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Asstract. The paper is devoted to the asymptotic approximation for solutions of a
class of second order linear ordinarffdrential equations. A special form of the
Liouville-Green type approximation is developed to obtain high order asymptotics.
Asymptotic solutions can be constructed easily by using a recursive formula. An
error estimation based on Olver’s explicit error bound is proposed. The result and
its applications are discussed and illustrated by some examples.
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1. INTRODUCTION

L ET Us consiDer the diferential equation

y'(¥)+UMy(x) =0, Xo < X< oo (1.2)
Assume that the real functidt(x) is continuous and has the asymptotics
U~ X" > Ux 2 x— o, (1.2)
j=0

whereo andU;j (j = 0,1,2,...) are given,Ug # 0; o is a nonnegative integer. The
solutions of problem (1.1), (1.2) are called wave functions. In this paper, we focus
on the case whelg is positive. The corresponding solutions are called radial wave
functions. From now on, we suppose thhtis positive. The case with negatil

will be discussed in Remark 3.1. Note that no extra condition on the smoothness of
U(X) is needed.

We face diterential equations of type (1.1), (1.2) frequently when solving prob-
lems of mathematical physics, especially those arising in quantum mechanics, see
[8-11]. Asymptotic analysis of linear filerential equations with irregular singulari-
ties has been discussed widely in the literature, e. g., [4, Chapter 5] and [11, Chapter
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7]. However, the construction as well as the proof of the existence of asymptotic solu-
tions are very complicated, especially whers positive. Most of the results on high
order asymptotic approximations were obtained by the singular perturbation method.
In the present paper, another approach is used. The asymptotic formula obtained is
of the form of the well-known Liouville—Green approximation [5, 11].

First, let us introduce the Liouville transformation, a basic tool of the Liouville—
Green approximation theory. Suppose tha a strictly positive, twice continuously
differentiable function on the intervad,[), wherea > Xo. Apply the transformation

§= j; fOdt  z&) = Vi) y(x(€) (1.3)

to equation (1.1) on the interval,[c). The diferential equation for the new function
z2¢)is
7@+ 1+ DE)zE) =0, 0<E<oo, (1.4)

where
1 7\ 1
_ 2
©= (U575 72
and f’ denotes the derivative dfwith respect to variable. Equation (1.4) is called
the Liouville normal form of (1.1). If one could find an auxiliary functidnsuch

that® = 0 on the whole interval, then one would express the general solution of the
original equation by the formula

y(X) = \/% [Aexp(i Lx f(t) dt) + Bexp(—i Lx f(t)dt)],

whereA, B are arbitrary constants. Thus, a natural question arising here is whether
the nonlinear second orderfidirential equation

U - f2 7\ 1
= —(zfs/z) w373 =0 (1.5)

has solution(s) on the intervah,[c). A closed formula for a solutiori, even if it
exists, seems impossible in general. In this paper, we first show the existence of a
solution of (1.5). Then, based on the condition (1.2), we construct its asymptotic
formula as a power series of the variakle

The paper is organized in the following way. In the next section, we summarize
some basic results in the Liouville—Green approximation theory. As a consequence, a
simple but low order asymptotic approximation is constructed. In Section 3 we show
the existence of high order asymptotic solutions to (1.1) based on a preliminary result
on an auxiliary Riccati dferential equation. A method of construction as well as an
error estimation are given. We conclude the paper with the discussion of applications
and some illustrative examples.
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2. THE L10UVILLE—GREEN APPROXIMATION

The following theorem deals with the so-called Liouville—Green approximation.
The statement is a reformulation of Theorem 2.2 in [11, Chapter 6] with respect to
largex. We refer to Problem 30 in [4, Chapter 3], where the asymptotic behaviour of
the solutions of (1.4) is considered.

Let f(x) be a positive, twice continuouslyftirentiable function on a given inter-
val [a, o) and let the error-control function be defined by equation

_ f2 ’ ’/
S(x) = ux - ([ 1 ‘
f(x) 213/2(x)) f1/2(x)
Proposition 2.1. Suppose that the inequality

foo IS(t)|dt < oo (2.1)

holds. Then equatio(iL.1) has a pair of linearly independent solutiops, y_ such
that

y+(X) = fl(x) exp(ii fax f(t) dt) 1+ e+(x), X — 00, (2.2)

These solutions form a complex conjugate pair. Moreover, the estimate

le<(X)] < ex|0{foo ISl dt} -1

holds for the error terms..(X).

Approximation (2.2) was obtained first by Liouville and Green, while the explicit
error bound is due to Olver [5, 11].

A simple approximation of the solutions of (1.1), (1.2) is obtained as a direct
consequence of Proposition 2.1. Let us introduce the fundtiog=vU(X). It is
well defined for sficiently large arguments and has asymptotic representation

V) ~ X723 V2 X e,
=0
From (1.2), the caicientsVj can be calculated by the recurrence formula
j-1

U - kavj_k}/zvo, (i=23,...).
k=1

Letg(x) be defined as the partial sum of the fikst{(2) terms of the above asymptotic
series

Vo= YUo Vi=Ui/2Vo, V=

o+2

g(X):XO'/ZZVj X172 (2.3)
=0
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SinceVy is positive, so igg(x) on an interval § «), wherea is suficiently large.
Moreover, by elementary calculations, one can check that the relation

U(¥) - g*(x) g Y 1 | (12
0 \272w) aeg| " e X7
holds. This means that functignsatisfies condition (2.1). We obtain

Proposition 2.2. Equation(1.1), (1.2) has a pair of independent solutions, y_
such that

1
y+(X) = exp(xiG(x)) (1 + O(—)) , X — 00, (2.4)
9(%) VX
whereG(X) is an antiderivative of(X):
o+l
2V .
_ /241 i -j/2
G(X) = x ;0_+2_jx + Voi2In x.

Another proof of this proposition can be found in [7]. A basis of the real solution
space of equation (1.1), (1.2) can be created by,Rend Imy,. Thus, it is easy to
obtain an approximation of real solutions of (1.1), (1.2).

Corollary. Lety(x) be an arbitrary real solution 0{1.1), (1.2). Then, there exists a
pair of constantgr,, d.) such that

Moo 1
y(X) = m cos(G(x) + 0o + O(W)) X — o0, (2.5)

wherer, > 0is uniquely determined angl, is unique up to a multiple &r. More-
over, any paiff», dx), re > 0, defines the solution uniquely.

Approximations (2.4), (2.5) are simple, but their accuracy is low. In order to im-
prove the accuracy of the Liouville—Green approximation, one may use the so-called
higher order phase integral solution (see [5,11, 12] and references therein). It can be
derived as follows. Suppose thHd(Xx) is positive and continuously fierentiable as
many times as needed. Instead of (1.1), we consider the singularly perturbed equation

” U(x)
y'(x) + ?y(x) =0,
wheree is a positive small parameter. Then, a solutioof equation (1.5) is con-
structed as a power serieseof

f=el(fo+efr+e*fo+...),

where

2\ 1
fo= VU, flz—( 0]

3/2 1/2°
2132 2f]
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If one takes the zero-order approximation, i. &.,only and putse = 1, then the
standard JWKB approximation

y:(X) ~ UY4(x) exp(J_r i fxox \/U(t)dt). (2.6)

arises. The more terms are taken into consideration, the higher accuracy may be ex-
pected. However, the application of higher order approximations seems too compli-
cated since higher derivativesd{x) are required. In addition, the integral occurring
in the approximations in general, or even for the zero-order one cannot be calculated
formally. This fact makes the computation of the high order approximations incon-
venient and time-consuming.

In the next section, we will show that the expression on the right-hand side of (2.3)
can be continued up to the asymptotic series of a solution of (1.5).

3. HIGH ORDER ASYMPTOTIC APPROXIMATIONS

From now on we consider one of the solutions defined in (2.4)ysayOne can
check that the so-called radiation boundary condition

X )12y, ()] + ly+ ()]

holds. The following crucial result can be found in [2, 6].

(3.1)

Proposition 3.1. For syficiently largex, condition(3.1)can be replaced by an equiv-
alent condition

Y (9 = ROy (X).
Here,R(X) is a solution of Cauchy problem

R(X) + R3(X) + U(X) = 0,
lim X72R(X) = i yUo.

For large x, the solution of(3.2) is unique. In addition, it can be represented by an
asymptotic series, namely,

(3.2)

RO ~ X723 xJ_/Jz X — o,
i=0

where the cogicientsR; can be evaluated by the recurrence formula

. -Uq
=i4yU Ri=—=
Ro 0s L= 2Ry
~Uj-3TRR)s -
R; = _u-—zzj’ RsRj_s+(j/2--1)R; e (33)
| 4s=1 s J-;ROJ j—o-2 if J >0+ 2’
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forj=23,....
Now, we arrive at the main results of the paper. Bét), b(x) be the real and
imaginary part oR(X), respectively,
a(x) = Re(R(x)), b(x) = Im(R(x)). (3.4)

Obviously, these functions are continuouslyfelientiable and they have asymptotic
series also wher tends to infinity. Namely, the expansions

a(X) ~ XO-/2 E Xj—;z, b(X) ~ XO-/2 E Xj—;z,
= =

are valid for largex, wherea; = ReR;, b; = ImR;, j = 0,1,.... The Riccati equation
in (3.2) is equivalent to the system

b’(X) + 2a(x)b(x) = O,

al(x) + a2(x) — bA(x) + U(X) = 0. (3.5)

Theorem 3.1. For syficiently largex, functionb(x) defined by3.4)is positive and
it is an exact solution to equatiofi.5). Moreover, this solution has asymptotic ex-
pansions

~xo2NT L
b(X) ~ X ZO S X
J=
where the cogicientsb; can be evaluated by the recursive formulae

bo= YU, a =0,

CUj+ 3l taa s 2Tbdy - (j/2- 0 - 1ay e

b; = b i=12... (3.6)
2y ab o+ (j/2=0 -1,
a - 2s1ashj-s 2(é)/ )bj 2, =12 3.7)
0

Here, we sefs = bs = O for s < 0; {a; }‘j";o is considered an auxiliary sequence.

Before turning to the proof, we call attention to the fact that the first3) terms of

the asymptotic series t{x) and those ofyU(X) coincide. In general, ther(+ 4)-th
codficients, however, are filerent.

Proof. Due to the definition, functiob(x) behaves likeyUgx?/? asx tends to infin-
ity. Therefore, there exists; such that(x) > 0 for x > x;. From the first equation
in (3.5), itis clear thab(x) is twice continuously dferentiable. Using (3.5), one can
check that

U(x) — b?(x) _( b’ (x) )' 1 a(x)+a%(x) —b?(X) + U(X) _

b2(X) 2032(x) ) B32(x) b2(X) 0
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for x > x;. It means exactly thai(x) is a solution to equation (1.5). Moreover, it
is unique if the condition lig,. X 7/2b(x) = /Uy is satisfied. Finally, we get the
asymptotic series fdu(x) directly from (3.3) by taking the definition @{x) andb(x)
into account. O

Due to the considerations in Section 1, the next results are obtained immediately.

Theorem 3.2. On the interval X3, o), equation(1.1), (1.2) has a pair of solutions

X
y+(X) = b™Y2(x) exp(i i f b(t) dt) .
X1
Furthermore, this solution pair is the same (up to a constant factor) as that appearing
in Proposition 2.2.
Let B(X) be the antiderivative df(x) defined by the asymptotics

> 2b;
/2 j
B(X) ~ X~ EO ]+ 21 + byi2In X, X — oo.
=

j#o+2

Corollary. For any real solutiory(x) of (1.1), (1.2)defined orjxs, o), there exists a
pair of constantgr ., dw), e > 0, such that

roo
X) = CcoS(B(X) + 0) -
y(X) NG (B(X) + 0co)

If the cosine function is replaced by the sine, we obtain another linearly inde-
pendent solution. One cannot make use of the above results yet because the closed
formulae of functiorb(x) and B(x) are not available. However, their asymptotic se-
ries can be calculated as we saw above. Then, by fixing an arbitraryMdex + 2,
there exist a pair of linearly independent solutions of problem (1.1), (1.2)

1

y+(X) = exp(xi Bn(X) (1 + &+(X)), (3.8)

VBN (Y) "
where
b —xff/ZN b; By (x) = x°/2 N 20 Byrio |
NG9 = Zg X2’ N9 = Z; (o= 12t D2
= j;tj(;'+2
and
£.(X) = O(X(U‘N”)/Z), X — 00.

It is clear that the order of accuracy of approximation (3.8) can be easily increased
by choosing a larger and larger indBix In general, by settingl > o + 3, we im-
mediately get approximations of accuracy higher order than those of approximation
(2.6).

For completeness, we give an estimation method for the relative error of the com-
plex approximations based on Olver’s explicit error bound. Bounds for the absolute
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and relative error of real approximations can be derived without afigulty. For
the sake of brevity, we put

3 / 1 24

P(X) = zl[bN(X)]2 ~ 5PN(JbN(X) — bROIBR() - UM Q(x) = by(X).

It is easy to check that the error-control function satisfies the formula
P(X)
S(X) = —
%=
and its leading cd@cient is 2y, 1. It yields immediately the asymptotic estimate for

Olver’s upper bound of the error function

exp( f IS(t)Idt) S1- I\IZ“O&X(M_N)/Z, .
X

-1-0

— O(X((T_N_l)/z), X — 00

In order to get an explicit error bound, one can proceed as follows. First, we consider
the case whetd (x) can be expressed as a finite sum, namely

M
U(x) = x"Zij‘j/z, (3.9)
j=0

whereM is a non-negative integer. We note that this case arises frequently in appli-
cations, see [3,8-12]. Then, both the numer&9) and the denominatd®(x) can

be expressed as finite sums consisting of the powexs ©he following method [1]
provides simple estimates f&(x) andQ(x). Suppose that we have to estimate the
sum

K
C(x) = Z; ol
1=
Without loss of generality we assume the leadingfiécientcy > 0. Letmandn
be the numbers of positive and negativefogntsci, i = 1,2, ..., K, respectively.
Take arbitrary parametess> 0 andB, 0 < 8 < 1, and put
2/i \2/]
m nc
X1 = max{(—q) }; Xp = max{(—') } (3.10)
¢i>0 aCo cj<0 _BCO

Then, we obtain the estimates

CX)<(1+a)c forx=xq
and

C(X) = (1 -B)co for x = Xo.
Thus, based on the cfieients of P(X) and Q(x), we can calculate;; X such that
the estimates

IPOJ] < 2(1+ )b o1 | X2~ /2

and

1QI > (1 - B)3p3x372
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hold with an arbitrary paitr, 8 as above. Then, fax > maxXi, X»}, we obtain the
explicit estimate
21+ a)

(1-p)°

Hence, for sfficiently largex, we obtain an explicit bound for the error terms
Aonald+a) ey

lex(X)] < exp(j;oo IS(t)] dt) -1s (1-BB3(N-0-1)

WhenU (X) has the general asymptotic expansion (1.2), we suppose that
U(X) = Um(X) + (),

whereUy(X) is as the right-hand side of (3.9) with afBciently largeM and there
exists a constamtsuch that the estimate

Ir(x)| < Px@r-M-1)2

o-N-1)/2.

IS(X)| < IoN+1]

holds for the remainder term. Then, we have
Unm(x) — bZ (%) _( by (%) ) 1 l r(x)
b (X) 263%(x) ) bY2()|  bn(9

A procedure similar to the above gives an estimate for the first term, while the simple
estimate

S(X) = [

. f (e-M-1)/2

bn()1 ™ (1-B)bo

holds for the second term assumirgs large enough. Therefore, an explicit error
bound can also be obtained in the general case.

Remark3.1 A similar asymptotic analysis can be carried out for the exponential-type
solutions of the equation

¥’ (x) = U(X)y(x) = 0, Xp < X < 0,

where the same assumption on the functiqw) holds as in (1.2). The new sequences
{a}2, {biti2, can be generated with the change for

60 == \/U_’ 50 = O’
~ —-Uj+ sti asdj-s + sti Bsgj—s -(j/2-0-1)aj_s—2
b; = — ’
L _255abi e (/2= - Db o
’ —2bo

Here, we seBg = bs = 0 for s < 0. Taking the finite sumby(x), bn(X) defined
analogously to those in the oscillatory case, one can show that equation (3.10) has a

ji=12...

. j=12....
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pair of solutions approximated by

1 —N+1)/2
ye(X) = ——— exp(£Bn(X) (1 + O N+D/2) - x5 0.
V=B ( )
Error estimates for these approximations can be obtained similarly to the oscillatory
case.

4. APPLICATIONS

Among radial wave functions occurring in practical problems, a number of well-
known special functions can be defined as solutions féédintial equations of type
(1.1), (1.2). Therefore, the results of Section 3 seem to be useful. For a particular
solution, the value of, is determined by some normalization condition in general.

If such a condition is not prescribed or is not essential, one cagn,fix 1. The phase
shift 6., which plays a very important role in applications, separates definitely a par-
ticular solution from others. However, the exact formuladgrcan only be obtained

in several special cases. In most cagesshould be approximated somehow, for
example, see [11, Chapter 12] or [9]. For the exact values of th¢rpgit..} in case

of some well-known radial wave functions, such as the examples below, see [3].

Exampled.1 (Airy’s differential equation)First, we consider the oscillatory case
Y’ +xy(¥) =0,  x>X. (4.1)

Using the algorithm for the computation m‘j}‘j";o described in Section 3, we calcu-
late several cd@cients of the asymptotic series lofx) and get

b(x) ~ xY/? + S sz 1105 11

X — oo,
32 2048
Consequently, we have
2 10 2210
B(X) ~ =x2 - —x SN2 4 ———x92, :
(X) 3 96x +18432X +..., X — o0

If one takes the first two terms ofx) andB(x), one gets an approximate formula of
the real solutions

Moo 2 10
y(¥) ~ cos(—x?’/2 s G 600)

Ix1/2 4 3&2 x-5/2 3 96

for largex. Each constant pair.., 6.} defines a solution uniquely. For estimating
the error, we calculate

1105 25 54 5 3
P — -4 -7 _ ~ 10 — 1/2 , ~ ~-5/2 )
W =-Tooa" ~T2gX “3mX - Q= XT3
We obtain a simple estimate for the error-control function
11
05X_1l/2,
1024

S(X) ~ -
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for suficiently largex.
Now, we consider the exponential case

y'()-xy(X) =0, X=X

We calculate the sequende_ls}fzo, {Bi}i‘jo and obtain, for example, an approximation
for exponentially decaying solutions as

Moo

1/2 _ 5 y-5/2
1/x 35X

Each nonzero constant, defines a solution uniguely. The error-control function has
similar asymptotics as in the oscillatory case.

It is clear that in both the oscillatory and exponential cases, one can easily take
some additional terms and obtain higher order approximate solutions.

y(X) ~

2 32 Ex—s/z
3 96 '

exp(— X

Exampled.2 (Bessel's dierential equation in normal formYConsider the equation
1/4
' (X) + (1 - X—/) y(X) = 0< X< oo, (4.2)
wherep > 0 is a parameter. Using the algorithm for the computatiomb@}lj.’io
described in Section 3, we calculate severalfitcients of the asymptotic series of
b(x) and get

_ n—1_(n—1)(n—25)

b(x) ~ 1 82 1280 X — o0,
wheren = 4p?. Consequently,
B(X) ~ X+ = 1, (0=Dh-25 X — oo.

+on
8x 384x3
Then we obtain, for example, an approximate formula for the solutions of (4.2)

-1 (n-1)(n-25)
8x | 3843 Oco |

Moo n
y(X) ~ cos(x +

\/1 n-1 — (n=1)(n-25) 1)(n 25)

which holds for largex.

We underline that if the expressions we obtained here are expanded using the as-
ymptotic representations &x) and B(x), then one arrives at the other frequently
used asymptotic expansions of Bessel functions, which can be found in [3, 11].

Example4.3 (Equation of parabolic cylinder functions}onsider the equation

2

(%) + (XZ - )y(x) -0, 0<x<oo, (4.3)
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wherea is a parameter. Analogously to the above, we get asymptotic serib&jor
andB(x) as follows

X a a-3/4 2a’-19%)/2
b(x)~§—;(— v 5 e X — 00,

NG a®-3/4 2a®-1%/2
B(X) ~ — —alnx+ +
() 4 2x2 4x4

Similarly to the previous examples, high order approximate formulae for the para-
bolic cylinder functions can be given.

X — oo,

Now let the pair{r., d} Of @ particular solution be given. Then, forfBaiently
large arguments, the solution can be approximated with high accuracy using (3.8).
Even in the case when equations are more complicated than (4.1), (4.3), flie coe
cientsb; are available easily by the recursive formulae (3.6), (3.7). Evaluation of the
approximations can be quickly achieved and in a less complicated way since no nu-
merical integration is necessary. This advantage is extremely important in situations
when a large number of function evaluations are needed, such as in computation of
integrals containing solutions.

For suficiently large arguments, the errors of the approximation can be estimated
by computing some additional terms of the asymptotic serié$x)fandB(x). How-
ever, one should be very careful with the use of (3.8) because of its asymptotic na-
ture: if the argument is not large enough, increasing the ilNlmay actually lead to
less accurate numerical results. To ensure the accuracy of numerical function eval-
uation, one should carry out the error estimation process as described in Section 3.
For “small” arguments, approximation of the solutions can be obtained in other ways
such as polynomial approximation or numerical integration.

For the numerical integration of the solutions of (1.1), (1.2), a variant of the so-
called amplitude-phase methods (or thé&fEr methods [12]) has been proposed,
see [7-9]. The application of the method to quantum mechanic problems was dis-
cussed in [8]. We do not go into detail here, just mention that a pair of auxiliary
functions, the preconditioning function and the phase-shifting one, plays a very im-
portant role in the fective realization of the method [9]. One can set these functions
using bny(X) and By(X), respectively, with an appropriately chosen indéx The
method then becomes vertfieient. beside advantages gained from large admissi-
ble stepsizes in automatic integration, the interval of numerical integration can be
essentially shortened. Consequently, a high accuracy of function evaluations can be
easily achieved. This fact has been confirmed by numerical experiments (see, for in-
stance, [8,9]). In addition to the error estimation of the approximation (3.8), another
error estimation with respect to the approximation of the amplitude and phase-shift
constantsr., d) was analyzed in [9, 10].
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