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Abstract. The singular Dirichlet problem (r(x)x0)0 = q(t)f(t, x), x(0) = x(T ) = 0,
λmax{x(t) : 0 ≤ t ≤ T} = −min{x(t) : 0 ≤ t ≤ T} is considered. Here f is singular
at the point x = 0 of the phase variable x and λ is a positive parameter. The notions of
a solution and a w-solution of the above problem changing its sign exactly once on (0, T )
are introduced. Effective conditions for the existence and multiplicity results are presented.
Next, the notion of an exceptional n-sign-changing w-solution of our problem with λ = 1 is
given and for such solutions existence and multiplicity results are proved.
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1. Introduction

Consider the problem
(r(x(t))x0(t))0 = q(t)f(t, x(t)), (1.1)

x(0) = 0, x(T ) = 0, (1.2)

λmax{x(t) : 0 ≤ t ≤ T} = −min{x(t) : 0 ≤ t ≤ T}, (1.3)
where T is a positive number, λ is a positive parameter and f is singular at the point
x = 0 of the phase variable x in the following sense

lim
x→0−

f(t, x) = −∞, lim
x→0+

f(t, x) =∞ for t ∈ [0, T ]. (1.4)

Definition 1.1. We say that x ∈ C1([0, T ]) is a solution of problem (1.1) − (1.3) if
x has precisely one zero t0 on (0, T ), r(x)x0 ∈ C1((0, T ) \ {t0}), (1.1) is satisfied for
t ∈ (0, T ) \ {t0}, x fulfils (1.2) and there exists λ0 ∈ (0,∞) such that (1.3) holds with
λ = λ0.

Besides a solution of problem (1.1)-(1.3), we introduce in accordance with [15] the
notion of a w-solution of problem (1.1)-(1.3).
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Definition 1.2. Let λ ∈ (0,∞). A function x ∈ C0([0, T ]) is called a w-solution of
problem (1.1)− (1.3) if x has precisely one zero t0 ∈ (0, T ), x ∈ C1([0, T ]\{t0}), there
exist finite limt→t−0

x0(t) and limt→t+0
x0(t), r(x)x0 ∈ C1((0, T ) \ {t0}), x fulfils (1.2),

(1.3), and (1.1) holds on (0, T ) \ {t0}.

We note that in contrast to a solution x of problem (1.1)-(1.3) which belongs to the
class C1([0, T ]) and satisfies (1.3) with a suitable value of λ, a w-solution x of problem
(1.1)-(1.3) is continuous on [0, T ], has continuous derivative on [0, t0) ∪ (t0, T ] where
t0 is the unique zero of x in (0, T ) and (1.3) holds with a given value of λ. Naturaly,
any solution of problem (1.1)-(1.3) is also a w-solution of this problem.

In the paper we will use the following assumptions:

(H1) r ∈ C0(R), r(x) ≥ r0 > 0 for x ∈ R;
(H2) q ∈ C0((0, T )), q(t) < 0 for t ∈ (0, T ) and Q = sup{|q(t)| : 0 ≤ t ≤ T} <∞;
(H3) f ∈ C0([0, T ] ×D), where D = (−∞, 0) ∪ (0,∞), f(t, ·) is nonincreasing on

D for t ∈ [0, T ] and
0 < f(t, x)signx ≤ g(x) for (t, x) ∈ [0, T ]×D,

where g ∈ C0(D) andZ 0

g(s) ds <∞,

Z
0

g(s) ds <∞;

(H4) for each (t0, x0, x1) ∈ (0, T ) × D × R, there exists a unique solution x of
(1.1) satisfying the initial conditions x(t0) = x0, x0(t0) = x1 defined in a
neighbourhood of t = t0.

Remark 1.3. If f satisfies (H3) then for each M > 0 there exists a positive function
kM ∈ C0([0, T ]) such that

0 < kM (t) ≤ f(t, x)signx ≤ g(x) on (t, x) ∈ [0, T ]× ([−M, 0) ∪ (0,M ]).
Next under the assumption that f is a locally Lipschitz function on (0, T ) × D,
assumption (H4) is satisfied.

In many papers (see, e.g., [1]—[13], [16]—[22] and references therein) only positive
(negative) solutions on (0, T ) of the Dirichlet boundary value problems with the singu-
larity at the point x = 0 of the phase variable x in nonlinearities of considered second-
order differential equations have been studied. Solutions were considered either in the
class C0([0, T ])∩C2((0, T )) ( [1]—[3], [7], [11], [12], [18], [19]) or C1([0, T ])∩C2((0, T ))
([4]—[6], [12], [13], [16]—[19], [22]) or C0([0, T ]) ∩ AC1loc((0, T )) ([8]—[10], [20], [21]).
Here AC1loc((0, T )) denotes the set of functions having absolutely continuous first
derivatives on any compact subintervals of (0, T ). The nonlinearities of equations are
usually nonpositive ([1], [2], [6]—[8], [11], [12], [16]—[20], [22]), but in [3]—[5], [9], [10],
[13] and [21] this assumption is overcome.
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For the first time in [14] solutions of singular Dirichlet boundary value problems
changing their signs exactly once on (0, T ) were considered. Here differential equations
of the form

(r(x(t))x0(t))0 = µq(t)f(t, x(t)) (1.5)

together with the condition

max{x(t) : 0 ≤ t ≤ T}min{x(t) : 0 ≤ t ≤ T} < 0 , (1.6)

were studied where µ is a positive parameter and f is singular at the point x = 0
of the phase variable x. A function x ∈ C1([0, T ]) is called a solution of problem
(1.5), (1.2), (1.6) if x has precisely one zero t0 on (0, T ), r(x)x0 ∈ C1((0, T ) \ {t0}), x
fulfils (1.2) and (1.6) and there exists µ0 > 0 such that (1.5) with µ = µ0 is satisfied for
t ∈ (0, T )\{t0}. In [14] under assumptions (H1)−(H3) it is proved among others that
for each A ∈ (0,∞) there exists a solution x of problem (1.5), (1.2), (1.6) such that
max{x(t) : 0 ≤ t ≤ T} = A. We see that any solution of problem (1.5), (1.2), (1.6)
depends on a value of the parameter µ in equation (1.5) unlike our definition of a
solution of problem (1.1)-(1.3) depending on a value of the parameter λ appearing in
condition (1.3).

A generalization of the notion of a solution of problem (1.5), (1.2), (1.6) was given
in [15]. Here x ∈ C0([0, T ]) is said to be a w-solution of problem (1.5), (1.2), (1.6) if x
has precisely one zero t0 in (0, T ), x ∈ C1([0, T ]\{t0}), there exist finite limt→t0− x0(t),
limt→t0+

x0(t), r(x)x0 ∈ C1((0, T ) \ {t0}), x fulfils (1.2) and (1.6), and finally there
exists µ0 > 0 such that (1.5) with µ = µ0 is satisfied for t ∈ (0, T ) \ {t0}. It is proved
among others that under assumptions (H1)− (H3) for A > 0 and t0 ∈ (0, T ) problem
(1.5), (1.2), (1.6) has just two w-solutions vanishing at t0 and having their maximum
values on [0, T ] equal to A.

This paper is a continuation of [15] and in comparison with (1.5) our equation
(1.1) does not depend on the parameter µ. By our definitions any solution as well as
any w-solution x of problem (1.1)-(1.3) have precisely one zero in (0, T ) where they
change their signs. Hence any solution and any w-solution of problem (1.1)-(1.3) ‘pass
through’ the singularity of f at a point of the interval (0, T ).

The paper is organized as follows. In Section 2 we define functions Λ+, Φ+, Λ−
and Φ− by (2.6)-(2.9) and present some of their important properties. By these
functions we prove existence and uniqueness results for w-solutions of problem (1.1)-
(1.3) in Section 3 (Theorems 3.1 and 3.2). Section 4 is devoted to the study of
existence and multiplicity results for solutions of problem (1.1)-(1.3) (Theorem 4.5).
In Section 5 we first give the notion of an exceptional n-sign-changing w-solution x of
problem (1.1), (1.2), (5.1) which changes its sign exactly n times on [0, T ] and on each
maximum subinterval of [0, T ] where x keeping its sign the function |x| has the same
maximum value. Existence and multiplicity results for the n-sign-changing w-solution
of problem (1.1), (1.2), (5.1) are given in Theorem 5.7.
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2. Lemmas, notation

Let 0 ≤ a < b ≤ T . In our consideration we will work with the following auxiliary
boundary conditions

x(a) = x(b) = 0, x(t) > 0 for t ∈ (a, b), (2.1)

x(a) = x(b) = 0, x(t) < 0 for t ∈ (a, b) (2.2)
and we will use the function H : R→ R defined by

H(u) =

Z u

0

r(s) ds (2.3)

with r occurring in (1.1) and satisfying assumption (H1). Clearly, H ∈ C1(R) is
increasing on R and the inverse function to H denoted by H−1 is increasing on R.
We say that x is a solution of problem (1.1), (j), j ∈ {2.1, 2.2} if x ∈ C1([a, b]),

r(x)x0 ∈ C1((a, b)), x satisfies the boundary conditions (j) and (1.1) is fulfilled for
t ∈ (a, b).

Remark 2.1. Let the function q̃ : (0, T ) → (−∞, 0) and f̃ : [0, T ] × D → R be
defined by

q̃(t) = q(T − t), f̃(t, x) = f(T − t, x).

Then
0 < f̃(t, x)signx < g(x), (t, x) ∈ [0, T ]×D

and assumptions (H2)-(H4) are satisfied with q̃ and f̃ instead of q and f . If we
consider the differential equation

(r(x(t))x0(t))0 = q̃(t)f̃(t, x(t)), (2.4)

we see that a function x is a solution of problem (1.1), (j) with a = 0, b = c (< T ) and
j∈ {2.1, 2.2} if the function x̃(t) = x(T − t), t ∈ [T − c, T ], is a solution of problem
(2.4), (j) with a = T − c, b = T . Conversely, if x̃ is a solution of problem (2.4), (j)
with a = T − c (> 0), b = T and j∈ {2.1, 2.2}, then the function x(t) = x̃(T − t),
t ∈ [0, c], is a solution of problem (1.1), (j) with a = 0, b = c.

Remark 2.2. Let r∗ : R→ [r0,∞), f∗ : [0, T ]×D→ R and g∗ : D→ R be defined
by the formulas (see [14])

r∗(x) = r(−x), f∗(t, x) = −f(t,−x), g∗(x) = g(−x).
Then

0 < f∗(t, x)signx ≤ g∗(x), (t, x) ∈ [0, T ]×D

and assumptions (H1)− (H4) are satisfied with r∗, f∗ and g∗ instead of r, f and g.
It is easily seen that a function x is a solution of problem (1.1), (j), j∈ {2.1, 2.2}, if
and only if x∗ = −x on [a, b] is a solution of problem (2.5), (j), where

(r∗(x(t))x0(t))0 = q(t)f∗(t, x(t)). (2.5)
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Lemma 2.3. Let assumptions (H1)− (H3) be satisfied. Then for each a, b ∈ [0, T ],
a < b, there exists a unique solution of problem (1.1), (2.1).

Proof. The assertion of our lemma follows from Theorem 2.1 in [14] with µ = 1.
¤

Corollary 2.4. Under assumptions of Lemma 2.3, for each a, b ∈ [0, T ], a < b, there
exists a unique solution of problem (1.1), (2.2).

Proof. Fix 0 ≤ a < b ≤ T . Since assumptions (H1) − (H3) are satisfied with
the functions r∗, f∗ and g∗ defined in Remark 2.2 instead of r, f and g, problem
(2.5), (2.1) has a unique solution x̃ by Lemma 2.3. Now the function x = −x̃ on [a, b]
is the unique solution of problem (1.1), (2.2). ¤

For each α ∈ (0, T ] and β ∈ [0, T ), we denote throughout this paper by uα and
vβ the unique solution of problem (1.1), (2.1) with a = 0, b = α and a = β, b = T ,
respectively. Next by uα and vβ we denote the unique solution of problem (1.1), (2.2)
with a = 0, b = α and a = β, b = T , respectively. The existence and uniqueness of
uα, vβ and uα, vβ follow from Lemma 2.3 and Corollary 2.4, respectively.

Lemma 2.5. (Lemma 2.7 in [14]. Let assumptions (H1)− (H3) be satisfied and let
0 < α1 < α2 ≤ T . Then

uα1(t) ≤ uα2(t) for t ∈ [0, α1].

By the solutions uα, vβ, uα and vβ define the functions Λ+ : (0, T ] → (0,∞),
Φ+ : [0, T )→ (0,∞), Λ− : (0, T ]→ (−∞, 0), Φ− : [0, T )→ (−∞, 0) by the formulas

Λ+(α) = max{uα(t) : 0 ≤ t ≤ α}, (2.6)

Φ+(β) = max{vβ(t) : β ≤ t ≤ T}, (2.7)

Λ−(α) = min{uα(t) : 0 ≤ t ≤ α} (2.8)

and

Φ−(β) = min{vβ(t) : β ≤ t ≤ T}. (2.9)

Properties of the functions Λ+, Φ+, Λ− and Φ− are presented in the following lemmas.

Lemma 2.6. Let assumptions (H1) − (H3) be satisfied. Then Λ+ is continuous
nondecreasing on (0, T ] and

lim
α→0+

Λ+(α) = 0.
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Proof. As a direct consequence of Lemma 2.5 we get that Λ+ is nondecreasing on
(0, T ]. Suppose that Λ+ is discontinuous on the right at a point α0 ∈ (0, T ), i.e. there
is a decreasing sequence {αn} ⊂ (α0, T ) such that limn→∞ αn = α0 and

lim
n→∞Λ+(αn) > Λ+(α0). (2.10)

Consider the sequence {uαn}. Since (r(uαn(t))u0αn(t))0 = q(t)f(t, u0αn(t)) < 0 for
t ∈ (0, αn), r(uαn)u0αn is decreasing on [0, αn] and therefore there exists a (unique)
ξn ∈ (0, αn) such that u0αn > 0 on [0, ξn), u0αn < 0 on (ξn, αn] and u0αn(ξn) = 0.
Integrating the inequalities

(r(uαn(t))u
0
αn(t))

0r(uαn(t))u0αn(t)

≥ −Qg(uαn(t))r(uαn(t))u0αn(t), t ∈ (0, ξn)
(2.11)

and
(r(uαn(t))u

0
αn(t))

0r(uαn(t))u0αn(t)

≤ −Qg(uαn(t))r(uαn(t))u0αn(t), t ∈ (ξn, αn)
(2.12)

over [0, ξn] and [ξn, αn], we obtain

(r(0)u0αn(0))
2 ≤ 2Q

Z Λ+(αn)
0

g(s)r(s) ds ≤ 2Q
Z Λ+(α1)
0

g(s)r(s) ds

and

(r(0)u0αn(αn))
2 ≤ 2Q

Z Λ+(αn)
0

g(s)r(s) ds ≤ 2Q
Z Λ+(α1)
0

g(s)r(s) ds,

respectively. Hence

|r(uαn(t))u0αn(t)| ≤ r(0)max{u0αn(0), |u0αn(αn)|}

≤
s
2Q

Z Λ+(α1)
0

g(s)r(s) ds, t ∈ [0, αn], n ∈ N
(2.13)

and

|u0αn(t)| ≤
1

r0

s
2Q

Z Λ+(α1)
0

g(s)r(s) ds for t ∈ [0, αn], n ∈ N. (2.14)

In addition, by Lemma 2.5,

uα0(t) ≤ uαn(t) ≤ uαn+1(t) for t ∈ [0, α0], n ∈ N. (2.15)

From (2.14) and (2.15) we deduce that {uαn(t)} is uniformly convergent on [0, α0]
and let limn→∞ uαn(t) = u(t), t ∈ [0, α0]. Then u ∈ C0([0, α0]), u(0) = 0, u(t) ≥
uα0(t) > 0 for t ∈ (0, α0). Moreover, u(α0) = 0, since in the case that u(α0) > 0 it
may be concluded from

u(α0) ≤ uαn(α0) = uαn(α0)− uαn(αn) = u0αn(ηn)(α0 − αn),

where ηn ∈ (α0, αn) that

lim
n→∞u0αn(ηn) ≤ lim

n→∞
u(α0)

α0 − αn
= −∞,
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contrary to (2.14). As

0 < f(t, uαn+1(t)) ≤ f(t, uαn(t)), lim
n→∞ f(t, uαn(t) = f(t, u(t)), t ∈ (0, α0)

and (see (2.13))

0 >

Z α0

0

q(t)f(t, uαn(t)) dt = r(uαn(α0))u
0
αn(α0)− r(0)u0αn(0)

≥ −2
s
2Q

Z Λ+(α1)
0

g(s)r(s) ds

for n ∈ N, Fatou’s and Levi’s theorems give q(·)f(·, u(·)) ∈ L1([0, α0]) and

lim
n→∞

Z t

0

q(s)f(s, uαn(s) ds =

Z t

0

q(s)f(s, u(s) ds, t ∈ [0, α0].

By (2.14), {u0αn(0)} is bounded and we may assume that it is convergent. Let
limn→∞ u0αn(0) = A. Letting n→∞ in

H(uαn(t)) = r(0)u0αn(0)t+
Z t

0

Z s

0

q(v)f(v, uαn(v)) dv ds for t ∈ [0, α0], (2.16)

where H is given by (2.3), we get

H(u(t)) = r(0)At+

Z t

0

Z s

0

q(v)f(v, u(v)) dv ds, t ∈ [0, α0].

Then

u(t) = H−1
³
r(0)At+

Z t

0

Z s

0

q(v)f(v, u(v) dv ds
´
,

and so u ∈ C1([0, α0]). Now from r(u(t))u0(t) = r(0)A +

Z t

0

q(s)f(s, u(s)) ds, t ∈
[0, α0], and the above proved properties of u, we see that u is a solution of prob-
lem (1.1), (2.1) with a = 0 and b = α0, and consequently u = uα0 by Lemma 2.3.
We have proved that limn→∞ uαn(t) = uα0(t) uniformly on [0, α0], which implies
limn→∞Λ+(αn) = Λ+(α0), contrary to (2.10). Hence Λ+ is continuous on the right
on (0, T ).

Assume now that Λ+ is discontinuous on the left at a point α0 ∈ (0, T ], i.e., there
is an increasing sequence {αn} ⊂ (0, α0) such that limn→∞ αn = α0 and

lim
n→∞Λ+(αn) < Λ+(α0). (2.17)

Then

uαn(t) ≤ uαn+1(t) ≤ uα0(t) for t ∈ [0, αn], n ∈ N (2.18)
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by Lemma 2.5 and as above it can be verified that

|r(uαn(t))u0αn(t)| ≤
s
2Q

Z Λ+(α0)
0

g(s)r(s) ds,

|u0αn(t)| ≤
1

r0

s
2Q

Z Λ+(α0)
0

g(s)r(s) ds

(2.19)

and

0 ≥
Z t

0

q(s)f(s, uαn(s)) ds ≥ −2
s
2Q

Z Λ+(α0)
0

g(s)r(s) ds (2.20)

for t ∈ [0, αn] and n ∈ N. By (2.18) and (2.19), {uαn(t)} is locally uniformly con-
vergent on [0, α0) and let limn→∞ uαn(t) = u(t), t ∈ [0, α0). Then u ∈ C0([0, α0)),
u(0) = 0, 0 < u(t) ≤ uα0(t) for t ∈ [0, α0) and limt→α−0

u(t) = 0. From the inequal-
ities f(t, uαn(t)) ≥ f(t, uαn+1(t)) ≥ f(t, uα0(t)) ≥ 0, (2.20), limn→∞ f(t, uαn(t)) =
f(t, u(t)) for t ∈ (0, α0) and Fatou’s theorem we obtain q(·)f(·, u(·)) ∈ L1([0, α0]).
Define u∗ ∈ C0([0, α0]) by

u∗(t) =

(
u(t) for t ∈ [0, α0)
0 for t = α0.

Without violating generality, we can assume that {u0αn(0)} is convergent and let
limn→∞ u0αn(0) = B. Taking the limit as n→∞ in (2.16) which now holds on [0, αn],
we obtain

H(u∗(t)) = r(0)Bt+

Z t

0

Z s

0

q(v)f(v, u∗(v)) dv ds for t ∈ [0, α0].

Then u∗ ∈ C1([0, α0]) and u∗ is a solution of problem (1.1), (2.1) with a = 0 and
b = α0. Hence u∗ = uα0 and from limn→∞ uαn(t) = uα0(t) locally uniformly on
[0, α0) we deduce that limn→∞Λ+(αn) = Λ+(α0), contrary to (2.17). It follows that
Λ+ is continuous on the left on (0, T ]. Consequently, Λ+ is continuous on (0, T ].

Finally, assume that limα→0+ Λ+(α) = µ > 0. Let {αn} ⊂ (0, T ) be a decreas-
ing sequence and limn→∞ αn = 0. Let Λ+(αn) = uαn(ξn) with a ξn ∈ (0, αn).
Then uαn(ξn) ≥ µ and from µ ≤ uαn(ξn) = uαn(ξn) − uαn(0) = u0αn(τn)ξn, where
τn ∈ (0, ξn), we have u0αn(τn) ≥ µ/ξn for n ∈ N. Therefore limn→∞ u0αn(τn) ≥
limn→∞ µ/ξn =∞, contrary to (2.14). Hence limα→0+ Λ+(α) = 0. ¤

Lemma 2.7. Let assumptions (H1) − (H3) be satisfied. Then Φ+ is continuous
nonincreasing on [0, T ) and

lim
β→T−

Φ+(β) = 0.

Proof. By Remark 2.1, for each γ ∈ (0, T ] the function ũγ(t) = vγ(T − t), t ∈
[0, T − γ], is a (unique) solution of problem (2.4), (2.1) with a = 0 and b = T − γ.
Set Λ̃+(γ) = max{ũγ(t) : 0 ≤ t ≤ γ} for γ ∈ (0, T ]. Applying Lemma 2.6 to equation
(2.4), we see that Λ̃+ is continuous and nondecreasing on (0, T ] and limγ→0+ Λ̃+(γ) =
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0. The assertion of our lemma now follows from the equality Φ+(β) = Λ̃+(T − β) for
β ∈ [0, T ). ¤

Lemma 2.8. Let assumptions (H1) − (H3) be satisfied. Then Λ− is continuous
nonincreasing on (0, T ], Φ− is continuous nondecreasing on [0, T ) and

lim
α→0+

Λ−(α) = lim
β→T−

Φ−(β) = 0.

Proof. Let Λ̃+ and Φ̃+ be associated to problem (2.5), (2.1) analogously as Λ+ and
Φ+ are to problem (1.1), (2.1). Then Λ̃+ is continuous and nondecreasing on (0, T ], Φ̃+
is continuous and nonincreasing on [0, T ) and limα→0+ Λ̃+(α) = limβ→T− Φ̃+(β) = 0
by Lemmas 2.6 and 2.7. The assertions of the lemma follow immediately from the
equalities Λ− = −Λ̃+ on (0, T ] and Φ− = −Φ̃+ on [0, T ) which we get applying
Remark 2.2. ¤

Lemma 2.9. Let assumptions (H1)−(H4) be satisfied. Then for each α1, α2 ∈ (0, T ],
α1 < α2, the inequality

uα1(t) < uα2(t) for t ∈ (0, α1] (2.21)

holds.

Proof. Fix 0 < α1 < α2 ≤ T . Then 0 = uα1(α1) < uα2(α1) and, by Lemma 2.5,
uα1(t) ≤ uα2(t) for t ∈ (0, α1]. If uα1(ξ) = uα2(ξ) for some ξ ∈ (0, α1), then u0α1(ξ) =
u0α2(ξ), and consequently uα1 = uα2 in a neighbourhood of t = ξ by assumption (H4).
Repeated application of this result enables us to prove that uα1 = uα2 on [0, α1),
which is impossible. Hence (2.21) holds. ¤

Lemma 2.10. Under assumptions (H1) − (H4), Λ+ is increasing on (0, T ], Φ+ is
decreasing on [0, T ), Λ− is decreasing on (0, T ] and Φ− is increasing on [0, T ).

Proof. By Lemma 2.9, for each 0 < α1 < α2 ≤ T , inequality (2.21) holds and from
the definition of Λ+ we have Λ+(α1) < Λ+(α2). Hence Λ+ is increasing on (0, T ]. The
other three assertions of the lemma can be verified from strict inequalities between
solutions vα1 , vα2 ; uα1 , uα2 and vα1 , vα2 with different α1 and α2. ¤

3. Existence results for w-solutions of problem (1.1)-(1.3)

Theorem 3.1. Let assumptions (H1)− (H3) be satisfied. Then for each λ ∈ (0,∞)
there exist at least two w-solutions of problem (1.1)-(1.3).

Proof. Fix λ ∈ (0,∞). By Lemmas 2.6 and 2.8, the function λΛ+ + Φ− is
continuous and nondecreasing on (0, T ) and limα→0+(λΛ+(α)+Φ−(α)) = Φ−(0) < 0,
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limα→T−(λΛ+(α)+Φ−(α)) = λΛ+(T ) > 0. Hence the equation λΛ+(α)+Φ−(α) = 0
has at least one solution α1 ∈ (0, T ). Setting

x1(t) =

(
uα1(t) for t ∈ [0, α1]
vα1(t) for t ∈ (α1, T ],

(3.1)

x1 is aw-solution of problem (1.1)-(1.3). Analogously, the equation λΦ+(α)+Λ−(α) =
0 has at least one solution α2 ∈ (0, T ) since λΦ++Λ− is continuous and nonincreasing
on (0, T ) and limα→0+(λΦ+(α)+Λ−(α)) = λΦ+(0) > 0, limα→T−(λΦ+(α)+Λ−(α)) =
Λ−(T ) < 0 by Lemmas 2.7 and 2.8. Then setting

x2(t) =

(
uα2(t) for t ∈ [0, α2]
vα2(t) for t ∈ (α2, T ],

(3.2)

x2 is the second w-solution of problem (1.1)-(1.3). From x1 > 0 on (0, α1) and x2 < 0
on (0, α2) we see that x1 6= x2. ¤

Theorem 3.2. Let assumptions (H1)− (H4) be satisfied. Then for each λ ∈ (0,∞)
there exist precisely two w-solutions of problem (1.1)-(1.3).

Proof. Fix λ ∈ (0,∞). It follows from Lemma 2.10 and the properties of the
functions Λ+, Φ+, Λ− and Φ− given in Lemmas 2.6—2.8 that the equations λΛ+(α)+
Φ−(α) = 0 and λΦ+(α) + Λ−(α) = 0 have in (0, T ) the unique solutions α1 and
α2, respectively. Now x1 and x2 defined by (3.1) and (3.2) are unique w-solutions of
problem (1.1)-(1.3). ¤

4. Existence results for solutions of problem
(1.1)—(1.3)

Let assumptions (H1)− (H4) be satisfied. By Theorem 3.2, for each λ ∈ (0,∞) there
exist precisely two w-solutions x1(t;λ) and x2(t;λ) of problem (1.1)-(1.3). If cλ is the
(unique) solution of the equation λΛ+(c)+Φ−(c) = 0 and αλ is the (unique) solution
of the equation λΦ+(α) + Λ−(α) = 0, then

x1(t;λ) =

(
ucλ(t) for t ∈ [0, cλ]
vcλ(t) for t ∈ (cλ, T ]

and

x2(t;λ) =

(
uαλ(t) for t ∈ [0, αλ]
vαλ(t) for t ∈ (αλ, T ].

Here solutions uα, vβ, uα and vβ were defined in Section 2. Of course,

λmax{ucλ(t) : 0 ≤ t ≤ cλ} = −min{vcλ : cλ ≤ t ≤ T},
λmax{vαλ(t) : αλ ≤ t ≤ T} = −min{uαλ : 0 ≤ t ≤ αλ}

and cλ (resp. αλ) is the (unique) zero of x1(t;λ) (resp. x2(t;λ)) in (0, T ).

Lemma 4.1. Let assumptions (H1)− (H4) be satisfied. Then
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a) cλ is continuous and decreasing on (0,∞),
lim
λ→∞

cλ = 0, lim
λ→0+

cλ = T,

b) ucλ1 (t) > ucλ2 (t) for t ∈ (0, cλ2 ] and 0 < λ1 < λ2.

Proof. We know (see the proof of Theorem 3.2) that cλ is the (unique) solution of
the equation λΛ+(c)+Φ−(c) = 0. Hence the equality λΛ+(cλ)+Φ−(cλ) = 0 holds for
λ ∈ (0,∞). Let 0 < λ1 < λ2. If cλ1 ≤ cλ2 , then from the properties of the functions
Λ+ and Φ− given in Lemmas 2.6—2.10 it follows that 0 = λ1Λ+(cλ1) + Φ−(cλ1) <
λ2Λ+(cλ2)+Φ−(cλ2), contrary to λ2Λ+(cλ2)+Φ−(cλ2) = 0. Therefore cλ is decreasing
on (0,∞).
Assume that cλ is discontinuous at a point λ0 ∈ (0,∞). Then there is a sequence

{λn} ⊂ (0,∞), limn→∞ λn = λ0 such that limn→∞ cλn = µ0 6= cλ0 . Letting n →∞
in the equalities λnΛ+(cλn) +Φ−(cλn) = 0, n ∈ N, we get

λ0Λ+(µ0) +Φ−(µ0) = 0 (4.1)

since Λ+ and Φ− are continuous. But the equation λ0Λ+(c) + Φ−(c) = 0 has the
unique solution c = cλ0 , contrary to (4.1). Hence cλ is continuous on (0,∞).
Suppose limλ→∞ cλ = µ > 0. Then Λ+(cλ) ≥ Λ+(µ) > 0 and Φ−(cλ) ≤ Φ−(µ) < 0

for λ ∈ (0,∞), and so limλ→∞(λΛ+(cλ) +Φ−(cλ)) =∞, contrary to
λΛ+(cλ) +Φ−(cλ)) = 0 for λ ∈ (0,∞). (4.2)

Therefore limλ→∞ cλ = 0. If limλ→0+ cλ = ( < T , then limλ→0+ Λ+(cλ) = Λ+(() > 0,
limλ→0+ Φ−(cλ) = Φ−(() < 0, and so limλ→0+(λΛ+(cλ) + Φ−(cλ)) = Φ−(() < 0,
contrary to (4.2). Hence limλ→0+ cλ = T .

Finally, if 0 < λ1 < λ2, then cλ1 > cλ2 and ucλ1 (t) > ucλ2 (t) for t ∈ (0, cλ2 ] by
Lemma 2.9. ¤

Lemma 4.2. Let assumptions (H1) − (H4) be satisfied and let {λn} ⊂ (0,∞),
limn→∞ λn = λ0 > 0. Then

lim
n→∞ucλn (t) = ucλ0 (t) locally uniformly on [0, cλ0).

Proof. First from (2.14) it follows that

|u0cλn (t)| ≤
1

r0

s
2Q

Z Λ+(T )
0

g(s)r(s) ds for t ∈ [0, cλn ], n ∈ N. (4.3)

Now from (4.3) and using the fact that for {λn} decreasing, {cλn} is increasing and
ucλn+1 (t) > ucλn (t), t ∈ [0, cλn ], n ∈ N

and for {λn} increasing, {cλn} is decreasing and
ucλn+1 (t) < ucλn (t), t ∈ [0, cλn+1 ], n ∈ N

(see Lemma 4.1), we deduce the assertion of our lemma. ¤
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Define the function S+ : (0,∞)→ (−∞, 0] by the formula

S+(λ) = u0cλ(cλ),

where u0cλ(cλ) denotes the derivative of ucλ(t) on the left at the point t = cλ.

Lemma 4.3. Let assumptions (H1) − (H4) be satisfied. Then S+ is continuous on
(0,∞) and

lim
λ→∞

S+(λ) = 0, lim sup
λ→0+

S+(λ) < 0.

Proof. Assume, on the contrary, that S+ is discontinuous at a point λ0 ∈ (0,∞).
Then there exist ε0 > 0 and a sequence {λn} ⊂ (λ0/2, 2λ0), limn→∞ λn = λ0 such
that |S+(λn)− S+(λ0)| ≥ ε0 for n ∈ N, that is

|u0cλn (cλn)− u0cλ0 (cλ0)| ≥ ε0 for n ∈ N. (4.4)

We claim that there exists ν > 0 such that

|u0cλn (t)− u0cλn (cλn)| <
ε0
2

for t ∈ [cλn − ν, cλn ], n ∈ N. (4.5)

If not, without restriction of generality we can assume that there is a sequence {τn} ⊂
(0, T ), τn < cλn , limn→∞(τn − cλn) = 0 such that

|u0cλn (τn)− u0cλn (cλn)| =
ε0
2

for n ∈ N. (4.6)

If u0cλn (τn) ≤ 0, then r(ucλn (t))u
0
cλn
(t) ≤ 0 for t ∈ [τn, cλn ] and integrating the

inequality

(r(ucλn (t))u
0
cλn
(t))0r(ucλn (t))u

0
cλn
(t) ≤ −Qg(ucλn (t))r(ucλn (t))u0cλn (t) (4.7)

from τn to cλn we get

(0 ≤) (r(0)u0cλn (cλn))2 − (r(ucλn (τn))u0cλn (τn))2

≤ −2Q
Z 0

ucλn
(τn)

g(s)r(s) ds = 2Q

Z ucλn
(τn)

0

g(s)r(s) ds.
(4.8)

If u0cλn (τn) > 0, then there exists ξn ∈ (τn, cλn) such that u0cλn (ξn) = 0 and then
integrating the inequality

(r(ucλn (t))u
0
cλn
(t))0r(ucλn (t))u

0
cλn
(t) ≥ −Qg(ucλn (t))r(ucλn (t))u0cλn (t)

from τn to ξn and inequality (4.7) from ξn to cλn , we have

(r(ucλn (τn))u
0
cλn
(τn))

2 ≤ 2Q
Z ucλn

(ξn)

ucλn
(τn)

g(s)r(s) ds (4.9)

and

(r(0)u0cλn (cλn))
2 ≤ 2Q

Z ucλn
(ξn)

0

g(s)r(s) ds. (4.10)
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Let N+ be the set of all n ∈ N such that u0cλn (τn) > 0. Assume N+ is infinite. Using
(4.3) and the equalities limn→∞(ξn − cλn) = 0, limn→∞(ξn − τn) = 0, we have

lim
n∈N+, n→∞

(ucλn (ξn)− ucλn (τn)) = 0,

lim
n∈N+, n→∞

ucλn (ξn) = lim
n∈N+, n→∞

(ucλn (ξn)− ucλn (cλn)) = 0,

and so (4.9), (4.10) and r(x) ≥ r0 > 0 for x ∈ R yield

lim
n∈N+, n→∞

u0cλn (τn) = lim
n∈N+, n→∞

u0cλn (cλn) = 0,

contrary to (4.6). Hence N+ is finite and there is no loss of generality in assuming
u0cλn (τn) ≤ 0 for n ∈ N and then (see (4.8))

(0 ≤) (r(0)u0cλn (cλn))2 − (r(ucλn (τn))u0cλn (τn))2 ≤ 2Q
Z ucλn

(τn)

0

g(s)r(s) ds (4.11)

for n ∈ N. From Lemma 1.2 in [14] (with µ = 1) it follows that

u0cλn (cλn) ≤ −
2K

V cλ0/2
for n ∈ N , (4.12)

where
V = max

n
r(x) : 0 ≤ x ≤ max{uT (t) : 0 ≤ t ≤ T}

o
, (4.13)

K = min
h
min

nZ t/2

0

s|q(s)|k(s) ds,
Z t

t/2

(t− s)|q(s)|k(s) ds
o
:
λ0
2
≤ t ≤ 2λ0

i
and k ∈ C0([0, T ]) is a positive function such that

0 < k(t) ≤ f(t, x)signx for (t, x) ∈ [0, T ]× ([−kuTk, 0) ∪ (0, kuT k]) (4.14)

with kuTk = max{uT (t) : 0 ≤ t ≤ T} (for the function k see Remark 1.3). By (4.3),
{u0cλn (cλn)} and {u0cλn (τn)} are bounded, and so going if necessary to subsequences,
we can assume that they are convergent, say

lim
n→∞u0cλn (cλn) = A, lim

n→∞u0cλn (τn) = B.

By virtue of (4.6), we have

|A−B| = ε0
2
. (4.15)

In addition, limn→∞ ucλn (τn) = limn→∞(ucλn (τn)− ucλn (cλn)) = 0 since (4.3) holds
and limn→∞(τn−cλn) = 0. Letting n→∞ in (4.11), we get 0 ≤ (r(0))2(A2−B2) = 0.
Therefore A2 −B2 = 0 and since A ≤ −2K/(V cλ0/2) by (4.12) and B ≤ 0, we have
A = B, contrary to (4.15). We have proved that (4.5) holds. Let

|u0cλ0 (t)− u0cλ0 (cλ0)| ≤
ε0
4

for t ∈ [cλ0 − γ, cλ0 ] , (4.16)

where γ is a positive constant. Set κ = min{ν, γ}. Using (4.4) and (4.5) we have
|u0cλn (t)− u0cλ0 (cλ0)| ≥ |u

0
cλn
(cλn)− u0cλ0 (cλ0)|− |u

0
cλn
(t)− u0cλn (cλn)| >

ε0
2
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for t ∈ [cλn − κ, cλn ] and n ∈ N. Assume that
N∗ =

n
n : n ∈ N, u0cλn (t)− u0cλ0 (cλ0) >

ε0
2
for t ∈ [cλn − κ, cλn ]

o
is an infinite set (analogously for N \N∗ infinite). Then

ucλn (t) =

Z t

cλn

u0cλn (s) ds ≤
³
u0cλ0 (cλ0) +

ε0
2

´
(t− cλn) (4.17)

for t ∈ [cλn − κ, cλn ] and n ∈ N∗. On the other hand, (4.16) gives³
u0cλ0 (cλ0) +

ε0
4

´
(t− cλ0) ≤ ucλ0 (t)

=

Z t

cλ0

u0cλ0 (s) ds ≤
³
u0cλ0 (cλ0)−

ε0
4

´
(t− cλ0)

(4.18)

for t ∈ [cλ0 −κ, cλ0). Since limn→∞(cλn −κ) = cλ0 −κ, there exists n0 ∈ N such that
for n ∈ N∗, n ≥ n0, we have cλn − κ ≤ cλ0 − κ/2 and then letting n → ∞ in (4.17)
and using Lemmas 4.1 and 4.2,

ucλ0 (t) ≤
³
u0cλ0 (cλ0) +

ε0
2

´
(t− cλ0), t ∈

h
cλ0 −

κ

2
, cλ0

i
,

contrary to (4.18). We have proved that S+ is continuous on (0,∞).
Let {λn} ⊂ (0,∞), limn→∞ λn = ∞. Then limn→∞ cλn = 0 by Lemma 4.1, and

there exists {ξn}, 0 < ξn < cλn , such that u
0
cλn
(ξn) = 0 and r(ucλn (t))u

0
cλn
(t) < 0 on

(ξn, cλn ] and n ∈ N. Integrating (4.7) from ξn to cλn we get

(r(0)u0cλn (cλn))
2 ≤ 2Q

Z ucλn
(ξn)

0

g(s)r(s) ds for n ∈ N. (4.19)

By Lemma 1.2 in [14] (with µ = 1), ucλn (t) ≤ Ln for t ∈ [0, cλn ] where Ln > 0 is an
arbitrary constant satisfying the inequality

1 ≤
2
³Z Ln

0

r(s) ds
´2

(cλn)
2Q

Z Ln

0

g(s)r(s) ds

.

From the last inequality we see that Ln can be chosen such that limn→∞Ln = 0 and
then (4.19) yields limn→∞ u0cλn (cλn) = 0. Hence limλ→∞ S+(λ) = 0.

Let {λn} ⊂ (0,∞), limn→∞ λn = 0. Then limn→∞ cλn = T by Lemma 4.1, and
from Lemma 1.2 in [14] (with µ = 1) we deduce that for each n ∈ N such that
cλn ≥ T/2,

u0cλn (cλn) ≤ −
2K1

V T
, n ∈ N,

where V is given by (4.13) and

K1 = min
h
min

nZ t/2

0

s|q(s)|k(s) ds,
Z t

t/2

(t− s)|q(s)|k(s) ds
o
:
T

2
≤ t ≤ T

i
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with k ∈ C0([0, T ]) satisfying (4.14). Hence lim supλ→0+ S+(λ) ≤ −2K1/(V T ). ¤

Define the functions S− : (0,∞) → (0,∞), Z+ : (0,∞) → (0,∞) and Z− :
(0,∞)→ (−∞, 0) by the formulas

S−(λ) = u 0αλ(αλ),

Z+(λ) = v0cλ(αλ),
Z−(λ) = v 0αλ(cλ).

We observe that cλ (resp. αλ) is the (unique) solution of the equation λΛ+(c) +
Φ−(c) = 0 (resp. λΦ+(α) + Λ−(α) = 0). From the properties of the functions Λ+,
Λ−, Φ+, Φ−, using Remarks 2.1 and 2.2 and applying procedures analogical to those
in the proofs of Lemmas 4.1—4.3, we can show properties of the functions S−, Z+ and
Z− which are given in the following lemma.

Lemma 4.4. Let assumptions (H1)− (H4) be satisfied. Then the functions S−, Z+
and Z− are continuous on (0,∞) and

lim inf
λ→0+

S−(λ) > 0, lim
λ→∞

S−(λ) = 0,

lim
λ→0+

Z+(λ) = 0, lim inf
λ→∞

Z+(λ) > 0,

lim
λ→0+

Z−(λ) = 0, lim sup
λ→∞

Z−(λ) < 0.

Theorem 4.5. Let assumptions (H1)− (H4) be satisfied. Then problem (1.1)-(1.3)
has at least two solutions.

Proof. Define the function k, p : (0,∞)→ R by

k(λ) = S+(λ)− Z−(λ), p(λ) = S−(λ)− Z+(λ).

By Lemmas 4.3 and 4.4, the functions k and p are continuous on (0,∞) and
lim sup
λ→0+

k(λ) < 0, lim inf
λ→∞

k(λ) > 0,

lim inf
λ→0+

p(λ) > 0, lim sup
λ→∞

p(λ) < 0.

Hence there exist λ1, λ2 ∈ (0,∞) such that k(λ1) = 0 and p(λ2) = 0, that is S+(λ1) =
Z−(λ1) and S−(λ2) = Z+(λ2). Then the functions

x1(t) =

(
uc1(t) for t ∈ [0, c1]
vc1(t) for t ∈ (c1, T ]

and

x2(t) =

(
uα1(t) for t ∈ [0, α1]
vα1(t) for t ∈ (α1, T ]

are solutions of problem (1.1)-(1.3), where c1 (resp. α1) is the (unique) solution of
the equation λ1Λ+(c) + Φ−(c) = 0 (resp. λ2Φ+(α) + Λ(α) = 0). Clearly, x1 6= x2.

¤
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5. Exceptional n-sign-changing w-solutions of
problem (1.1), (1.2), (5.1)

Let c ∈ (0, T ]. In this Section we will use the following conditions
max{x(t) : 0 ≤ t ≤ T} = −min{x(t) : 0 ≤ t ≤ T}, (5.1)

x(0) = 0, x(c) = 0 (5.2)

and
max{x(t) : 0 ≤ t ≤ c} = −min{x(t) : 0 ≤ t ≤ c}. (5.3)

We note that (5.1) is (1.3) with λ = 1.

Definition 5.1. Let n ∈ N, n ≥ 2. We say that x is an n-sign-changing w-solution
of problem (1.1), (5.2), (5.3) if x has precisely n − 1 zeros t1 < t2 < · · · < tn−1 in
(0, c), x ∈ C0([0, c]) ∩ C1([0, c] \ {t1, t2, · · · , tn−1}), there exist finite limt→t−i

x0(t),
limt→t+i

x0(t) for i = 1, 2, · · · , n− 1, r(x)x0 ∈ C1([0, c] \ {t1, t2, · · · , tn−1}), x satisfies
(5.2), equality (1.1) holds on (0, c) \ {t1, t2, · · · , tn−1} and finally

max{x(t) : ti ≤ t ≤ ti+2}min{x(t) : ti ≤ t ≤ ti+2} < 0
for i = 0, 1, · · · , n− 2 with t0 = 0 and tn = c.

If, in addition,

max{|x(t)| : 0 ≤ t ≤ t1} = max{|x(t)| : tj ≤ t ≤ tj+1}
for j = 1, 2, · · · , n− 1, we say that x is an exceptional n-sign-changing w-solution of
problem (1.1), (5.2), (5.3). In case of c = T , x is called an exceptional n-sign-changing
w-solution of problem (1.1), (1.2), (5.1).

Remark 5.2. We observe, that the notion of the w-solution of problem (1.1)-(1.3)
with λ = 1 stated in Section 1 corresponds to the notion of exceptional 2-sign-changing
w-solution of problem (1.1), (1.2), (5.1).

Before we give existence results for exceptional n-sign-changing w-solutions of prob-
lem (1.1), (1.2), (5.1), we will define a function ∆+ whose properties are important in
our next considerations.

Let assumptions (H1) − (H4) be satisfied. Then, by Theorem 3.2 (with µ = 1)
and its proof, for each c ∈ (0, T ] there exists the unique w-solution of problem
(1.1), (5.2), (5.3), which is positive in the right neighbourhood of t = 0. This so-
lution we will denote throughout this Section by wc. Using wc we define the function
∆+ : (0, T ]→ (0,∞) by

∆+(c) = max{wc(t) : 0 ≤ t ≤ c}.
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Lemma 5.3. Let assumptions (H1)− (H4) be satisfied. Then ∆+ is continuous and
increasing on (0, T ] and

lim
c→0+

∆+(c) = 0. (5.4)

Proof. To prove that ∆+ is increasing on (0, T ] we assume, on the contrary, that
∆+(a) ≥ ∆+(b) for some 0 < a < b ≤ T . Let wa(ta) = 0 and wb(tb) = 0 with unique
ta ∈ (0, a) and tb ∈ (0, b). From Lemma 2.9 and our assumption ∆+(a) ≥ ∆+(b) we
deduce that ta ≥ tb. We claim that

wb(t) < wa(t) for t ∈ (ta, a]. (5.5)

If not, since 0 = wa(ta) ≥ wb(ta) and 0 = wa(a) > wb(a) we have either wa(ξ) = wb(ξ)
for some ξ ∈ (ta, a) and wb(t) ≤ wa(t) for t ∈ [ta, a] or there exist ta ≤ ν < τ < a
such that wa(ν) = wb(ν), wa(τ) = wb(τ) and wb(t) > wa(t) for t ∈ (ν, τ). In the first
case w0a(ξ) = w0b(ξ) and wa = wb in a neighbourhood of t = ξ by (H4), and then by
repeated application of (H4) we get wa = wb on (ta, a), which is impossible. In the
second case, we have r(wa(ν))w

0
a(ν) ≤ r(wb(ν))w

0
b(ν) and f(t, wa(t)) ≥ f(t, wb(t)) for

t ∈ (ν, τ ]. Hence
³Z wb(t)

wa(t)

r(s) ds
´00
= q(t)(f(t, wb(t))− f(t, wa(t))) ≥ 0, t ∈ (ν, τ ],

and so
³Z wb(t)

wa(t)

r(s) ds
´0
is nondecreasing on [ν, τ ] and then the equalities wa(ν) =

wb(ν), wa(τ) = wb(τ) imply
Z wb(t)

wa(t)

r(s) ds = 0 for t ∈ [ν, τ ], contrary to wb > wa

on (ν, τ). Now (5.5) yields min{wb(t) : 0 ≤ t ≤ b} < min{wa(t) : 0 ≤ t ≤ a}, hence
∆+(b) > ∆+(a), contrary to our assumption ∆+(a) ≥ ∆+(b). We have proved that
∆+ is increasing on (0, T ].

Suppose that ∆+ is discontinuous on the right at a point c0 ∈ (0, T ), i.e., there is
a decreasing sequence {cn} ⊂ (c0, T ) such that limn→∞ cn = c0 and

lim
n→∞∆+(cn) = µ > ∆+(c0). (5.6)

Let wcn(tn) = 0 for the (unique) tn ∈ (0, cn), n ∈ N ∪ {0}. Since µ < ∆+(cn+1) <
∆+(cn) for n ∈ N, Lemma 2.9 shows that t0 < tn+1 < tn for n ∈ N. There is no
loss of generality in assuming t1 < c0. Moreover, ∆+(cn) = Λ+(tn) for n ∈ N ∪ {0}
and from ∆+(c0) < µ < Λ+(tn) and the continuity of Λ+ by Lemma 2.6, we see that
limn→∞ tn = t∗ > t0. Applying the procedure as in the proof of Lemma 2.6 (now on
[tn, cn]), we get

|r(wcn(t))w
0
cn(t)| ≤

s
2Q

Z Λ+(tn)
0

g(s)r(s) ds ≤
s
2Q

Z Λ+(t1)
0

g(s)r(s) ds (5.7)
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for t ∈ [tn, cn], n ∈ N, and then

0 ≤
Z t

tn

q(s)f(s,wcn(s)) ds = r(wcn(t))w
0
cn(t)− r(0)w0cn(tn)

≤ 2
s
2Q

Z Λ+(t1)
0

g(s)r(s) ds

(5.8)

for t ∈ [tn, cn] and n ∈ N. By (5.7),
|w0cn(t)| ≤ S for t ∈ [tn, cn], n ∈ N, (5.9)

where

S =
1

r0

s
2Q

Z Λ+(t1)
0

g(s)r(s) ds. (5.10)

From (5.9), 0 ≥ wcn(t) ≥ −Λ+(t1) for t ∈ [tn, cn], n ∈ N, and the Arzelà—Ascoli
theorem, we deduce that there exists a subsequence of {wcn}, which we denote by
{wcn} again, such that limn→∞wcn(t) = w(t) locally uniformly on (t∗, c0]. Then
w ∈ C0((t∗, c0]), w ≤ 0 on (t∗, c0] and w(c0) = 0 since in the case that w(c0) < 0
from the relations

w(c0)

2
≥ wcn(c0) = wcn(c0)−wcn(cn) = w0cn(ξn)(c0 − cn) ,

which are satisfied for sufficiently large n and where ξn ∈ (c0, cn), we obtain

lim
n→∞w0cn(ξn) ≥ lim

n→∞
w(c0)

2(c0 − cn)
=∞,

contrary to (5.9). We are going to show that w(t) < 0 on (t∗, c0) and

lim
t→t+∗

w(t) = 0. (5.11)

By (H3) (see Remark 1.3), there exists a positive function k ∈ C0([0, T ]) such that

k(t) ≤ f(t, x)signx for (t, x) ∈ [0, T ]× [−∆+(c1), 0) ∪ (0,∆+(c1)].
Now using our Remark 2.2 and Lemma 1.2 in [14] with µ = 1, we get (for n ∈ N)

wcn(t) ≤


H−1

³
− 2Kn(t− tn)

cn − tn

´
for t ∈

h
tn,

tn + cn
2

i
H−1

³
− 2Kn(cn − t)

cn − tn

´
for t ∈

³tn + cn
2

, cn

i
,

(5.12)

where

Kn = min
nZ (tn+cn)/2

tn

(s− tn)|q(s)|k(s) ds,
Z cn

(tn+cn)/2

(cn − s)|q(s)|k(s) ds
o

and H−1 is the inverse to H given by (2.3). Let tn ≤ (3t∗ + c0)/4 and tn + cn ≤
(t∗ + 3c0)/2 for n ≥ n1 with an n1 ∈ N. Then (for n ≥ n1)Z (tn+cn)/2

tn

(s− tn)|q(s)|k(s) ds ≥
Z (t∗+c0)/2

(3t∗+c0)/4

³
s− 3t∗ + c0

4

´
|q(s)|k(s) ds,



Sign-changing and w-solutions to singular Dirichlet BVPs 151Z cn

(tn+cn)/2

(cn − s)|q(s)|k(s) ds ≥
Z c0

(t∗+3c0)/4
(c0 − s)|q(s)|k(s) ds

and from (5.12) it follows that

wcn(t) ≤


H−1

³
− 2K(t− tn)

cn − tn

´
for t ∈

h
tn,

tn + cn
2

i
H−1

³
− 2K(cn − t)

cn − tn

´
for t ∈

³ tn + cn
2

, cn
i
,

where

K = min
nZ (t∗+c0)/2

(3t∗+c0)/4

³
s− 3t∗ + c0

4

´
|q(s)|k(s) ds,

Z c0

(t∗+3c0)/4
(c0 − s)|q(s)|k(s) ds

o
.

Consequently,

w(t) = lim
n→∞wcn(t) ≤


H−1

³
− 2K(t− t∗)

c0 − t∗

´
< 0 for t ∈

³
t∗,

t∗ + c0
2

i
H−1

³
− 2K(c0 − t)

c0 − t∗

´
< 0 for t ∈

³t∗ + c0
2

, c0
´
,

and we see that w < 0 on (t∗, c0). If (5.11) is not true, then there exist δ < 0 and
a decreasing sequence {νn} ⊂ (t∗, c0) such that limn→∞ νn = t∗ and w(νn) ≤ δ for
n ∈ N. Now let

νn∗ < t∗ − r0δ

4

q
2Q
R Λ+(t1)
0

g(s)r(s) ds

for some n∗ ∈ N. Then there exists n2 ∈ N such that wcn(νn∗) < δ/2 and

δ

2
> wcn(νn∗) = wcn(νn∗)−wcn(tn) = w0cn(ϕn)(νn∗ − tn)

for n ≥ n2, where ϕn ∈ (tn, νn∗). Therefore

w0cn(ϕn) <
δ

2(νn∗ − tn)
<

δ

2(νn∗ − t∗)
< − 2

r0

s
2Q

Z Λ+(t1)
0

g(s)r(s) ds

for n ≥ n2, contrary to (5.9).

Define w∗ : [t∗, c0]→ (−∞, 0] by

w∗(t) =

(
w(t) for t ∈ (t∗, c0]
0 for t = t∗.

Then w∗ ∈ C0([t∗, c0]), w∗(t∗) = w∗(c0) = 0 and w∗ < 0 for t ∈ (t∗, c0). We are now
in a position to show that w∗ is a solution of problem (1.1), (2.2) with a = t∗ and
b = c0. For this, we define for each n ∈ N the function pn : [t∗, c0]→ (−∞, 0] by

pn(t) =

(
f(t, wcn(t)) for t ∈ (tn, c0]
0 for t ∈ [t∗, tn].
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Since

0 ≤
Z c0

t∗
q(t)pn(t) dt =

Z c0

tn

q(t)f(t, wcn(t)) dt ≤ 2
s
2Q

Z Λ+(t1)
0

g(s)r(s) ds

by (5.8) and limn→∞ pn(t) = f(t, w∗(t)) for t ∈ (t∗, c0), Fatou’s theorem gives
q(·)f(·, w∗(·)) ∈ L1([t∗, c0]). Fix β ∈ (t1, c0). Going if necessary to a subsequence,
we can assume that {r(wcn(β))w

0
cn(β)} is convergent, limn→∞ r(wcn(β))w

0
cn(β) = A.

Letting n→∞ inZ wcn (t)

wcn(β)

r(s) ds = r(wcn(β))w
0
cn(β)(t− β) +

Z t

β

Z s

β

q(v)f(v,wcn(v)) dv ds, t ∈ [tn, cn]

and using the Lebesgue dominated theorem, we getZ w∗(t)

w∗(β)
r(s) ds = A(t− β) +

Z t

β

Z s

β

q(v)f(v,w∗(v)) dv ds, t ∈ [t∗, c0].

Whence

w∗(t) = H−1
³
H(w∗(β)) +A(t− β) +

Z t

β

Z s

β

q(v)f(v,w∗(v)) dv ds
´
, t ∈ [t∗, c0]

and we see that w∗ ∈ C1([t∗, c0]) and (r(w∗(t))w0∗(t))0 = q(t)f(t, w∗(t)) for t ∈ (t∗, c0).
Therefore w∗ is a solution of problem (1.1), (2.2) with a = t∗ and b = c0. Finally,
applying Remarks 2.1 and 2.2 to Lemma 2.9, we have wc0(t) < w∗(t) for t ∈ [t∗, c0),
and consequently

−∆+(c0) = min{wc0(t) : t0 ≤ t ≤ c0} < min{w∗(t) : t∗ ≤ t ≤ c0} = −µ,
contrary to (5.6). Hence ∆+ is continuous on the right on (0, T ).

The continuity of ∆+ on the left on (0, T ] can be proved similarly. ¤

Now, define the ‘dual’ function ∆− : (0, T ]→ (0,∞) to ∆+ by the formula
∆−(c) = min{wc(t) : 0 ≤ t ≤ c},

where wc is the unique solution of problem (1.1), (5.2), (5.3) such that wc < 0 in the
right neighbourhood of t = 0.

Lemma 5.4. Let assumptions (H1) − (H4) be satisfied. Then ∆− is continuous
decreasing on (0, T ] and

lim
c→0+

∆−(c) = 0.

Proof. Since the proof of the lemma is similar to that of Lemma 5.3, we will omit
it. ¤

Lemma 5.5. Let assumptions (H1)− (H4) be satisfied. Then there exist exactly two
exceptional 3-sign-changing w-solutions of problem (1.1), (1.2), (5.1).
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Proof. By Lemmas 2.7, 2.10 and 5.3, Φ+ is continuous decreasing on [0, T ), ∆+
is continuous increasing on (0, T ] and limc→T− Φ+(c) = limc→0+ ∆+(c) = 0. Set
p+(c) = ∆+(c) − Φ+(c) for c ∈ (0, T ). Then p+ ∈ C0((0, T )), limc→0+ p+(c) =
−Φ+(0) < 0, limc→T− p+(c) = ∆+(T ) > 0 and since p+ is increasing on (0, T ), there
is the unique c+ ∈ (0, T ) such that p+(c+) = 0. Hence the function

x+(t) =

(
wc+(t) for t ∈ [0, c+]
vc+(t) for t ∈ (c+, T ]

is an exceptional 3-sign-changing w-solution of problem (1.1), (1.2), (5.1), which is
positive in the right neighbourhood of t = 0. Assume that x+ is an additional
exceptional 3-sign-changing w-solution of problem (1.1), (1.2), (5.1) having positive
values in the right neighbourhood of t = 0 and let x+(tj) = 0, j = 1, 2, with 0 < t1 <
t2 < T . Since x+ 6= x+, it is necessary t2 6= c+, say t2 > c+. Then∆+(t2)−Φ+(t2) > 0
and from this inequality we deduce that

max{x+(t) : 0 ≤ t ≤ t2} = ∆+(t2) > Φ+(t2) = max{x+(t) : t2 ≤ t ≤ T},
contrary to the definition of an exceptional 3-sign-changing w-solution of problem
(1.1), (1.2), (5.1).

By Lemmas 2.8, 2.10 and 5.4, Φ− is continuous increasing on [0, T ), ∆− is con-
tinuous decreasing on (0, T ] and limc→T− Φ−(c) = limc→0+ ∆−(c) = 0. Set p−(c) =
∆−(c)− Φ−(c) for c ∈ (0, T ). Then p− ∈ C0((0, T )), limc→0+ p−(c) = −Φ−(0) > 0,
limc→T− p−(c) = ∆−(T ) < 0 and since p− is decreasing on (0, T ), there is the unique
c− ∈ (0, T ) such that p−(c−) = 0. The function

x−(t) =

(
wc−(t) for t ∈ [0, c−]
vc−(t) for t ∈ (c−, T ]

is an exceptional 3-sign-changing w-solution of problem in the right neighbourhood
of t = 0 and x− is the unique exceptional 3-sign-changing w-solution of problem
(1.1), (1.2), (5.1) having negative value in the right neighbourhood of t = 0. ¤

Remark 5.6. Let assumptions (H1) − (H4) be satisfied and let c ∈ (0, T ]. Then
(H1)−(H4) are satisfied with c instead of T , and so there exist exactly two exceptional
3-sign-changing w-solutions of problem (1.1), (5.2), (5.3) by Lemma 5.5.

Theorem 5.7. Let assumptions (H1) − (H4) be satisfied. Then for each n ∈ N,
n ≥ 2, there exist exactly two exceptional n-sign-changing w-solutions of problem
(1.1), (1.2), (5.1).

Proof. We proceed by induction. By Theorem 3.2 (with λ = 1) and Lemma 5.5,
there exist exactly two exceptional j-sign-changing w-solutions of problem (1.1),
(1.2), (5.1), j = 2, 3. In addition (see Remark 5.6), for each c ∈ (0, T ] there ex-
ists exactly two exceptional 3-sign-changing w-solutions of problem (1.1), (5.2), (5.3).
Assuming that this result holds for n = k ≥ 3, we will prove it for n = k + 1. Since
the proof is similar to that of Lemma 5.5, we give only its main ideas.
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First, we assume that for each c ∈ (0, T ] there exist exactly two exceptional k-
sign-changing w-solutions wkc and wkc of problem (1.1), (5.2), (5.3) such that wkc

is positive and wkc is negative in the right neighbourhood of t = 0. Now define
∆k
+ : (0, T ]→ (0,∞) and ∆k− : (0, T ]→ (0,∞) by

∆k
+(c) = max{wkc(t) : 0 ≤ t ≤ c}

and

∆k
−(c) = max{wkc(t) : 0 ≤ t ≤ c}.

Further, we can proceed as in the proof of Lemmas 5.3 and 5.4 to verify that ∆k
+

and ∆k− are continuous increasing on (0, T ], limc→0+ ∆k
+(c) = limc→0+∆k−(c) = 0.

Finally, if k is an even positive integer, set

p+k (c) = ∆
k
+(c)−Φ+(c), p−k (c) = ∆

k
−(c) +Φ−(c) for c ∈ (0, T ).

Since p+k and p−k are continuous increasing on (0, T ), limc→0+ p+k (c) = −Φ+(0) < 0,
limc→T− p

+
k (c) = ∆

k
+(T ) > 0, limc→0+ p−k (c) = Φ−(0) < 0 and limc→T− p

−
k (c) =

∆k−(T ) > 0, there exists the unique solution c+ (resp. c−) of the equation p+k (c) = 0

(resp. p−k (c) = 0). Then

x+(t) =

(
wkc+(t) for t ∈ [0, c+]
vc+(t) for t ∈ (c+, T ],

x−(t) =

(
wkc−(t) for t ∈ [0, c−]
vc−(t) for t ∈ (c−, T ]

are the unique two exceptional (k + 1)-sign-changing w-solutions of problem (1.1),
(1.2), (5.1).

If k is an odd positive integer, we now set

p+k (c) = ∆
k
+(c) +Φ−(c), p−k (c) = ∆

k
−(c)−Φ+(c) for c ∈ (0, T ).

Then p+k and p−k are continuous increasing on (0, T ), the equations p+k (c) = 0 and
p−k (c) = 0 have the unique solutions c+ and c−, respectively, and

x+(t) =

(
wkc+(t) for t ∈ [0, c+]
vc+(t) for t ∈ (c+, T ],

and

x−(t) =

(
wkc−(t) for t ∈ [0, c−]
vc−(t) for t ∈ (c−, T ]

are the unique two exceptional (k + 1)-sign-changing w-solutions of problem (1.1),
(1.2), (5.1). ¤
Acknowledgement. Supported by grant No. 201/01/1451 of the Grant Agency of the
Czech Republic and by the Council of the Czech Government J14/98:153100011



Sign-changing and w-solutions to singular Dirichlet BVPs 155

REFERENCES

[1] Agarwal, R. P. and O’Regan, D.: Singular boundary value problems for superlinear
second order ordinary and delay differential equations, J. Differential Equations, 130,
(1996), 333-355.

[2] Agarwal, R. P. and O’Regan, D.: Positive solutions to superlinear singular boundary
value problems, J. Comput. Appl. Math., 88, (1998), 129—147.

[3] Agarwal, R. P. and O’Regan, D.: Some new results for singular problems with sign
changing nonlinearities, J. Comput. Appl. Math., 113, (2000), 1—15.

[4] Agarwal, R. P., O’Regan, D. and Lakshmikantham V.: An upper and lower so-
lution approach for nonlinear singular boundary value problems with y0 dependence, J.
Inequal. & Appl., to appear
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