ay,) that

lim v, (n,) < lim _ao) _ —00,
n—oo " n—oo (g — Qip,
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contrary to (2.14). As

0 < [t ta,,, (1) < ftua, @), lim f(t ua, (1) = f(E ), < (0,a0)

n—oo

and (see (2.13))

0 > /0% q(t)f (t, ua, (1)) dt = (v, (0))ug, (a0) — 7(0)ug,, (0)

Aq(az)
> —2\/2@/0 g(s)r(s)ds

for n € N, Fatou’s and Levi’s theorems give q(-) f(+,u(+)) € L1([0, o)) and

t

lim q(s)f(s,Uq, (s)ds = /0 q(s)f(s,u(s)ds, te0,a]

n—oo 0

By (2.14), {u, (0)} is bounded and we may assume that it is convergent. Let
lim,, . uy,, (0) = A. Letting n — oo in

H (tq,, (1)) = r(0)ug, (0 t—|—/ / f(,uq, (v)dvds fort e [0,ap], (2.16)

where H is given by (2.3), we get

H(u(t)) At—l—// v))dvds, t€ ][0,
u(t) = At+// dvds)

t

and so u € C'([0,ap]). Now from r(u(t))u'(t) = r(0)A —i—/ q(s)f(s,u(s))ds, t €

Then

[0, 0], and the above proved properties of u, we see that uO is a solution of prob-
lem (1.1),(2.1) with @ = 0 and b = «p, and consequently u = u,, by Lemma 2.3.
We have proved that lim,_,oo Ua,, (t) = Uq,(t) uniformly on [0, ap], which implies
lim;, 00 Aj (o) = Ay (o), contrary to (2.10). Hence A, is continuous on the right
n (0,7).

Assume now that A is discontinuous on the left at a point «g € (0,7, i.e., there
is an increasing sequence {ay} C (0, o) such that lim, o o, = ap and

lim A+(()én) < A+(o¢0). (217)

Then
Uq, (1) < Uay .,y (E) S Uao(t) forte[0,a), neN (2.18)
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by Lemma 2.5 and as above it can be verified that

A (ao)
|7 (ua,, ())ug,, (£)] < \/QQ/O g(s)r(s)ds,
, 1 A+ (a0)
ul, (8) < 70\/262 / g(s)r(s) ds

t A4 (o)
0> /O 0(5) F(5, e, (5)) ds > —2\/ 20 /O g(s)r(s) ds (2.20)

for t € [0,ap] and n € N. By (2.18) and (2.19), {uq, (t)} is locally uniformly con-
vergent on [0, ) and let lim,, o uq, (£) = u(t), t € [0,ap). Then u € C°([0, )),

(2.19)

and

w(0) =0, 0 < w(t) < ug,(t) for t € [0,a0) and hmt u(t) = 0. From the inequal-
ities f(t, uay, (1)) = f(t ta, i1 (F) 2 f(t tao(t) = (2 20), limp oo f(t, Ua, (1)) =
f(t,u(t)) for t € (0,ap) and Fatou’s theorem we obtaln q()f(,u(r) € Li([0, ag)).

Define u* € C°(]0, ap]) by
() = { u(t) fort €0, ap)

0 for t = ap.

Without violating generality, we can assume that {uj, (0)} is convergent and let
lim,, .o uy,, (0) = B. Taking the limit as n — oo in (2.16) which now holds on [0, o],
we obtain

H(u*(t)) Bt+// (v))dvds for t € [0, ap].

Then u* € C([0,ap]) and u* is a solution of problem (1.1), (2.1) with @ = 0 and
b = ap. Hence u* = uq, and from lim,_,oc Uq, (t) = uq,(t) locally uniformly on
[0, ag) we deduce that lim,, oo At (an) = Ay(ap), contrary to (2.17). It follows that
A is continuous on the left on (0,7]. Consequently, A is continuous on (0, 7).

Finally, assume that lim, .o+ Ay(a) = p > 0. Let {a,} C (0,T) be a decreas-
ing sequence and lim,_,ocan = 0. Let Ay(ay) = uq, (&) with a &, € (0,a,).
Then uq, (&n) > p and from p < uq, (§n) = Ua, (§n) — Ua, (0) = uf, (Tn)&n, where

€ (0,&), we have ul, (1,) > p/&, for n € N. Therefore lim, . ul, (7,) >
lim,, o0 /&, = 00, contrary to (2.14). Hence lim, g+ A4 (a) = 0. O

Lemma 2.7. Let assumptions (Hy) — (Hs3) be satisfied. Then &, is continuous
nonincreasing on [0,T) and
lim ¢ =0.
Sm_24(8) =

Proof. By Remark 2.1, for each v € (0,T] the function 4. (t) = v,(T —t), t €
[0,T — 4], is a (unique) solution of problem (2.4),(2.1) with @ = 0 and b =T — 1.
Set Ay (v) = max{i,(t) : 0 <t <~} for v € (0,7]. Applying Lemma 2.6 to equation
(2.4), we see that A, is continuous and nondecreasing on (0, 7] and lim., o+ Ay(y) =
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0. The assertion of our lemma now follows from the equality &, (8) = A, (T — 3) for
B €l[0,T). O

Lemma 2.8. Let assumptions (Hy) — (Hs3) be satisfied. Then A_ is continuous
nonincreasing on (0,77, ®_ is continuous nondecreasing on [0,7") and

lim A_(a) = lim ®_(8)=0.
g M) = lip () =0

Proof. Let A, and @, be associated to problem (2.5), (2.1) analogously as A and
@ are to problem (1.1), (2.1). Then A is continuous and nondecreasing on (0, 7], ®_
is continuous and nonincreasing on [0,7") and lim, g+ A+(a) = limg_, - <f>+(6) =0
by Lemmas 2.6 and 2.7. The assertions of the lemma follow immediately from the
equalities A_ = —A, on (0,7] and ®_ = —®, on [0,7) which we get applying
Remark 2.2. O

Lemma 2.9. Let assumptions (Hy)—(Hy) be satisfied. Then for each a1, ag € (0,77,
a1 < g, the inequality

Ug, (1) < Uqy(t)  fort e (0,aq] (2.21)
holds.

Proof. Fix 0 < a; < aig < T. Then 0 = uq, (1) < Uq,(aq) and, by Lemma 2.5,
Uqy (t) < Uay(t) for t € (0, ). If uq, (§) = Ua, (§) for some & € (0, 1), then ul, (&) =

/

uy,, (§), and consequently uq, = g, in a neighbourhood of ¢ = £ by assumption (Hy).

Repeated application of this result enables us to prove that u,, = s, on [0, 1),
which is impossible. Hence (2.21) holds. O

Lemma 2.10. Under assumptions (H;) — (Hy), A4 is increasing on (0,7, &4 is
decreasing on [0,7"), A_ is decreasing on (0,7] and ®_ is increasing on [0,T).

Proof. By Lemma 2.9, for each 0 < ay < ag < T, inequality (2.21) holds and from
the definition of A, we have A (1) < Ay (ag). Hence A, is increasing on (0,7]. The
other three assertions of the lemma can be verified from strict inequalities between
solutions v, , Vag; Uay s Uay aNd Ty, , Ve, with different a1 and as. O

3. Existence results for w-solutions of problem (1.1)-(1.3)
Theorem 3.1. Let assumptions (Hy) — (Hs) be satisfied. Then for each A € (0, o)
there exist at least two w-solutions of problem (1.1)-(1.3).

Proof. Fix A € (0,00). By Lemmas 2.6 and 2.8, the function A4 + ®_ is
continuous and nondecreasing on (0,7") and lim, g+ (AA+ (@) +P_(a)) = ©_(0) < 0,
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lim,_7- (A4 (a)+P_(a)) = AA4(T) > 0. Hence the equation A4 () +P_(a) =0
has at least one solution ay € (0,T'). Setting

| wau(t)  fort € [0,aq]
n(t) = { To, (t)  fort € (aq,T), 31

21 is a w-solution of problem (1.1)-(1.3). Analogously, the equation A® 4 (a)+A_(a) =
0 has at least one solution ag € (0,T') since A®; +A_ is continuous and nonincreasing
on (0,7) and lim, o+ (AP (a)+A_(a)) = A2, (0) > 0, lim,_,7- (AP4(a)+A_(a)) =
A_(T) < 0 by Lemmas 2.7 and 2.8. Then setting
Ua,(t) fort e |0,a
m(t):{ 0 0,02

Voo () for t € (az, T, (3.2)

x2 is the second w-solution of problem (1.1)-(1.3). From z; > 0 on (0, 1) and z2 < 0
on (0, a2) we see that x1 # xs. O

Theorem 3.2. Let assumptions (Hy) — (Hy4) be satisfied. Then for each A € (0, o)
there exist precisely two w-solutions of problem (1.1)-(1.3).

Proof. Fix A € (0,00). It follows from Lemma 2.10 and the properties of the
functions Ay, @4, A_ and ®_ given in Lemmas 2.6-2.8 that the equations M (a) +
®_(a) = 0 and A4 (a) + A_(«) = 0 have in (0,7") the unique solutions @y and
ag, respectively. Now z7 and x5 defined by (3.1) and (3.2) are unique w-solutions of
problem (1.1)-(1.3). O

4. Existence results for solutions of problem
(1.1)—(1.3)

Let assumptions (Hy) — (Hy) be satisfied. By Theorem 3.2, for each A € (0, 00) there
exist precisely two w-solutions z1(¢; \) and z2(¢; A) of problem (1.1)-(1.3). If ¢y is the
(unique) solution of the equation AA4(c) +P_(c) = 0 and «, is the (unique) solution
of the equation AP (a) + A_(a) = 0, then

y(50) = { icck(t) for ¢t € [0, ¢,
Ue, () fort € (ca, T
and
() = { Ug, (t)  for t € [0, a,]
Vo, ()  for ¢ € (ay,T).
Here solutions uq, vg, U, and g were defined in Section 2. Of course,
Amax{uc, (1) :0<t<ecpy}=-min{T., :cn <t <T},
Amax{vg, (t) 1oy <t <T}=—min{t,, : 0 <t <ax}
and ¢y (resp. «y) is the (unique) zero of x1(¢; A) (resp. za(t; N)) in (0,T).

Lemma 4.1. Let assumptions (H;) — (Hy) be satisfied. Then
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a) ¢y is continuous and decreasing on (0, 00),

lim ¢y =0, lim ¢\, =1,
A—07F

—00

b) ey, () > ue,, () for t € (0,c5,] and 0 < Ap < Aa.

Proof. We know (see the proof of Theorem 3.2) that ¢ is the (unique) solution of
the equation AA 4 (c)+®_(c) = 0. Hence the equality AA 4 (cx)+P_(cx) = 0 holds for
A€ (0,00). Let 0 < Ap < Ag. If ¢y, < cy,, then from the properties of the functions
Ay and ®_ given in Lemmas 2.6-2.10 it follows that 0 = MAy(ey,) + P_(cy,) <
XA (ex,)+P_(cy,), contrary to AaAy (e, ) +P_(ca,) = 0. Therefore ¢y is decreasing
on (0, 00).

Assume that ¢, is discontinuous at a point Ag € (0,00). Then there is a sequence
{An} C (0,00), lim, 00 A, = Ag such that lim, . cx, = pio # ¢x,. Letting n — oo
in the equalities A, Ay (cy,) + P_(cy,) =0, n € N, we get

)\0A+(,U,0) + <I>,(,u0) =0 (41)

since Ay and ®_ are continuous. But the equation AgA4(c) + ®_(c) = 0 has the
unique solution ¢ = ¢, contrary to (4.1). Hence ¢, is continuous on (0, c0).

Suppose limy 00 ¢y = g > 0. Then Ay (cy) > A (1) >0and ®_(c)) < d_(u) <0
for A € (0,00), and so limy—oo (AAL(cr) + P_(cn)) = 00, contrary to

AMy(ex) +P_(ca)) =0 for A € (0,00). (4.2)

Therefore limy o ¢y = 0. If limy_,g+ ¢y = 0 < T, then limy_g+ A (cx) = A (0) >0,
limy o+ P_(cx) = P_(p) < 0, and so limy g+ (AA4(cr) + P_(cn)) = P_(0) < 0
contrary to (4.2). Hence limy_,g+ cy =T

Finally, if 0 < A1 < Az, then ¢y, > ey, and ue, (t) > ue,, (t) for t € (0,cy,] by
Lemma 2.9. ]

Lemma 4.2. Let assumptions (Hy) — (Hy4) be satisfied and let {\,} C (0,00),
limy, o0 Ay = Ag > 0. Then

lim e, (t) = ue,, (t) locally uniformly on [0,cy,).

Proof. First from (2.14) it follows that

1 A+ (T)
i, () < T—O\/ 20 /0 g(s)r(s)ds forte0en], neN.  (43)
Now from (4.3) and using the fact that for {\,} decreasing, {cx,} is increasing and
Uy, (1) > te,, (8), t€[0,cr], nEN
and for {\,} increasing, {c,,} is decreasing and
Uey, (1) <tc,, (t), t€[0,en,,,], nE N

(see Lemma 4.1), we deduce the assertion of our lemma. ]
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Define the function Sy : (0,00) — (—00, 0] by the formula
S (A) = g, (er),

where uy, (cx) denotes the derivative of ., () on the left at the point ¢ = cy.

Lemma 4.3. Let assumptions (H;) — (Hy4) be satisfied. Then S, is continuous on
(0,00) and
lim S{(A) =0, limsupSy(XA) <O.

A—00 A—0+

Proof. Assume, on the contrary, that S is discontinuous at a point Ag € (0, 00).
Then there exist €9 > 0 and a sequence {A,} C (Ag/2,2X0), lim;,—00 Ay, = A such
that |S;(An) — S+ (Ao)| > o for n € N, that is

lugy, (ex,) = ug, (exo)| = €0 forne N. (4.4)
We claim that there exists v > 0 such that
€
lue, (t) —ug, (en,)] < EO for t € e, —v,cn,], n€N. (4.5)

If not, without restriction of generality we can assume that there is a sequence {7, } C
(0,7, T, < ey, limy 00 (7 — €y, ) = 0 such that

b, () —ul, (ex,) = %0 for n € N. (4.6)

If ug, (m) < 0, then r(uc,, (t))uc, (t) < 0 fort € [y, cx,] and integrating the
inequality

(r(tey,, (D)ue, , ()7 (uey, (), (1) < —Qg(te,, (D) (ue,, (£))uc, (£)  (47)

from 7, to c), we get

(0 <) (r(0)ue,, (ex,))? = (r(uey,, (70))uc, (1))
0 ey, (Tn

<-2Q g(s)r(s)ds = ZQ/

Uey, (Tn)
An

) 4.8
g(s)r(s) ds. 48)

If ug, (7o) > 0, then there exists &, € (7,cy,) such that u; (&) = 0 and then
integrating the inequality

(r(tey, ())ucy, ()7 (uey, (D)uc,, (8) = —Qg(uc,, (£)7(ucy, (B)uc,  (t)
from 7, to &, and inequality (4.7) from &, to ¢y, , we have

ey, (En)
(7 (tes,, () Jue, , (T0))? < 2Q g(s)r(s)ds (4.9)

Uey (Tn
A (1)

and

ey, (&n)
(Ol (ex,)? < 2Q /O g(s)r(s) ds. (4.10)



Srgn-changing and w-solutions to singular Dirichlet BV ES 145

Let Ny be the set of all n € N such that ], (7,) > 0. Assume Ny is infinite. Using
(4.3) and the equalities lim,, (&, —cy,) = 0 lim;, 00 (& — ) = 0, we have

hm (’LLC)% (§n) - u(:)\n (Tn)) = 07

neN}, n—oo

lim Uey,, (gn) = lim (uc/\n (gn) — Ucy,, (C)\n)) =0,

neNy, n—oo neN;, n—oo

and so (4.9), (4.10) and r(x) > rg > 0 for z € R yield

. I _ . / _
lim u,, (Tn) = lim u,, (cx,) =0,
neNL, n—oo " neNL, n—oo n

contrary to (4.6). Hence N, is finite and there is no loss of generality in assuming
g, () <0 forn € N and then (see (4.8))

CX

Uey, (n)
(0 ) (r(0)ug,, (ex,))* = (r(ucy, (Ta))uc,, (Ta))* < 2@/0 g(s)r(s)ds (4.11)

for n € N. From Lemma 1.2 in [14] (with p = 1) it follows that
2K

ug, (e,) < “Vown forne N, (4.12)
where
V:max{ (z):0 < 2 < max{ur(t) : 0<t<T}} (4.13)
szin[min{/ot/zsm( Ylk(s) ds // (1= Nalk(s)ds} : 2 < ¢ <20

and k € C°([0,T]) is a positive function such that
0 <k(t) < f(t,z)signa for (t,2) € [0,7] x ([~[lurl,0) U (0, [lur(])  (4.14)

with |Jur|| = max{up(t) : 0 < ¢ < T} (for the function k see Remark 1.3). By (4.3),
{ui, (cx,)} and {u, (7,)} are bounded, and so going if necessary to subsequences,
we can assume that they are convergent, say

lim uéM (ca,) = A, nh_)rréo uéxn (tn) = B.

By virtue of (4.6), we have

[A-B| =2 (4.15)
In addition, limy, e tc,, (Tn) = liMyp oo (Uey, (Tn) — te,, (cr,)) = 0 since (4.3) holds
and lim,, o (7,—cy, ) = 0. Letting n — oo in (4.11), we get 0 < (7(0))?(A4%2—B?) = 0.
Therefore A — B? = 0 and since A < —2K/(Ve¢y,/2) by (4.12) and B < 0, we have
A = B, contrary to (4.15). We have proved that (4.5) holds. Let

£
gy (£) =y (ex)] < 5 for £ € [ex, = 7.x] (4.16)

C,\O

where 7 is a positive constant. Set x = min{v,v}. Using (4.4) and (4.5) we have

€0
[y, (8) = ey (ex0)l = Juey (en,) = e, (exo)l = Jug, () —uey (x> 5
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for t € ey, — k,ca, ] and n € N. Assume that
€
N* = {n in e N g (t) — g, (ex,) > ?0 for t € [y, — n,cxn]}

is an infinite set (analogously for N\ N™ infinite). Then

t
e, (0= [l () < (ul () + 3 ) (=) (4.17)
Cap
for t € [cx, — K,cx,] and n € N, On the other hand, (4.16) gives

(ULAO (exg) + %) (t = exe) < ey, (7)

‘ - (4.18)
[ s < (u (o)~ D)t —en)
Cxp
for t € [cx, — K, ), )- Since lim, . (cx, — K) = ), — K, there exists ng € N such that
for n € N*, n > ng, we have ¢y, — & < ¢y, — #/2 and then letting n — oo in (4.17)
and using Lemmas 4.1 and 4.2,
€ K
Ueyg (t) < <u£:>\0 (C)\O) + g)(t - CAO)? te [C)\o - 576)\0}7

contrary to (4.18). We have proved that S is continuous on (0, c0).

Let {\,} C (0,00), lim;, 00 A, = 00. Then lim, o ¢y, = 0 by Lemma 4.1, and
there exists {£,}, 0 < &, < ca,, such that u, (£§,) =0 and r(ue,  (t))ur, (t) <0 on

n Cxn

(€n,ca,] and n € N. Integrating (4.7) from &, to ¢y, we get

Cxn,

Uey,, (571)
(r(0)ul,, (ex,))* < 2@/0 g(s)r(s)ds forn € N. (4.19)

By Lemma 1.2 in [14] (with p = 1), u, (t) < L, for t € [0,cy,] where L,, > 0 is an
arbitrary constant satisfying the inequality

Ly 9
2( / r(s) ds)
0
- .
@ [ ats)r(s)ds
0
From the last inequality we see that L,, can be chosen such that lim,,_.o, L, = 0 and

then (4.19) yields lim, . ug, (ca,) = 0. Hence limy_.oc S4+(A) = 0.

Let {\,} C (0,00), lim,— 0o A\, = 0. Then lim,, . ¢y, = T by Lemma 4.1, and
from Lemma 1.2 in [14] (with p = 1) we deduce that for each n € N such that
en, >T/2,

1<

2K,
u:i‘)\n (C)\n) S - VT ? n 6 N?
where V' is given by (4.13) and

K, = min [min{/ot/25|q(5)|k(s) ds, /t:Z(t—s)|q(s)|k(5) ds} :
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with k € C°([0,T1) satisfying (4.14). Hence limsup,_,g+ S+ (A\) < —2K,/(VT). O

Define the functions S_ : (0,00) — (0,00), Z+ : (0,00) — (0,00) and Z_ :
(0,00) — (—00,0) by the formulas

We observe that ¢y (resp. «y) is the (unique) solution of the equation AA4(c) +
®_(c) =0 (resp. A®4(a)+ A_(a) = 0). From the properties of the functions A,
A_, &, &_, using Remarks 2.1 and 2.2 and applying procedures analogical to those
in the proofs of Lemmas 4.1-4.3, we can show properties of the functions S_, Z; and
Z_ which are given in the following lemma.

Lemma 4.4. Let assumptions (Hy) — (Hy4) be satisfied. Then the functions S_, Z1
and Z_ are continuous on (0, 00) and

liminf S_(A) > 0, )\lim S_(A) =0,

A—0t

)\lirng Zi(N) =0, h)\Hi}oIéf Zi+(A\) >0,
lim Z_(A\) =0, [ Z_(A) <.
Jim Z_(A) =0, limsup Z_(})

Theorem 4.5. Let assumptions (H;) — (Hy) be satisfied. Then problem (1.1)-(1.3)
has at least two solutions.
Proof. Define the function k, p : (0,00) — R by
k(A) = 54(A) = Z-(A), p(A) = S-(A) = Z(N).
By Lemmas 4.3 and 4.4, the functions k& and p are continuous on (0, c0) and
limsup k(A\) < 0, h)\minfk()\) >0,

A—0t
liminf p(A) > 0, limsupp(A) < 0.
A—0F A—00

Hence there exist A1, A2 € (0,00) such that k(A1) = 0 and p(A2) = 0, that is S+ (A1) =
Z_(M) and S_(A2) = Z4(A2). Then the functions

() = { gcl (t) forte[0,c)
Ue, (t)  fort € (c1,T]

and B
o(t) = Ua, (t)  for t €0, aq]

Vo, (t)  fort € (a1,T]
are solutions of problem (1.1)-(1.3), where ¢; (resp. «1) is the (unique) solution of
the equation AjA;(c) + @_(c) = 0 (resp. Aa®@y(a) + A(a) = 0). Clearly, z1 # 2.
]
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5. Exceptional n-sign-changing w-solutions of
problem (1.1),(1.2), (5.1)

Let ¢ € (0,7T). In this Section we will use the following conditions

max{x(t) : 0 <t <T}=—min{z(t):0<t < T}, (5.1)
z(0) =0, =z(c)=0 (5.2)

and
max{z(t) : 0 <t <c}=—min{x(t): 0 <t <c}. (5.3)

We note that (5.1) is (1.3) with A = 1.

Definition 5.1. Let n € N, n > 2. We say that x is an n-sign-changing w-solution
of problem (1.1), (5.2), (5.3) if = has precisely n — 1 zeros t; < to < -++ < t—1 In
(0,¢), z € C°[0,c]) N CH([0,¢] \ {¢t1,t2,-++ ,tn—1}), there exist finite lim, ,- 2'(%),
lim, .+ a'(t) fori=1,2,--- ,n—1,r(z)a' € CH[0,¢] \ {t1,t2, -+ ,tn—1}), = satisfies
(5.2), equality (1.1) holds on (0,¢) \ {t1,t2,- - ,tn—1} and finally

max{z(t) : t; <t < tipo}min{z(t) : ¢; <t <t;42} <0
fori=0,1,--- ,n—2withty =0and t, = c.
If, in addition,
max{|z(t)] : 0 <t < t1} = max{|z(t)|: t; <t <tj41}

for j =1,2,--- ,n— 1, we say that x is an exceptional n-sign-changing w-solution of
problem (1.1), (5.2), (5.3). In case of ¢ = T, x is called an exceptional n-sign-changing
w-solution of problem (1.1), (1.2), (5.1).

Remark 5.2. We observe, that the notion of the w-solution of problem (1.1)-(1.3)
with A = 1 stated in Section 1 corresponds to the notion of exceptional 2-sign-changing
w-solution of problem (1.1), (1.2), (5.1).

Before we give existence results for exceptional n-sign-changing w-solutions of prob-
lem (1.1), (1.2), (5.1), we will define a function A whose properties are important in
our next considerations.

Let assumptions (Hy) — (Hy) be satisfied. Then, by Theorem 3.2 (with p = 1)
and its proof, for each ¢ € (0,7] there exists the unique w-solution of problem
(1.1),(5.2),(5.3), which is positive in the right neighbourhood of ¢ = 0. This so-
lution we will denote throughout this Section by w,.. Using w, we define the function
A+ : (07T] - (0,00) by

A (c) = max{w.(t) : 0 <t < c}.
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Lemma 5.3. Let assumptions (H;) — (Hy) be satisfied. Then A} is continuous and
increasing on (0,7 and
lim Ay(c) =0. (5.4)

c—0t

Proof. To prove that Ay is increasing on (0, 7] we assume, on the contrary, that
Ai(a) > A4(b) for some 0 < a < b <T. Let wy(t,) =0 and wy(tp) = 0 with unique
te € (0,a) and ¢ € (0,b). From Lemma 2.9 and our assumption Ay (a) > A4 (b) we
deduce that t, > t,. We claim that

wp(t) <wy(t) fort € (tg,al. (5.5)

If not, since 0 = wq(tq) > wp(ty) and 0 = wy(a) > wp(a) we have either wq (€) = wp (&)
for some £ € (tq,a) and wp(t) < wg(t) for ¢t € [t4,a] or there exist t, < v <7 < a
such that w, (V) = wy(v), we (1) = wp(7) and wy(t) > we(t) for ¢ € (v, 7). In the first
case w,, (&) = wy(§) and w, = wy in a neighbourhood of ¢t = £ by (Hy), and then by
repeated application of (Hy) we get w, = wp on (4, a), which is impossible. In the
second case, we have r(w, (v))w, (v) < r(wy(v))w;,(v) and f(t, we(t)) > f(t, wy(t)) for
t € (v,7]. Hence

w (t) "
(/ o 7(s) ds) =qt)(f(t,wp(t)) — f(t,wa(t))) >0, te(v,71],

wy (t) ’
and so ( / (s) ds) is nondecreasing on [v, 7] and then the equalities w,(v) =
we (t)

wp (t)
wp(V), we (1) = wp(7) imply / r(s)ds = 0 for t € [v, 7], contrary to wp > w,
wq (t)
on (v,7). Now (5.5) yields min{wy(t) : 0 < ¢ < b} < min{w,(t) : 0 < ¢ < a}, hence
A4 (b) > Ay(a), contrary to our assumption Ay (a) > A4 (b). We have proved that
Ay is increasing on (0, 7.
Suppose that Ay is discontinuous on the right at a point ¢y € (0,7, i.e., there is
a decreasing sequence {c,} C (co,T") such that lim,_,. ¢, = ¢o and
lim Ay(en) =p > Ay(e). (5.6)
Let we, (t,) = 0 for the (unique) ¢, € (0,c,), n € NU{0}. Since p < Ay (cpy1) <
Ay (cy) for n € N, Lemma 2.9 shows that tg < t,11 < t, for n € N. There is no
loss of generality in assuming #; < cg. Moreover, A (c,) = Ay(t,) for n € NU {0}
and from A4 (cg) < pp < Ay (t,) and the continuity of A, by Lemma 2.6, we see that

limy, 00 £, = t« > to. Applying the procedure as in the proof of Lemma 2.6 (now on
[tn, cn]), We get

Ay (tn) Aq(t1)
|r<wcn<t>>wzn<t>|s\/acz / g(s)r(s)dss\/w / g(s)r(s)ds  (5.7)
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for t € [tn,cn], n € N, and then

og[“«@ﬂaw%@»dw:Mw%uw¢xﬂ—rwmg@w

ln

\/ TS, (5.8)
<nf0 [ gt ds
0
for t € [tn,c,] and n € N. By (5.7),
lwl, (t)] <8 fort € [ty,cn), neN, (5.9)
where
1 Ay (ta)
s=L /20 / g(s)r(s) ds. (5.10)
To 0

From (5.9), 0 > we, (t) > —A4(t1) for t € [tn,cn], n € N, and the Arzela—Ascoli
theorem, we deduce that there exists a subsequence of {w,, }, which we denote by
{we, } again, such that lim, . we, (t) = w(t) locally uniformly on (t.,cp]. Then
w € C%(ty, o)), w < 0 on (t,co] and w(cy) = 0 since in the case that w(cy) < 0
from the relations

w(e
(0) > e (e0) = e, (o) — 0, () =, (€0 — €2
which are satisfied for sufficiently large n and where &, € (co, ¢, ), we obtain
w(co)

lim w, (&) > lim

n

n—oo n—oo 2(00 — Cn) =%
contrary to (5.9). We are going to show that w(t) < 0 on (t.,co) and

lim w(t) = 0. (5.11)

t—tf
By (Hj3) (see Remark 1.3), there exists a positive function k € C°([0,T]) such that
k(t) < f(t,z)signx  for (t,z) € [0,T] x [-AL(c1),0) U (0, Ay(cr)].
Now using our Remark 2.2 and Lemma 1.2 in [14] with g = 1, we get (for n € N)

2K, (t —
H—l(——”(t t")> for t € [tn,t”JrC"}
Cn —tn 2
we, (t) < L 2(en 1) e (5.12)
H (—7%_% ) forte(i2 ,cn},
where
(tn+cn)/2 Cn
K, = min { / (s —tn)]q(s)|k(s)ds, / (cn — 9)|q(s)|k(s) ds}
tn (tn+cn)/2

and H~! is the inverse to H given by (2.3). Let t, < (3t. + co)/4 and t, + ¢, <
(ts + 3co)/2 for n > ny with an ny € N. Then (for n > nq)

(tnten)/2 (tetc0)/2 36, 4o
[ etk s> [T (s gl ds,
tn (3t.4co)/4
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/ (en — $)la(s)|k(s) ds > / (co — )la(s)[k(s) ds
(

tntcn)/2 (te+3c0) /4
and from (5.12) it follows that
H—l(_M) for t ¢ [tmm}
we, () < cn —tn 2
Hil(—;K(Cn_t)) for ¢ € (L—’_Cn,cn},
—t 2
where

K= min{/((t*ﬂo)/2 s— 3t*zco>|Q(s)|k(s) ds, /(CO (co = 5)lq(s)[k(s) cls}.

3titco)/4 ( t.+3co)/4

Consequently,

H*1<——2K(t_tt*)) <0 fort € (t*,t*;co}
w(t) = lim w,, (t) < €0t

H_1<——(CO )><0 forte(—+co,co),
Co — 1y 2

and we see that w < 0 on (t«,co). If (5.11) is not true, then there exist ¢ < 0 and
a decreasing sequence {v,} C (., co) such that lim, . v, = t, and w(v,) < 0 for
n € N. Now let

7“0(5

4\/26,2 Arlt) g (s)r(s)ds

for some n, € N. Then there exists na € N such that w,, (v,,,) < §/2 and

é > We, (Vn,) = We, (Vn,) — We, (tn) = wlcn (¢n) (Vn, — tn)

2
for n > ng, where @, € (t,, vy, ). Therefore
. § § A+<t1 W
. —=4[2
Pen (n) < 2(vn, —tn) < 2(vp, — < Q/ 3

for n > na, contrary to (5.9).
Define wy : [t«, co] — (—00,0] by
w(t)  for t € (t«,co]
wy(t) =

0 for t = t,.
Then w, € CO([ts, co)), ws(ts) = wi(co) = 0 and w, < 0 for t € (t,,co). We are now
in a position to show that w, is a solution of problem (1.1),(2.2) with a = t. and
b = co. For this, we define for each n € N the function p,, : [t«, co] — (—00, 0] by

(t) = ft,we, (t))  fort € (tn,co
Pt =1 o for t € [t tn).
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Since

co co Ay (t1)
0 S/t q(t)pn(t) dt:/f Q(t)f(t,wcn(t))dt§2\/2Q/0 g(s)r(s)ds

by (5.8) and lim, oo pn(t) = f(t,w«(t)) for t € (t.,cp), Fatou’s theorem gives
q()f(,we(?)) € Li([t«,c0]). Fix B € (t1,¢0). Going if necessary to a subsequence,
we can assume that {r(we, (8))wr, (8)} is convergent, lim,, o r(we, (8))w, (8) = A.
Letting n — oo in

[wcn " r(s)ds = r(we, (B))w,, (8 / / Jwwe, (v)) dvds, € [t e

W, (B)
and using the Lebesgue dominated theorem, we get

wy ()
/ r(s)ds = // fv,we(v))dvds, t € [t,co]
w(B)

Whence
walt) = B (H(w,(8)) + At - 5) // Fo,w. @) dvods), ¢ € ftorco]

and we see that w, € C([t«, co]) and (r(w.(t))wl ()" = q(t) f(t,w«(t)) for t € (t., o).
Therefore w, is a solution of problem (1.1),(2.2) with a = ¢, and b = ¢y. Finally,
applying Remarks 2.1 and 2.2 to Lemma 2.9, we have we, () < wx(t) for t € [t., o),
and consequently

A (co) = min{we, (t) 1 to <t < co} <min{w.(t) : te <t <co} =—p,
contrary to (5.6). Hence Ay is continuous on the right on (0,T).
The continuity of A4 on the left on (0,77 can be proved similarly. O

Now, define the ‘dual’ function A_ : (0,7] — (0,00) to A4 by the formula
A_(c) = min{w.(t) : 0 <t < c},

where W, is the unique solution of problem (1.1), (5.2), (5.3) such that W, < 0 in the
right neighbourhood of ¢ = 0.

Lemma 5.4. Let assumptions (H;) — (Hy) be satisfied. Then A_ is continuous
decreasing on (0,7 and
lim A_(c)=0.

c—0t

Proof. Since the proof of the lemma is similar to that of Lemma 5.3, we will omit
it. O

Lemma 5.5. Let assumptions (H;) — (Hy) be satisfied. Then there exist exactly two
exceptional 3-sign-changing w-solutions of problem (1.1), (1.2), (5.1).
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Proof. By Lemmas 2.7, 2.10 and 5.3, & is continuous decreasing on [0,7), Ay
is continuous increasing on (0,7] and lim, .- ®1(¢) = lim. o+ Ay(c) = 0. Set
p+(c) = Ay(c) = () for ¢ € (0,7). Then py € C°(0,7)), lim.—o+ pi(c) =
—®,(0) <0, lim,_,7- p+(c) = AL(T) > 0 and since p; is increasing on (0,T), there
is the unique ¢4 € (0,T) such that py(cy) = 0. Hence the function

| we () fort €0, c4]
w+(8) = ve, (t)  fort e (cy,T]

is an exceptional 3-sign-changing w-solution of problem (1.1), (1.2), (5.1), which is
positive in the right neighbourhood of ¢ = 0. Assume that T, is an additional
exceptional 3-sign-changing w-solution of problem (1.1), (1.2), (5.1) having positive
values in the right neighbourhood of t = 0 and let T, (¢;) =0, j = 1,2, with 0 < t; <
to < T. Since Ty # x4, it is necessary to # 4, say ta > c4. Then Ay (t2)—P, (t2) >0
and from this inequality we deduce that

max{T,(t): 0 <t <t} = Ay (ta) > By (ta) = max{T,(t) 1ty < t < T},

contrary to the definition of an exceptional 3-sign-changing w-solution of problem
(1.1), (1.2), (5.1).

By Lemmas 2.8, 2.10 and 5.4, ®_ is continuous increasing on [0,7"), A_ is con-
tinuous decreasing on (0,7 and lim, ;- ®_(¢) = lim._g+ A_(c) = 0. Set p_(c) =
A_(c) — ®_(c) for c € (0,T). Then p_ € C°((0,7)), lim._g+ p—(c) = —P_(0) > 0,
lim,_7- p_(c¢) = A_(T) < 0 and since p_ is decreasing on (0, T), there is the unique
c— € (0,7T) such that p_(c_) = 0. The function

{ w._(t) forte0,c_]
() =4 _

T._(t) forte (c-,T)
is an exceptional 3-sign-changing w-solution of problem in the right neighbourhood
of t = 0 and x_ is the unique exceptional 3-sign-changing w-solution of problem
(1.1), (1.2), (5.1) having negative value in the right neighbourhood of ¢ = 0. O

Remark 5.6. Let assumptions (Hy) — (Hy) be satisfied and let ¢ € (0,7]. Then
(H1)—(Hy) are satisfied with ¢ instead of T, and so there exist exactly two exceptional
3-sign-changing w-solutions of problem (1.1), (5.2), (5.3) by Lemma 5.5.

Theorem 5.7. Let assumptions (H;) — (Hy) be satisfied. Then for each n € N,
n > 2, there exist exactly two exceptional n-sign-changing w-solutions of problem
(1.1),(1.2), (5.1).

Proof. We proceed by induction. By Theorem 3.2 (with A = 1) and Lemma 5.5,
there exist exactly two exceptional j-sign-changing w-solutions of problem (1.1),
(1.2),(5.1), j = 2,3. In addition (see Remark 5.6), for each ¢ € (0,7] there ex-
ists exactly two exceptional 3-sign-changing w-solutions of problem (1.1), (5.2), (5.3).
Assuming that this result holds for n = k > 3, we will prove it for n = k + 1. Since
the proof is similar to that of Lemma 5.5, we give only its main ideas.



104 . Stanek

First, we assume that for each ¢ € (0,7 there exist exactly two exceptional k-
sign-changing w-solutions wy. and Wk, of problem (1.1),(5.2),(5.3) such that wy.
is positive and Wy, is negative in the right neighbourhood of ¢ = 0. Now define
Ak 1 (0,T] — (0,00) and A¥ : (0,7] — (0,00) by

A (¢) = max{uwre(t) : 0 < t < c}
and
A* () = max{@i(t) : 0 < t < c}.
Further, we can proceed as in the proof of Lemmas 5.3 and 5.4 to verify that A’j_

and A* are continuous increasing on (0,7, lim, g+ A% (c) = lim._ o+ A* (c) = 0.
Finally, if £ is an even positive integer, set

P = AL () = D4(0), pp(0) = AL +D () force (0,7).
Since p; and pj, are continuous increasing on (0,7, lim, ¢+ p} (c) = —®,(0) <
lim. 7 pi (¢) = AR(T) > 0, lim. o+ p; (¢) = ®_(0) < 0 and lim, .- p;, (c)
AF (T) > 0, there exists the unique solution ¢ (resp. c_) of the equation p; (c) =
(resp. py (¢) =0). Then

0,
0

z4(t) =

Wye, (t)  for t € [0,cy]
Ve, (t) for ¢t € (cy, T,

Wie_(t)  fort €[0,c_]
z_(t) =
Te_ (1) fort € (c_, T
are the unique two exceptional (k + 1)-sign-changing w-solutions of problem (1.1),
(1.2), (5.1).

If k£ is an odd positive integer, we now set
pi(c) =A%) +@_(c), pj(c)=A%(c)—Py(c) force(0,T).

Then p; and p, are continuous increasing on (0,7'), the equations pz(c) =0 and
Py, (¢) = 0 have the unique solutions c; and c_, respectively, and

) Wie, (t)  for t € [0,cy]
€T =

* T, (t)  fort e (cy,T),
and

x_(t) =

Wke_(t)  fort €0, c_]
ve_(t) fort € (c_,T]

are the unique two exceptional (k + 1)-sign-changing w-solutions of problem (1.1),
(1.2), (5.1). O
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