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1. Introduction

Differential models of various real processes are described by systems of ordinary
differential equations with impulse influence [1-3]. Among the methods of investi-
gating the properties of these systems (such as existence, uniqueness, boundedness,
and stability of solutions), the method of integro-sum inequalities [4-15] plays an im-
portant role. Note that applications and generalizations of this method to estimate
solutions of systems of partial differential equations with impulse perturbations were
not considered.
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The study of this kind of problems is motivated by models of real processes in the
dynamics of hydromechanical systems which are described by certain classes of hy-
perbolic partial differential equations with impulse perturbations, where the impulse
effect is concentrated on surfaces transversal to characteristics.

Integro-sum representations of the solutions of such systems contain Lebesgue—
Stiltjes measure concentrated on the curves of jumps of the solutions.

2. Main results

Let us assume that:

(a) D∗ is an open set in R2 (D∗ ⊂ R2);
(b) D∗ = D \ Γ, where D = Sj Dj , j = 1, 2, . . . ;

(c) Γ =
S
j Γj , Γj = {(x, y) : ϕj(x, y) = 0, j = 1, 2, . . .};

(d) ϕj(x, y) are real-valued continuously differentiable functions such that gradϕj(x, y) >
0 for all j = 1, 2, . . . ;

(e) D1
def
= {(x, y) : x ≥ 0, y ≥ 0, ϕ1(x, y) < 0};

Dk
def
= {(x, y) : x ≥ 0, y ≥ 0, ϕk−1(x, y) ≥ 0, ϕk(x, y) < 0, ∀k > 2, k ∈ N};

(f) Gj = {(u, v) : (x, y) ∈ Dj , 0 ≤ u ≤ x, 0 ≤ v ≤ y, j ∈ N};
(g) µϕk is the Lebesgue-Stiltjes measure concentrated on the curves Γk.

Let us consider a real-valued nonnegative continuous function u(x, y) on D∗, which
has finite jumps on the curves {Γj}.

Denote by Φ(x, y, u) a nonnegative, continuous, and nondecreasing function of u,
with x, y ∈ D∗ fixed. We shall consider the functions Φ of one of the following types
Φ = Φj (j = 1, 4):

(i) Φ1(x, y, u) = f1(x, y)u(x, y),
(ii) Φ2(x, y, u) = f2(x, y)u(x, y) + f3(x, y),
(iii) Φ3(x, y, u) = f4(x, y)u

α(x, y), α = const > 0, α 6= 1,
(iv) Φ4(x, y, u) = f5(x, y)u(x, y) + f6(x, y)u

α(x, y), where fj(x, y)(j = 1, 6) are
continuous nonnegative functions in R2+ = {(x, y) : x ≥ 0, y ≥ 0}.

Let W (x, y, u(x, y)) denote a function of one of the following two types W1 and
W2:

W1 = βju(x, y), j ∈ N

where βj ≥ 0 are constants, and
W2 = βj(x, y)u(x, y), j ∈ N,

where βj(x, y) are continuous functions nonnegative for all (x, y) ∈ R2+.

Let g(x, y) be a positive, nondecreasing continuous function in R2+. Assume that
u(x, y) satisfies the following integro-sum inequality in D∗:

u(x, y) ≤ g(x, y)+

ZZ
Gn

Φ(τ, s, u(τ, s))dτds+
n−1X
j=1

Z
Γj∩Gn

W (x, y, u(x, y))dµϕj , (2.1)
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which is satisfied for all (x, y) ∈ D∗. Then the following results are true.

Proposition 1. The estimate

u(x, y) ≤ g(x, y)exp[F1(x, y)]
Y
(βj(x, y)), if Φ = Φ1, W =W2; (2.2)

u(x, y) ≤ g(x, y)exp[F1(x, y)]
Y
(βj), if Φ = Φ1, W =W1

holds for all (x, y) ∈ D∗. Here,Z x

0

Z y

0

fi(τ, s)dτds
def
= Fi(x, y), i = 1, 3, 5,

n−1Y
j=1

Z
Γj∩Gn

(1 + βj(x, y))dµϕj
def
=
Y
(βj(x, y)),

n−1Y
j=1

(1 + βj)
_
Γj∩Gn

(µϕj )
def
=
Y
(βj),

where
W
Γj∩Gn

(µϕj ) is the complete variation of µϕj .

Proposition 2. The estimate

u(x, y) ≤ g(x, y) exp[F2(x, y)]
Y
(βj(x, y))×

× (1 +
Z x

0

Z y

0

f3(τ, s)

g(τ, s)
exp[−F2(τ, s)]dτds)

holds if Φ = Φ2, W =W2, and

u(x, y) ≤ g(x, y) exp[F2(x, y)]
Y
(βj)

µ
1 +

Z x

0

Z y

0

f3(τ, s)

g(τ, s)
exp[−F2(τ, s)]dτds

¶
,

if Φ = Φ2, W =W1.

Proposition 3. The following assertions hold.

(A) The estimate

u(x, y) ≤ g(x, y)
Y
(βj(x, y)

·
1 + (1− α)

Z x

0

Z y

0

f4(τ, s)g
α−1(τ, s)dτds

¸ 1
1−α

is true if 0 < α < 1, Φ = Φ3, and W =W2. When βj(x, y) = βj = const > 0,
the expression

Q
(βj(x, y)) in estimate (A) is replaced by

Q
(βj).

(B) The estimate

u(x, y) ≤ g(x, y)
Y
(βj(x, y))

h
1− (α− 1)×

×
Yα−1

βj(x, y)

Z x

0

Z y

0

fy(τ, s)g
α−1(τ, s)dτ, ds

i− 1
α−1

holds for α > 1 and for arbitrary (x, y) ∈ D∗ such thatZ x

0

Z y

0

f4(τ, s)g
α−1(τ, s)dτds < [(α− 1)

Yα−1
(βj(x, y))]

−1.

If βj(x, y) = βj = const > 0, then
Q
(βj(x, y)) in estimate (B) is replaced

by
Q
(βj).

Proposition 4. The following assertions hold.
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(C) The estimate

u(x, y) ≤ g(x, y)
Y
(βj(x, y)) exp[F5(x, y)]×

"
1 + (1− α)

Z x

0

Z y

0

f6(τ, s)g
α−1(τ, s)×

× exp[(α− 1)F5(τ, s)]dτds
# 1
1−α

holds for 0 < α < 1, Φ = Φ4, W = W2. If βj(x, y) = βj, the expressionQ
(βj(x, y)) in (C) changes to

Q
(βj).

(D) The estimate

u(x, y) ≤ g(x, y)
Y
(βj(x, y)) exp[F5(x, y)]

"
1− (α− 1)

Yα−1
(βj(x, y))×

×
Z x

0

Z y

0

f6(τ, s)× gα−1(τ, s) exp[(α− 1)F5(τ, s)]dτds
#− 1

α−1

is true for α > 1 and arbitrary (x, y) ∈ D∗ such thatZ x

0

Z y

0

f6g
α−1 exp[(α− 1)F5]dτds <

·
(α− 1)

Yα−1
(βj(x, y))

¸−1
.

If βj(x, y) = βj, the expression
Q
(βj(x, y)) in (D) changes to

Q
(βj).

The proofs of Propositions 1—4 are obtained by using the induction method.

Proof. Let us establish Proposition 1 (Propositions 2—4 are proved analogously).

Let (x, y) ∈ D1. Inequality (2.1) reduces to the form

u(x, y) ≤ g(x, y) +

ZZ
G1

Φ1(τ, s, u(τ, s))dτds.

We can suppose that g(x, y) = C > 0, a constant function, because otherwise, if
g(x, y) 6= C then, by using the fact that g is positive and nondecreasing, it is possible
to obtain the comparison inequality

µ(x, y) ≤ 1 +
ZZ
G1

Φ1(τ, s, µ(τ, s))dτds,

where µ = u
g .

Obviously, the following estimate holds in D1:

u(x, y) ≤ Cexp[F1(x, y)].

Consider the domain D2. Let G2 = G12 ∪G22, where
G22 = {(x, y) : (x, y) ∈ D2 ∩G2}.

Then, for all (x, y) ∈ D2, the inequality
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u(x, y) ≤ C +

ZZ
G12

Φ1(τ, s, u(τ, s))dτds+

Z
Γ1∩G2

β1(x, y)u(x, y)dµϕ1

+

ZZ
G22

Φ1(τ, s, u(τ, s))dτds

holds.

On the curves Γ1∩G2, we select some points Ai(x
1
i , y
1
i ), i = 0, n− 1, and consider

the inequality

u(x, y) ≤
n−1X
i=0

³
C +

Z x11

0

Z y1i

0

Φ1(τ, s, u(τ, s))dτds+ u(x1i , y
1
i )β1(x

1
i , y
1
i )∆µϕii

+

Z x

x1i

Z y

y1i

Φ1(τ, s, u(τ, s))dτds
´
,

where∆µϕi1 is the variation of the measure function ϕ1 on the segment AiAi+1. Using
(2.2), we obtain

u(x, y) ≤
n−1X
i=0

{C exp[F1(x1i , y1i )] +Cβ1(x
1
i , y
1
i )∆µ

i
ϕ1 exp[F1(x

1
i , y
1
i )]+

+

Z x

x1i

Z y

y1i

Φ1dτds} ≤
n−1X
i=0

{C(1 + β1(x
1
i , y
1
i )∆µ

i
ϕ1exp[F1(x

1
i , y
1
i )]+

+

Z x

x1i

Z y

y1i

Φ1dτds)} ≤
n−1X
i=0

[C(1 + β1(x
1
i , y
1
i ))∆

i
ϕ1exp[F1(x, y)]]. (2.3)

When max0≤i≤n−1∆µiϕ1 → 0, we obtain

u(x, y) ≤ Cexp[F1(x, y)]

Z
Γ1∩G

(1 + β1(x, y))dµϕ1 .

Let (2.2) be satisfied for all (x, y) ∈ Dk. Let us consider (x, y) ∈ Dk+1 and put
G = G1k+1 ∪G2k+1,

G1k+1 = {(x, y) : (x, y) ∈ Dk+1 ∩G}, G2k+1 = G \G1k+1.
Then

u(x, y) ≤ C +

ZZ
G1k+1

Φ1dτds+

Z
Γk∩G

βk(x, y)u(x, y)dµϕk +

ZZ
G2k+1

Φ1dτds.

On the curve Γk∩G, we select some points Bi(x
k
i , y

k
i ), i = 0, n− 1.Denote by∆µiϕk

the variation of the measure on the segment BiBi+1. Similarly to the consideration
above, we obtain

u(x, y) ≤
n−1X
i=0

[C +

Z xki

0

Z yki

0

Φ1dτds+ u(xki , y
k
i )βk(x

k
i , y

k
i )∆

i
ϕk+
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+u(xki , y
k
i )βk(x

k
i , y

k
i )∆

i
ϕk
+

Z x

xki

Z y

yki

Φ1dτds].

Then

u(x, y) ≤
n−1X
i=0

[C(1 + βk(x
k
i , y

k
i ))×∆µiϕk exp[F1(x, y)]

n−1Y
j=1

Z
Γj∩G

(1 + βj(x, y))dµϕj ].

When max0≤i≤n−1∆µiϕK → 0, we get

u(x, y) ≤ Cexp[F1(x, y)]
kY

j=1

Z
Γj∩G

(1 + βj(x, y))dµϕj

for all (x, y) ∈ Dk+1. This completes the proof of Proposition 1. ¤

3. Applications

Consider the model of a hydraulic system consisting of a tank, a delivery pipeline, an
auger centrifugal pump, and a pressure head pipeline giving a liquid in gasogenerator
and the chamber output pressure. Such systems were considered in [16, 17, 20]. Note
that there may be auto-oscillations stipulated by the feedback in a hydraulic part of
the system due to the fact that the system is located on a stand.

Experiments showed that, in certain cases, there may be a significant increase of
the amplitude of auto-oscillations of the stand. Thus, the oscillation frequencies of the
liquid in the tank are characterized by the eigenfrequencies of the stand that coincide
with the eigen-oscillations of the output pressure. The amplitude of the oscillations
may have white-noise-like-behaviour.

The main problem in the study of such systems is to describe the deviation of the
system state from the equilibrium.

3.1. Dynamics of fluid in the pipeline. In the one-dimensional case, the dynamics
of a compressed liquid in the homogeneous pipeline is usually described by a system
consisting of the following equations:

A) Equation of motion of the liquid:

∂V

∂t
+ u

∂V

∂x
+
1

γ

∂p

∂x
+

λ

2d
V |V | = 0.

Here, λ is the resistance coefficient depending on the Reynolds number, x represents
the coordinate of an axis of the pipeline, γ is the density of the liquid, d is the
diameter of the pipeline, p, V are the instantaneous pressure and speed of the liquid,
respectively.

B) Equation of continuity:

∂γ

∂t
+ V

∂γ

∂x
+ γ

∂V

∂x
= 0.
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C) The equation of state for the liquid, whose role is played by Hook’s law, is

γ = γ0

µ
1 +

p− p0
γ0c2

¶
.

For the majority of hydraulic systems, the convection terms can be neglected. For
the turbulence analysis, the nonlinear term admits linearization, and the equations
with the distributed parameters reduce to the form

−∂p

∂x
=

γ

Fτ

µ
∂q

∂t
+ kq

¶
,

∂p

∂t
=

c2γ

Fτ

∂q

∂x
.

Here, q is the volumetric intensity of the liquid.

3.2. The description of the centrifugal pump and pressure head sprocket.
Among the main characteristic features describing the mode of operation of the cav-
itational centrifugal pump is the dependence of the sizes of the cavitational cavities
Vk on the input and output pressure Vk = f(p, q). This dependence is related to the
cavitation number k(Vk, q) defined as the ratio of the pressure difference to the ve-
locity head p = pn + k(Vk, q)γ

ω2

2 , where pn is the pressure of the saturated steam of
the liquid, ω is the speed of the blade-to-blade flow in the auger channels, γ is the
density of the liquid steam. When the liquid passes through the auger, the pressure
varies according to the rule

pn = (ain
2 + binq

(1) + ci(q
(1))2)f1(V ),

where n is the number of revolutions of the shaft, ai, bi, ci are the parameters describ-
ing the operation of the pump and the pressure head sprocket, f1(V ) is an experimen-
tally obtained function describing the influence of the size of the cavitational cavities
on the operation of the auger of the pump and the pressure of the head sprocket.

Thus, a simplified model of the dynamics of the system is as follows:

tank → delivery pipeline → auger of the pump → pressure head pipeline →
chamber of combustion positioned on the sliding stand.

This reduces to the following mathematical problems.

3.3. Model without sharing cavitational cavities. The corresponding system
contains the following equations:

1) Equation of mechanical oscillations of the stand:

z̈i + bi(t)żi + ω2i (t)zi =
R(t)

m(t)p6
p6, i = 1, 2, . . . , 6;

2) Equation of motion of the liquid in the pipeline:

−∂p1
∂x
=

γ1
F1

∂q1
∂t

,
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−∂p1
∂t
=

c2γ1
F1

∂q1
∂x

,

with the boundary conditions

p1(0, t) +R1q1(0, t) =
γ1H(t)

g

6X
i=1

αilz̈i + βγ1F1

6X
i=1

αi2żi,

p1(l1, t) = B1Vk +B2q1(l1, t) +EV̇k + Ikq̇(l1, t).

Here, l1 is the length of the pipeline and, in the quasistationary model, E = Ik = 0.

3) Equation of motion of the liquid in the pressure head pipeline:

−∂p2
∂x
=

γ2
F2

∂q2
∂t

,

−∂p2
∂t
=

c2γ2
F2

∂q2
∂x

with the boundary conditions:

p2(l1 + 0, t) +R2q2(l1 + 0, t) = p1(l1 − 0, t) + s1q1(l1 − 0, t) + εVk, (3.1)

τ ṗ2(l1 + l2, t) + p2(l1 + l2, t) = A2q2(l1 + l2, t),

p2(l1 + l2, t) = p2(t).

4) Equation of material balance describing summarized size of cavitational cavities
in the pump:

γ1V̇k = q2(l1 + 0, t)− q1(l1 − 0, t). (3.2)

Relations (3.1), (3.2) can be considered to be the impulse effect concentrated on
the curves transversal to the characteristics. Thus, we have to study solutions of
the hyperbolic equations with impulse effect concentrated on surfaces transversal to
characteristics [18, 19].

3.4. Reduction to the integral equations and inequalities. The reduced model
is represented by an equation of hyperbolic type with, generally speaking, a nonlinear
right-hand member and boudary conditions acting as the impulse effect.

Let us assume si = ci and zi =
ciFi
γi

. The general solution of the partial differential
equations considered has the form pi(x, t) = ν(x − sit) + u(x + sit) and qi(x, t) =
1
zi
(ν(x−sit)−u(x+sit)). In view of the boundary conditions at t = 0, by making the

standard substitution ξ = x− st, and η = x+ st, applying the d’Alembert formula in
the domain 0 < ξ + η < 2l1, we obtain the following representation of the solutions:

u1(ξ, η) =
ϕ1(ξ) + ϕ1(η)

2
+
1

2zi

Z η

ξ

ψ1(s)ds+
zi
2

ZZ
D

f1(s, t)u1(s, t)|u1(s, t)|dsdt.

Here, the functions ϕ,ψ are determined from the initial and boundary conditions.
The integration is carried out in the domain

D1 = {s, t : s+ t > 0, s < ξ, t < η, ξ + η < 2l1}.
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Similarly, in the domain 2l1 < ξ + η < 2l2, the formula of representation for
solutions has the form

u2(ξ, η) =
ϕ2(ξ) + ϕ2(η)

2
+
1

2zi

Z η

ξ

ψ2(s)ds+
zi
2

ZZ
D2

f2(s, t)u2(s, t)|u2(s, t)|dsdt+

+

Z
D2∩γ

u(s, t)ϕ2(s, t)dµ.

Here,
D2 = {s, t : s+ t > 0, s < ξ, t < η, 2l1 < ξ + η < 2l2, }

the curve γ = {ξ, η : ξ + η = 2l1} represents the curve of rupture of the stream
stipulated by the presence of the pump. The functions are constant along the char-
acteristics in the domain D2 \D1; their change is determined by a Stieltjes integral
on the curve γ and depends on the constant characteristics of the pump. We do not
consider the process of reflection of a wave from the blades of the pump.

Thus, the problem considered can be studied by using the multi-dimensional inte-
gral inequalities considered in Section 2.
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