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Asstract. In this paper, we formulate a Lotka—Volterra cooperative system in two
patches in which th@er capitamigration rate of each species is influenced not
only by its own but also by the other one’s density, i. e., there is cragBssiin
present. Numerical studies show that at a critical value of the bifurcation parameter
the system undergoes a Turing bifurcation and the cross-migration response is an
important factor that should not be ignored when a pattern emerges.
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1. INTRODUCTION

HE TURING BIFURCATION (See [8]) is the basic bifurcation generating a spatial pat-
tern, wherein an equilibrium of a nonlinear system is asymptotically stable in

the absence of ffusion but unstable in the presence offaiion. This lies at the
heart of almost all mathematical models for patterning in ecology, embryology, and
elsewhere in biology and chemistry (see [1,2]). Since the relation between organisms
and space seems to be essential to stability of an ecological systerfigttteoédif-
fusion on the possibility of species coexistence in an ecological community has been
an important subject in population biology (see [5-8]). We consider a two-species
cooperative Lotka—\Volterra system living in a habitat of two identical patches linked
by migration and we show that at a critical value of the bifurcation parameter the
system undergoes a Turing bifurcation, i. e., the stable constant steady state loses its
stability and spatially non-constant stationary solutions, a pattern emerges.

This paper is organized as follows. In Section 2, the model is built, in Section 3 its
linearization is treated and the conditions for the Turing bifurcation are established
(these are the main results of the paper), in Section 4 we consider an example to
illustrate what can be expected, and in Section 5 we summarize the main conclusions
of the study.
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2. THE MODEL

We consider a two-species cooperative Lotka—\Volterra system living in a habitat
of two identical patches linked by migration.

Let ui(t, j) be the density of specigsin patchj at timet, i = 1,2; j = 1,2;
t € R. The cooperation between two species is described by the systeffeoédiial
equations

Up(t, 1) = ug(t, 1)(ry — ag1us(t, 1) — agoup(t, 1))

+ dh (o1 (Uz(t, 2))ua(t, 2) — o1 (ua(t, 1))ua(t, 1)),
Ua(t, 1) = up(t, 1)(r2 — az1us(t, 1) — axoup(t, 1))

+ da(02(u (t, 2))ua(t, 2) — o2(ua(t, 1))ua(t, 1)),
Ua(t, 2) = ug(t, 2)(r1 — ag1us(t, 2) — azoup(t, 2))

+ dh (o1 (Uz(t, ua(t, 1) — o1 (ua(t, 2))us(t, 2)),
Uz(t, 2) = Ug(t, 2)(!’2 - a21u1(t, 2) - 822U2(t, 2))

+ da(02(un (t, 1)ua(t, 1) — o2(ua(t, 2))ua(t, 2)),

(2.1)

where
aj, a2 >0, apan<0 d>0 >0 fori,k=1,2.

Here,a;; anday, represent the strength of the intraspecific competition (the competi-
tion within the species%, ;—jz are the carrying capacities for the respective species),
|a12|l and|az1| represent the strength of interspecific cooperatibry, O (i = 1, 2) are

the difusion codficients, ancgp; € C! is a positive decreasing function o, with
analogous conditions agp. The idea is that these migration functions describe the
inclination of individuals of one species to stay at a certain patch due to the attraction
by the other species in the patch (see [1, 3, 4]).

The case to be considered is where each species survives if left alone and follows
the logistic dynamics, that is, the intrinsic growth rates of the respective species are
positive,ry, r> > 0, which is called facultative cooperation.

We consider the kinetic system without migration, i. e., the case whesadd,
are equal to zero:

Ul(t, 1) = Ul(t, 1)(['1 — allul(t, 1) - a12U2(t, 1)),
Uz(t, 1) = Uz(t, 1)(r2 — a21u1(t, l) - a22u2(t, l)),

(1(t,2) = Ua(t, 2)(r1 — At (t, 2) - anati(t, 2)), @2
Uz(t, 2) = Up(t, 2)(r2 — azauy(t, 2) — axoux(t, 2)).
We assume that
detA = ajq1a00 — ag1ag2 > 0. (2.3)

Then system (2) has a positive equilibrium
(ua(t, 1), ua(t, 2), ua(t, 1), up(t, 2)) = (ug, U, Uy, U), (2.4)
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where

— r1ag2 — raag2 — rpai; —riaz:
U= —= =% Up=-2""7 - °= 2.5
1 detA 2 detA (2.5)

The Jacobian matrix of the system withouffdsion linearized at ug, up, Uz, Up) is

-1 161 —8.12[71 0 0
—ayp 162 —azzl.Tz 0 0
= 0 0 —apu; —agus |’ (2.6)
0 0  —aplp —apw

The corresponding characteristic polynomial has the form
Da(2) = (D2(2)%,  Da(1) = 2% + A(a11lh + aplb) + Litp detA.  (2.7)

Sinceagiu; + axoUp > 0 and defA > 0, we see that the coexistence equilibrium point
(u1, Uz, Uz, U2) is linearly asymptotically stable.

3. THE LINEARIZED PROBLEM

Returning to system (2.1), we see tha, (i, uz, Up) is also a spatially homoge-
neous equilibrium of the system withfflision. The Jacobian matrix of the system
with diffusion at (1, U, U, Up) is written as

—ayth—dior —aath~diojln thor thofln
—ap1Uz—taohly  —apoUz—0z02 taohp ta02
Jo = o B 3 | (3.1
tho1 dhojn —aq1lh—thor —anoli—dioith
d05U2 da02 —ap1lp—taohly  —apallz—d202

whereo; ando’ are to be taken ak; and o2, 0}, atu;. We have

—an1—~dio1-4 —agotp~dio} iy dio1 thojn
—ap1Ux—taoy Uy —apallz—0p02—4 d05U2 d02
detdp — A1) = _ B B . (3.2)
thor thojn —ayup—tho1—4 —aioup—-diojuy

05Uz o2 —apliz—OaohUp —apaliz—da02-1



86 ALY A. SHABAN

Using the properties of determinant, we get

—agup—1  —agely dio1 YA

—aply  —agala—A (YAT dz02
det{p — A1) = ) T
0  —an-2di01-4 —aioup—-20107th
0 0 —a2162—2d29’262 —apolp—20202—1

= Dz(ﬂ)(/lz + A(ag1U1 + azoUp + 2(d10;1 + dpo2)) + Uyl detA
+ 2U1d2(a1102 — A1205U2) + 2U2d1 (82201 — 2107 U1)
+ 4d102(0102 — U1U20705)).

We know thatD»(1) has two roots with negative real parts. The other polynomial
will have a negative and a positive root if the constant term is negative. Clearly,

. A
(0102 — U1U20705) = 0102 (1 U1U2_) <0
0102

if 2—2’; is large enough. If we have achieved this, we may incrdasador d, and the
constant term becomes negative (see [3]). These calculations lead us to the following
theorem.

Theorem. The equilibrium(uy, up, Uy, uz) of system(2.1) is asymptotically stable if

gigj dy andd, are syficiently small. Ifgigi and eitherd; or ds are syficiently large,

then(uz, Uy, U1, Uy) loses its stability by a Turing bifurcation.

Remark. The situation is dterent if the cooperation is obligatorgs,ro < 0; the
condition of having a point of intersection in the positive quadrant is

detA = aj1a20 — ax1a32 < 0. (3.3)

The characteristic polynomial of the linearized system (2.6) withaftiaglon at
(LT]_, Uo, Uy, LTz) has the form

Da(2) = (D2(2)%,  Da(1) = 2% + A(a11U1 + aplb) + it detA.  (3.4)

Sinceaz1u; + axolp > 0 and def < 0, we see that the coexistence equilibrium point
(u1, U, U1, Up) is a saddle point and filusion never stabilizes an equilibrium which is
unstable for the kinetic system.

4. NUMERICAL INVESTIGATION

In this section, we apply our analytical approach of Section 3 to a specific migra-
tion function and we are looking for conditions which imply the Turing instability
(diffusion driven instability). Namely, we choose

01(U2) = myexp Cuz/my),  2(u1) = mpexp (uy/mp), m,mp>0.  (4.1)
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If rl = 2’ r2 = l’ all = 5’ a22 = 47 a12 = _4’ a21 = _3’ ml = 17 m2 = 1, anddl = 1’
then
detA = aj1a02 —ax1a32 =8

and
0 = M2 — M2d12 _ 3 O = r2811 — Mapy _ 1
! detA 2’ 2 detA 8
At d2 = d2C|’it!
—§+—J%r
8 11
Goert = ———2%8) - 2811725408

“tod3)  20u())

we have four eigenvaluek (i = 1,2,3,4) such thatl; < 0 (i = 1,2,3) andi, = 0.

[ dp | uy(t, 1) \ up(t, 1) \ uy(t, 2) \ ux(t, 2) \
28 1.500000000 | 1.375000000 | 1.500000000 | 1.375000000
1524440807 1.403943678 1474516967 | 1.344807960
28.2| 1.500000000 1.375000000 1.500000000 | 1.375000000
1474516967 1.344807960 1524440807 | 1.403943678
1574289053 1.462917090 1415068046 | 1.274335600
29 1.500000000 1.375000000 1500000000 | 1.375000000
1415068046 1.274335600 1574289053 | 1.462917090
1.602257674 1.495956494 1376189993 | 1.228230906
30 1.500000000 1.375000000 1.500000000 | 1.375000000
1.376189993 1.228230906 1602257674 | 1.495956494
1.683294096 1591314489 1225824281 | 1.049861530
40 1.500000000 1.375000000 1.500000000 | 1.375000000
1.225824281 1.049861530 1.683294096 | 1591314489
1.704327936 1.615899482 1.169559919 | .9830950704
50 1.500000000 1.375000000 1.500000000 | 1.375000000
1.169559919 .9830950704 1704327936 | 1.615899482
1714081033 1627253651 1138343964 | .9460399293
60 1.500000000 1.375000000 1.500000000 | 1.375000000
1138343964 19460399293 1714081033 | 1.627253651
1723234442 1.637870036 1104276166 .9055833674
80 1.500000000 1.500000000 1.500000000 1.500000000
1.104276166 .9055833674 1723234442 1.637870036
1727536907 1.642841684 1.085923814 | .8837801086
100 | 1.500000000 1.500000000 1500000000 | 1.500000000
1.085923814 .8837801086 1727536907 | 1.642841684

TasLe 1. The equilibria before and after bifurcation (Section 4).
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If d» < dacrit, thend; < 0 (i = 1,2,3,4), and (i1, Uy, Uy, Up) is asymptotically
stable. If dy > dogrit, thendj < 0 (i = 1,2, 3) < 0 andA4 > 0; hence, 1, Up, Uy, Up) is
unstable in this case.

Thus, agd, is increased througth = da¢it, then the spatially homogeneous equi-
librium loses its stability. Numerical calculations show that two new spatially non-
constant equilibria emerge, and these equilibria are asymptotically stable, so that this
is a pitchfork bifurcation. Table 1 contains some numerical data, whereas Figure 2
shows the grapli®f the coordinate (t, 1) of solutions corresponding to the respec-
tive initial conditions

(1.80,1.60,1.50,1.25), (1.20,1.10,1.59,1.47), (1.58,1.45,1.36,1.22),

(1.00,1.10, 1.585 1.47), (1.65, 1.10Q 1.320, 1.500)

in the case wherd, = 30. The three solutions on Figure 2 tend t6QR2576 and
two solutions tend to .B76189. Figure 1 shows the corresponding solutions in a
“pre-bifurcation case” (fod, = 28).

(4.2)
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Ficure 1. Graphs of the coordinatg(t, 1) of the solutions in a “pre-
bifurcation case” (Section 4l, = 28)

“The graphs were produced by using PHASER.
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Ficure 2. Graphs of the coordinatg(t, 1) of the five solutions (Sec-
tion 4, d, = 30; see Table 1) corresponding to the respective initial
conditions (4.2).

It should be noted that, after the bifurcation, the sum of the stable equilibrium
values of species 1 at the two patches (and, similarly, that of species 2) is equal to the
double of its spatially homogeneous equilibrium valydresp.,u,).

5. CoNCLUSIONS

In the present paper, our interest is to study a Lotka—Volterra cooperative system
in two patches in which thper capitamigration rate of each species is influenced
not only by its own but also by the other one’s density, i. e., there is créissidin
present. We show that, at a critical value of the bifurcation parameter, the system
undergoes a Turing bifurcation, and the cross-migration response is an important
factor that should not be ignored when a pattern emerged, Asincreased through
d> = dacrit, the spatially homogeneous equilibrium loses its stability, and two new
stable equilibria emerge. Busion never stabilizes an equilibrium which is unstable
for the kinetic system.
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