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1. I

L    the differential equation

y′′(x) + U(x)y(x) = 0, x0 ≤ x < ∞. (1.1)

Assume that the real functionU(x) is continuous and has the asymptotics

U(x) ∼ xσ
∞∑

j=0

U j x
− j/2, x→ ∞, (1.2)

whereσ andU j ( j = 0,1,2, . . . ) are given;U0 , 0; σ is a nonnegative integer. The
solutions of problem (1.1), (1.2) are called wave functions. In this paper, we focus
on the case whenU0 is positive. The corresponding solutions are called radial wave
functions. From now on, we suppose thatU0 is positive. The case with negativeU0

will be discussed in Remark 3.1. Note that no extra condition on the smoothness of
U(x) is needed.

We face differential equations of type (1.1), (1.2) frequently when solving prob-
lems of mathematical physics, especially those arising in quantum mechanics, see
[8–11]. Asymptotic analysis of linear differential equations with irregular singulari-
ties has been discussed widely in the literature, e. g., [4, Chapter 5] and [11, Chapter
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7]. However, the construction as well as the proof of the existence of asymptotic solu-
tions are very complicated, especially whenσ is positive. Most of the results on high
order asymptotic approximations were obtained by the singular perturbation method.
In the present paper, another approach is used. The asymptotic formula obtained is
of the form of the well-known Liouville–Green approximation [5,11].

First, let us introduce the Liouville transformation, a basic tool of the Liouville–
Green approximation theory. Suppose thatf is a strictly positive, twice continuously
differentiable function on the interval [a,∞), wherea ≥ x0. Apply the transformation

ξ =

∫ x

a
f (t) dt, z(ξ) =

√
f (x(ξ)) y(x(ξ)) (1.3)

to equation (1.1) on the interval [a,∞). The differential equation for the new function
z(ξ) is

z′′(ξ) + (1 + Φ(ξ)) z(ξ) = 0, 0 ≤ ξ < ∞, (1.4)

where

Φ =
(
U − f 2

) 1
f 2
−

(
f ′

2 f 3/2

)′ 1

f 3/2

and f ′ denotes the derivative off with respect to variablex. Equation (1.4) is called
the Liouville normal form of (1.1). If one could find an auxiliary functionf such
thatΦ ≡ 0 on the whole interval, then one would express the general solution of the
original equation by the formula

y(x) =
1√
f (x)

[
Aexp

(
i
∫ x

a
f (t) dt

)
+ Bexp

(
− i

∫ x

a
f (t) dt

)]
,

whereA, B are arbitrary constants. Thus, a natural question arising here is whether
the nonlinear second order differential equation

U − f 2

f 2
−

(
f ′

2 f 3/2

)′ 1

f 3/2
= 0 (1.5)

has solution(s) on the interval [a,∞). A closed formula for a solutionf , even if it
exists, seems impossible in general. In this paper, we first show the existence of a
solution of (1.5). Then, based on the condition (1.2), we construct its asymptotic
formula as a power series of the variablex.

The paper is organized in the following way. In the next section, we summarize
some basic results in the Liouville–Green approximation theory. As a consequence, a
simple but low order asymptotic approximation is constructed. In Section 3 we show
the existence of high order asymptotic solutions to (1.1) based on a preliminary result
on an auxiliary Riccati differential equation. A method of construction as well as an
error estimation are given. We conclude the paper with the discussion of applications
and some illustrative examples.
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2. T L –G 

The following theorem deals with the so-called Liouville–Green approximation.
The statement is a reformulation of Theorem 2.2 in [11, Chapter 6] with respect to
largex. We refer to Problem 30 in [4, Chapter 3], where the asymptotic behaviour of
the solutions of (1.4) is considered.

Let f (x) be a positive, twice continuously differentiable function on a given inter-
val [a,∞) and let the error-control function be defined by equation

S(x) =
U(x) − f 2(x)

f (x)
−

(
f ′(x)

2 f 3/2(x)

)′ 1

f 1/2(x)
.

Proposition 2.1. Suppose that the inequality
∫ ∞

a
|S(t)|dt < ∞ (2.1)

holds. Then equation(1.1) has a pair of linearly independent solutionsy+, y− such
that

y±(x) =
1√
f (x)

exp

(
± i

∫ x

a
f (t) dt

)
(1 + ε±(x)), x→ ∞. (2.2)

These solutions form a complex conjugate pair. Moreover, the estimate

|ε±(x)| ≤ exp

{∫ ∞

x
|S(t)|dt

}
− 1

holds for the error termsε±(x).

Approximation (2.2) was obtained first by Liouville and Green, while the explicit
error bound is due to Olver [5,11].

A simple approximation of the solutions of (1.1), (1.2) is obtained as a direct
consequence of Proposition 2.1. Let us introduce the functionV(x)=

√
U(x). It is

well defined for sufficiently large arguments and has asymptotic representation

V(x) ∼ xσ/2
∞∑

j=0

V j x
− j/2, x→ ∞.

From (1.2), the coefficientsV j can be calculated by the recurrence formula

V0 =
√

U0, V1 = U1/2V0, V j =

U j −
j−1∑

k=1

VkV j−k


/
2V0, ( j = 2, 3, . . . ).

Let g(x) be defined as the partial sum of the first (σ+2) terms of the above asymptotic
series

g(x)=xσ/2
σ+2∑

j=0

V j x
− j/2. (2.3)
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SinceV0 is positive, so isg(x) on an interval [a,∞), wherea is sufficiently large.
Moreover, by elementary calculations, one can check that the relation∣∣∣∣∣∣

U(x) − g2(x)
g(x)

−
(
g′(x)

2g3/2(x)

)′ 1

g1/2(x)

∣∣∣∣∣∣ = O

(
1

x3/2

)
, x→ ∞,

holds. This means that functiong satisfies condition (2.1). We obtain

Proposition 2.2. Equation(1.1), (1.2) has a pair of independent solutionsy+, y−
such that

y±(x) =
1√
g(x)

exp
(± i G(x)

) (
1 + O

(
1√
x

))
, x→ ∞, (2.4)

whereG(x) is an antiderivative ofg(x):

G(x) = xσ/2+1
σ+1∑

j=0

2V j

σ + 2− j
x− j/2 + Vσ+2 ln x.

Another proof of this proposition can be found in [7]. A basis of the real solution
space of equation (1.1), (1.2) can be created by Rey+ and Imy+. Thus, it is easy to
obtain an approximation of real solutions of (1.1), (1.2).

Corollary. Let y(x) be an arbitrary real solution of(1.1), (1.2). Then, there exists a
pair of constants(r∞, δ∞) such that

y(x) =
r∞√
g(x)

cos

(
G(x) + δ∞ + O

(
1√
x

))
, x→ ∞, (2.5)

wherer∞ > 0 is uniquely determined andδ∞ is unique up to a multiple of2π. More-
over, any pair(r∞, δ∞), r∞ > 0, defines the solution uniquely.

Approximations (2.4), (2.5) are simple, but their accuracy is low. In order to im-
prove the accuracy of the Liouville–Green approximation, one may use the so-called
higher order phase integral solution (see [5,11,12] and references therein). It can be
derived as follows. Suppose thatU(x) is positive and continuously differentiable as
many times as needed. Instead of (1.1), we consider the singularly perturbed equation

y′′(x) +
U(x)
ε2

y(x) = 0,

whereε is a positive small parameter. Then, a solutionf of equation (1.5) is con-
structed as a power series ofε

f = ε−1( f0 + ε2 f1 + ε4 f2 + . . . ),

where

f0 =
√

U, f1 = −


f ′0
2 f 3/2

0


′

1

2 f 1/2
0

, . . .



ON THE HIGH ORDER ASYMPTOTIC SOLUTION OF CERTAIN WAVE EQUATIONS 61

If one takes the zero-order approximation, i. e.,f0 only and putsε = 1, then the
standard JWKB approximation

y±(x) ≈ U−1/4(x) exp

(
± i

∫ x

x0

√
U(t) dt

)
. (2.6)

arises. The more terms are taken into consideration, the higher accuracy may be ex-
pected. However, the application of higher order approximations seems too compli-
cated since higher derivatives ofU(x) are required. In addition, the integral occurring
in the approximations in general, or even for the zero-order one cannot be calculated
formally. This fact makes the computation of the high order approximations incon-
venient and time-consuming.

In the next section, we will show that the expression on the right-hand side of (2.3)
can be continued up to the asymptotic series of a solution of (1.5).

3. H   

From now on we consider one of the solutions defined in (2.4), sayy+. One can
check that the so-called radiation boundary condition

lim
x→∞

x−σ/2y′+(x) − i
√

U0y+(x)∣∣∣x−σ/2y′+(x)
∣∣∣ + |y+(x)| = 0 (3.1)

holds. The following crucial result can be found in [2,6].

Proposition 3.1. For sufficiently largex, condition(3.1)can be replaced by an equiv-
alent condition

y′+(x) = R(x)y+(x).

Here,R(x) is a solution of Cauchy problem

R′(x) + R2(x) + U(x) = 0,

lim
x→∞ x−σ/2R(x) = i

√
U0.

(3.2)

For large x, the solution of(3.2) is unique. In addition, it can be represented by an
asymptotic series, namely,

R(x) ∼ xσ/2
∞∑

j=0

Rj

x j/2
x→ ∞,

where the coefficientsRj can be evaluated by the recurrence formula

R0 = i
√

U0, R1 =
−U1

2R0
,

Rj =



−U j−∑ j−1
s=1 RsRj−s

2R0
if j < σ + 2

−U j−∑ j−1
s=1 RsRj−s+( j/2−σ−1)Rj−σ−2

2R0
if j ≥ σ + 2,

(3.3)
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for j = 2,3, . . . .

Now, we arrive at the main results of the paper. Leta(x),b(x) be the real and
imaginary part ofR(x), respectively,

a(x) = Re(R(x)) , b(x) = Im (R(x)) . (3.4)

Obviously, these functions are continuously differentiable and they have asymptotic
series also whenx tends to infinity. Namely, the expansions

a(x) ∼ xσ/2
∞∑

j=0

a j

x j/2
, b(x) ∼ xσ/2

∞∑

j=0

b j

x j/2
,

are valid for largex, wherea j = ReRj , b j = Im Rj , j = 0, 1, . . . . The Riccati equation
in (3.2) is equivalent to the system

b′(x) + 2a(x)b(x) = 0,

a′(x) + a2(x) − b2(x) + U(x) = 0.
(3.5)

Theorem 3.1. For sufficiently largex, functionb(x) defined by(3.4) is positive and
it is an exact solution to equation(1.5). Moreover, this solution has asymptotic ex-
pansions

b(x) ∼ xσ/2
∞∑

j=0

b j

x j/2
, x→ ∞,

where the coefficientsb j can be evaluated by the recursive formulae

b0 =
√

U0, a0 = 0,

b j =
U j +

∑ j−1
s=1 asa j−s−∑ j−1

s=1 bsb j−s− ( j/2− σ − 1)a j−σ−2

2b0
, j = 1,2, . . . (3.6)

a j =
−2

∑ j−1
s=1 asb j−s + ( j/2− σ − 1)b j−σ−2

2b0
, j = 1,2, . . . . (3.7)

Here, we setas = bs = 0 for s< 0; {a j}∞j=0 is considered an auxiliary sequence.

Before turning to the proof, we call attention to the fact that the first (σ+3) terms of
the asymptotic series ofb(x) and those of

√
U(x) coincide. In general, the (σ + 4)-th

coefficients, however, are different.

Proof. Due to the definition, functionb(x) behaves like
√

U0xσ/2 asx tends to infin-
ity. Therefore, there existsx1 such thatb(x) > 0 for x ≥ x1. From the first equation
in (3.5), it is clear thatb(x) is twice continuously differentiable. Using (3.5), one can
check that

U(x) − b2(x)
b2(x)

−
(

b′(x)

2b3/2(x)

)′ 1

b3/2(x)
=

a′(x) + a2(x) − b2(x) + U(x)
b2(x)

= 0
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for x ≥ x1. It means exactly thatb(x) is a solution to equation (1.5). Moreover, it
is unique if the condition limx→∞ x−σ/2b(x) =

√
U0 is satisfied. Finally, we get the

asymptotic series forb(x) directly from (3.3) by taking the definition ofa(x) andb(x)
into account. �

Due to the considerations in Section 1, the next results are obtained immediately.

Theorem 3.2. On the interval[x1,∞), equation(1.1), (1.2)has a pair of solutions

y±(x) = b−1/2(x) exp

(
± i

∫ x

x1

b(t) dt

)
.

Furthermore, this solution pair is the same (up to a constant factor) as that appearing
in Proposition 2.2.

Let B(x) be the antiderivative ofb(x) defined by the asymptotics

B(x) ∼ xσ/2
∞∑

j=0
j,σ+2

2b j

(σ − j + 2)x j/2−1
+ bσ+2 ln x, x→ ∞.

Corollary. For any real solutiony(x) of (1.1), (1.2)defined on[x1,∞), there exists a
pair of constants(r∞, δ∞), r∞ > 0, such that

y(x) =
r∞√
b(x)

cos(B(x) + δ∞) .

If the cosine function is replaced by the sine, we obtain another linearly inde-
pendent solution. One cannot make use of the above results yet because the closed
formulae of functionb(x) andB(x) are not available. However, their asymptotic se-
ries can be calculated as we saw above. Then, by fixing an arbitrary indexN ≥ σ+ 2,
there exist a pair of linearly independent solutions of problem (1.1), (1.2)

y±(x) =
1√

bN(x)
exp(± i BN(x)) (1 + ε±(x)) , (3.8)

where

bN(x) = xσ/2
N∑

j=0

b j

x j/2
, BN(x) = xσ/2

N∑

j=0
j,σ+2

2b j

(σ − j + 2)x j/2−1
+ bσ+2 ln x ,

and
ε±(x) = O

(
x(σ−N+1)/2

)
, x→ ∞.

It is clear that the order of accuracy of approximation (3.8) can be easily increased
by choosing a larger and larger indexN. In general, by settingN ≥ σ + 3, we im-
mediately get approximations of accuracy higher order than those of approximation
(2.6).

For completeness, we give an estimation method for the relative error of the com-
plex approximations based on Olver’s explicit error bound. Bounds for the absolute
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and relative error of real approximations can be derived without any difficulty. For
the sake of brevity, we put

P(x) =
3
4

[b′N(x)]2 − 1
2

b′′N(x)bN(x) − b2
N(x)[b2

N(x) − U(x)], Q(x) = b3
N(x).

It is easy to check that the error-control function satisfies the formula

S(x) =
P(x)
Q(x)

= O(x(σ−N−1)/2), x→ ∞
and its leading coefficient is 2bN+1. It yields immediately the asymptotic estimate for
Olver’s upper bound of the error function

exp

(∫ ∞

x
|S(t)|dt

)
− 1 ∼ 2 |bN+1|

N − 1− σ x(σ+1−N)/2, x→ ∞.

In order to get an explicit error bound, one can proceed as follows. First, we consider
the case whenU(x) can be expressed as a finite sum, namely

U(x) = xσ
M∑

j=0

U j x
− j/2, (3.9)

whereM is a non-negative integer. We note that this case arises frequently in appli-
cations, see [3, 8–12]. Then, both the numeratorP(x) and the denominatorQ(x) can
be expressed as finite sums consisting of the powers ofx. The following method [1]
provides simple estimates forP(x) andQ(x). Suppose that we have to estimate the
sum

C(x) =

K∑

i=0

ci

xi/2
.

Without loss of generality we assume the leading coefficient c0 > 0. Let m andn
be the numbers of positive and negative coefficientsci , i = 1,2, . . . ,K, respectively.
Take arbitrary parametersα > 0 andβ, 0 < β < 1, and put

x1 = max
ci>0


(
mci

αc0

)2/i
 ; x2 = max

c j<0


(

ncj

−βc0

)2/ j
 . (3.10)

Then, we obtain the estimates

C(x) ≤ (1 + α)c0 for x ≥ x1

and
C(x) ≥ (1− β)c0 for x ≥ x2.

Thus, based on the coefficients ofP(x) andQ(x), we can calculate ˆx1, x̂2 such that
the estimates

|P(x)| ≤ 2(1+ α)b3
0 |bN+1| x2σ−(N+1)/2

and
|Q(x)| ≥ (1− β)3b3

0x3σ/2
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hold with an arbitrary pairα, β as above. Then, forx ≥ max{x̂1, x̂2}, we obtain the
explicit estimate

|S(x)| ≤ 2(1+ α)
(1− β)3

|bN+1| x(σ−N−1)/2.

Hence, for sufficiently largex, we obtain an explicit bound for the error terms

|ε±(x)| ≤ exp

(∫ ∞

x
|S(t)|dt

)
− 1 .

4|bN+1|(1 + α)
(1− β)3(N − σ − 1)

x(1+σ−N)/2.

WhenU(x) has the general asymptotic expansion (1.2), we suppose that

U(x) = UM(x) + r(x),

whereUM(x) is as the right-hand side of (3.9) with a sufficiently largeM and there
exists a constant ˆr such that the estimate

|r(x)| ≤ r̂x(2σ−M−1)/2

holds for the remainder term. Then, we have

S(x) =


UM(x) − b2

N(x)

bN(x)
−


b′N(x)

2b3/2
N (x)


′

1

b1/2
N (x)

 +
r(x)

bN(x)
.

A procedure similar to the above gives an estimate for the first term, while the simple
estimate ∣∣∣∣∣

r(x)
bN(x)

∣∣∣∣∣ ≤
r̂

(1− β)b0
x(σ−M−1)/2

holds for the second term assumingx is large enough. Therefore, an explicit error
bound can also be obtained in the general case.

Remark3.1. A similar asymptotic analysis can be carried out for the exponential-type
solutions of the equation

y′′(x) − U(x)y(x) = 0, x0 ≤ x < ∞,
where the same assumption on the functionU(x) holds as in (1.2). The new sequences
{āi}∞i=0, {b̄i}∞i=0 can be generated with the change for

b̄0 = −
√

U0, ā0 = 0,

b̄ j =
−U j +

∑ j−1
s=1 āsā j−s +

∑ j−1
s=1 b̄sb̄ j−s− ( j/2− σ − 1)ā j−σ−2

−2b̄0
, j = 1,2, . . .

ā j =
2
∑ j−1

s=1 āsb̄ j−s− ( j/2− σ − 1)b̄ j−σ−2

−2b̄0
, j = 1,2, . . . .

Here, we set ¯as = b̄s = 0 for s < 0. Taking the finite sums̄bN(x), b̄N(x) defined
analogously to those in the oscillatory case, one can show that equation (3.10) has a
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pair of solutions approximated by

y±(x) =
1√−bN(x)

exp(±BN(x))
(
1 + O(x(σ−N+1)/2

)
, x→ ∞.

Error estimates for these approximations can be obtained similarly to the oscillatory
case.

4. A

Among radial wave functions occurring in practical problems, a number of well-
known special functions can be defined as solutions of differential equations of type
(1.1), (1.2). Therefore, the results of Section 3 seem to be useful. For a particular
solution, the value ofr∞ is determined by some normalization condition in general.
If such a condition is not prescribed or is not essential, one can fixr∞ = 1. The phase
shift δ∞, which plays a very important role in applications, separates definitely a par-
ticular solution from others. However, the exact formula forδ∞ can only be obtained
in several special cases. In most cases,δ∞ should be approximated somehow, for
example, see [11, Chapter 12] or [9]. For the exact values of the pair{r∞, δ∞} in case
of some well-known radial wave functions, such as the examples below, see [3].

Example4.1 (Airy’s differential equation). First, we consider the oscillatory case

y′′(x) + xy(x) = 0, x ≥ x0. (4.1)

Using the algorithm for the computation of{b j}∞j=0 described in Section 3, we calcu-
late several coefficients of the asymptotic series ofb(x) and get

b(x) ∼ x1/2 +
5
32

x−5/2 − 1105
2048

x−11/2 + . . . , x→ ∞.
Consequently, we have

B(x) ∼ 2
3

x3/2 − 10
96

x−5/2 +
2210
18432

x−9/2 + . . . , x→ ∞.
If one takes the first two terms ofb(x) andB(x), one gets an approximate formula of
the real solutions

y(x) ≈ r∞√
x1/2 + 5

32x−5/2
cos

(
2
3

x3/2 − 10
96

x−5/2 + δ∞

)

for largex. Each constant pair{r∞, δ∞} defines a solution uniquely. For estimating
the error, we calculate

P(x) = −1105
1024

x−4 − 25
1282

x−7 − 54

324
x−10, Q(x) =

(
x1/2 +

5
32

x−5/2
)3

.

We obtain a simple estimate for the error-control function

S(x) ≈ −1105
1024

x−11/2,
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for sufficiently largex.
Now, we consider the exponential case

y′′(x) − xy(x) = 0, x ≥ x0.

We calculate the sequences{āi}∞i=0, {b̄i}∞i=0 and obtain, for example, an approximation
for exponentially decaying solutions as

y(x) ≈ r∞√
x1/2 − 5

32x−5/2
exp

(
−2

3
x3/2 − 10

96
x−5/2

)
.

Each nonzero constantr∞ defines a solution uniquely. The error-control function has
similar asymptotics as in the oscillatory case.

It is clear that in both the oscillatory and exponential cases, one can easily take
some additional terms and obtain higher order approximate solutions.

Example4.2 (Bessel’s differential equation in normal form). Consider the equation

y′′(x) +

(
1− p2 − 1/4

x2

)
y(x) = 0, 0 < x < ∞, (4.2)

where p ≥ 0 is a parameter. Using the algorithm for the computation of{b j}∞j=0
described in Section 3, we calculate several coefficients of the asymptotic series of
b(x) and get

b(x) ∼ 1− n− 1
8x2

− (n− 1)(n− 25)
128x4

+ . . . , x→ ∞,

wheren = 4p2. Consequently,

B(x) ∼ x +
n− 1
8x

+
(n− 1)(n− 25)

384x3
+ . . . ., x→ ∞.

Then we obtain, for example, an approximate formula for the solutions of (4.2)

y(x) ≈ r∞√
1− n−1

8x2 − (n−1)(n−25)
128x4

cos

(
x +

n− 1
8x

+
(n− 1)(n− 25)

384x3
+ δ∞

)
,

which holds for largex.
We underline that if the expressions we obtained here are expanded using the as-

ymptotic representations ofb(x) and B(x), then one arrives at the other frequently
used asymptotic expansions of Bessel functions, which can be found in [3,11].

Example4.3 (Equation of parabolic cylinder functions). Consider the equation

y′′(x) +

(
x2

4
− a

)
y(x) = 0, 0 ≤ x < ∞, (4.3)
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wherea is a parameter. Analogously to the above, we get asymptotic series forb(x)
andB(x) as follows

b(x) ∼ x
2
− a

x
− a2 − 3/4

x3
− 2a3 − 19a/2

x5
. . . , x→ ∞,

B(x) ∼ x2

4
− a ln x +

a2 − 3/4
2x2

+
2a3 − 19a/2

4x4
. . . , x→ ∞.

Similarly to the previous examples, high order approximate formulae for the para-
bolic cylinder functions can be given.

Now let the pair{r∞, δ∞} of a particular solution be given. Then, for sufficiently
large arguments, the solution can be approximated with high accuracy using (3.8).
Even in the case when equations are more complicated than (4.1), (4.3), the coeffi-
cientsb j are available easily by the recursive formulae (3.6), (3.7). Evaluation of the
approximations can be quickly achieved and in a less complicated way since no nu-
merical integration is necessary. This advantage is extremely important in situations
when a large number of function evaluations are needed, such as in computation of
integrals containing solutions.

For sufficiently large arguments, the errors of the approximation can be estimated
by computing some additional terms of the asymptotic series ofb(x) andB(x). How-
ever, one should be very careful with the use of (3.8) because of its asymptotic na-
ture: if the argument is not large enough, increasing the indexN may actually lead to
less accurate numerical results. To ensure the accuracy of numerical function eval-
uation, one should carry out the error estimation process as described in Section 3.
For “small” arguments, approximation of the solutions can be obtained in other ways
such as polynomial approximation or numerical integration.

For the numerical integration of the solutions of (1.1), (1.2), a variant of the so-
called amplitude-phase methods (or the Prüfer methods [12]) has been proposed,
see [7–9]. The application of the method to quantum mechanic problems was dis-
cussed in [8]. We do not go into detail here, just mention that a pair of auxiliary
functions, the preconditioning function and the phase-shifting one, plays a very im-
portant role in the effective realization of the method [9]. One can set these functions
using bN(x) and BN(x), respectively, with an appropriately chosen indexN. The
method then becomes very efficient: beside advantages gained from large admissi-
ble stepsizes in automatic integration, the interval of numerical integration can be
essentially shortened. Consequently, a high accuracy of function evaluations can be
easily achieved. This fact has been confirmed by numerical experiments (see, for in-
stance, [8,9]). In addition to the error estimation of the approximation (3.8), another
error estimation with respect to the approximation of the amplitude and phase-shift
constants (r∞, δ∞) was analyzed in [9,10].



ON THE HIGH ORDER ASYMPTOTIC SOLUTION OF CERTAIN WAVE EQUATIONS 69

R

[1] A, A. A.  B, K.: Approximate solutions, based on comparison theorems, of scalar
and matrix Riccati equations in an infinite interval, Comput. Math. Math. Phys,33 (1993), No. 1,
29–43; translated from Zh. Vychisl. Mat. Mat. Fiz.,33 (1993), No. 1, 35–51.

[2] A, A. A.  K, N. B.: Transfer of admissible boundary conditions from a
singular point for systems of linear ordinary differential equations, Sov. J. Numer. Anal. Math.
Modelling,1 (1986), No. 4, 245–265.

[3] A, A.  S, I. A.: Handbook of mathematical functions, Dover, N.Y., 1968.
[4] C, E. A.  L, N.: Theory of ordinary differential equations, McGraw-Hill,

New York, 1955.
[5] F, M. V.: Asymptotic methods in analysis. In: Analysis I, Integral representation and

asymptotic methods(R. V. Gamkrelidze, ed.), Springer-Verlag, 1989.
[6] K, N. B., On admissible boundary conditions at irregular singular point for systems

of linear ordinary differential equations, U.S.S.R. Comput. Math. Math. Phys.,23 (1983), No. 4,
23–35; translated from Zh. Vychisl. Mat. Mat. Fiz.,23 (1983), No. 4, 806–824.

[7] K, N. B., M, S. Y.,  S, I. B.: Computation of rapidly oscillat-
ing eigenfunctions of continuous spectrum and their improper integrals, Russian J. Comput. Math.
Math. Phys.,35 (1995), No. 3, 287–302; translated from Zh. Vychisl. Mat. Mat. Fiz.,35 (1995),
No. 3, 360–379.

[8] K, N. B., L, V. H.,  S, I. B.: Modifications of the method of phase
functions as applied to singular problems in quantum physics, Comput. Math. Math. Phys.,39
(1999), No. 3, 468–498; translated from Zh. Vychisl. Mat. Mat. Fiz.39 (1999), No. 3, 492–522.

[9] L, V. H.: On some questions arising in numerical realization of amplitude-phase methods,
J. Numerical Algorithms,17 (1998), No. 1-2, 171–191.

[10] L, V. H.: Error estimates for the amplitude-phase method in the evaluation of radial wave
functions, Acta Sci. Math. (Szeged),63 (1997), No. 3-4, 657–670.

[11] O, F. W. J.: Asymptotics and special functions, Academic Press, New York, 1974.
[12] P, J. D.: Numerical solution of Sturm–Liouville problems, Clarendon Press, Oxford, New

York & Tokyo, 1993.

Author’s Address

Vu Hoang Linh:
F  M, M,  I, U  N S, V

N U, 334 N T S., T X, H

E-mail address: vhlinh@hn.vnn.vn


