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Z. SZABÓ

A. By using the always convergent method of tangential parabolas (but not
using any interval-arithmetic tool), a combined root-finding iterative algorithm is
given which provides a quadratically convergent descending sequence of compact
real intervalsJn containing a simple zero of a twice differentiable real function
defined onJ0.
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1. P, ,  

I [1]  [2], we described two combined root-finding algorithms based on New-
ton’s method and the method of tangential parabolas which is always convergent.

The information used by the method in [1] comprises 4 Horner units:f (an), f ′(an),
f (bn), and f ′(bn). This number is reduced to 2 in [2]. Keeping this number 2 of
Horner’s units used, we aim here at finding a faster combined method generating an
interval sequence with the known features. The conditions (2), (3), and (6) in [2] will
be replaced by the assumption

m2 ≤ | f ′′(x)| in I = [a,b] ⊂ �, for some m2 > 0, (1.1)

provided f ′′ does not change its sign inI .
In this new algorithm, the tangential straight line in the “Newton–Parabola” com-

bined method described in [2] will be replaced by another tangential parabola lying
“outside” the graph off (the area between the curve off and thex-axis is considered
to be “inside”). For this “outer parabola,” we first prove our

Lemma 1. Assume that the functionf : I = [a, b] → � is twice differentiable in
the compact intervalI ⊂ �, assumption(1.1)holds, andf (x0) , 0 for somex0 in I .
Then, for the tangential parabola

p(x) = f (x0) + f ′(x0)(x− x0) − 1
2

m2 sign( f (x0)) (x− x0)2,
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the differencep(x) − f (x) is non-negative (resp., non-positive), providedf (x0) is
positive (resp., negative), andf is concave from below (resp., above) inI .

In other words, we claim thatf (x0) (p(x) − f (x)) ≥ 0 in I , provided the assump-
tions are fulfilled.

Proof of Lemma 1.Let f (x0) > 0. Then we have

p(x) = f (x0) + f ′(x0)(x− x0) − 1
2

m2(x− x0)2,

f (x) = f (x0) + f ′(x0)(x− x0) − 1
2

f ′′(c)(x− x0)2

for somec ∈ (x0, x), and 0< m2 ≤ − f ′′(x), x ∈ I . Thus,

p(x) − f (x) =
1
2

(− f ′′(c) −m2)(x− x0)2 ≥ 0, x ∈ I ,

because− f ′′(c) = | f ′′(c)| ≥ m2. When f (x0) < 0, we havem2 ≤ f ′′(x), x ∈ I , and the
proof is similar, namely, inp(x)− f (x), the term− f ′′(c) will be replaced by−m2. �

The convexity assumptions in Lemma 1 can be summarized as follows:

0 < m2 ≤ −sign( f (x0)) f ′′(x), x ∈ I .

We need now a more accurate notation for the iteration function of the “tangential
parabola” method (briefly, TP-method) described in [1, pp. 581-582]. Let

FT P(x, r,M) :=


x + s f′(x)/M + r

(
2 | f (x)| /M + ( f ′(x)/M)2

)1/2

if s = f (x0) , 0;
x if s = 0.

In order to define our combined “parabola-parabola” method (PP-method for short),
we assume that the following condition is satisfied:∗

(A) The nonlinear functionf : I = [a,b] → � is twice differentiable onI†, the
inequalities| f ′′(x)| ≤ M2 , 0, x ∈ I , and f (a) f (b) < 0 are fulfilled, andf ′′

does not change its sign onI .‡

In addition, we assume that (1.1) holds as well. Let, e. g.f (a) > 0 and f ′′(x) < 0.
Thus, f (a) f ′′(x) < 0. (It does not matter whetherf ′(a) is negative or non-negative.)
Starting with the pointsa0 = a andb0 = b, we construct the sequences

an+1 = FT P(an,1,M2), bn+1 = min {FT P(an,1,m2),b} , (1.2)

∗Actually, assumption (A) is the same as (1) in [2].
†At the endpoints ofI , the one-sided derivatives are to be considered.
‡It follows from (A) that f ′ is monotonic onI , f has a unique zero (say,α) in I , andα is a simple

zero: f (α) = 0, f ′(α) , 0.
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for n = 0, 1,2, . . . . Sinceα is the only zero off in (a, b) and, according to [1, pp. 581-
582], FT P is an always convergent iteration function:FT P ∈ A( f , I ), and we have
lim
n→∞an = α. So, after finitely many (say,N) steps,

bN = min {FT P(aN−1,1,m2),b} = FT P(aN−1,1,m2) ≤ b

and, forn ≥ N, the formulae (1.2) take the form

an+1 = FT P(an,1,M2), bn+1 = FT P(an,1,m2), n = 0,1,2, . . . . (1.3)

In this manner, we obtain the sequence of compact real intervals

Jn = [an, bn] ; n = 0,1,2, . . . ; (J0 = I ).

It follows that

Jn+1 ⊂ Jn, n = 0, 1,2, . . . , and
∞⋂

n=0

Jn = α ∈ I , f (α) = 0, f ′(α) , 0.

In general, we start our iteration from the endpointE ∈ {a, b} for which the inequality

f (E) f ′′(x) < 0 (1.4)

is fulfilled. If, by using formulae similar to (1.3),an (or bn) does not belong toI , then
we choose the nearest endpoint ofI to bean (or bn). This nearest endpoint will be
Ê = {a,b} \ {E} . In particular, if f (a) f ′′(x) < 0, thenE = a, Ê = b, r = 1, and (1.2)
remains the same; after a finite number of steps, we reach a point of iterationan such
that f ′ keeps its sign in [an,b]; if f (b) f ′′(x) < 0, thenE = b, Ê = a, r = −1, and
(1.2) becomes

an+1 = max{FT P(bn,−1,m2), a} , bn+1 = FT P(bn,−1,M2), (1.5)

for n = 0,1,2, . . . . In this case, after finitely many steps, we reach a pointbn such
that f ′ keeps its sign in [a, bn] . On the other hand, we haver = sign ((a+ b)/2−E) =

sign (a + b− 2E). An error estimate for our PP-method is contained in the following

Lemma 2. Assume that conditions(1.1) and (A) are fulfilled, andf ′ keeps its sign
in I = J0. Then, for the diameters of the intervalsJn, we have the estimate

d(Jn+1) ≤ C(d(Jn))2, n = 0, 1, 2, . . . ,

where

C =
1
2

u2
(
M2v

−3 −m2

(
u2 + 2 | f (E)|m2

)−3/2
)
,

u = | f ′(Ê)| = max
{| f ′(a)|, | f ′(b)|} ,

v = | f ′(E)| = min
{| f ′(a)|, | f ′(b)|}

andE, Ê are defined by the relations
{
E, Ê

}
= {a,b} and (1.4).
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Proof. Let, e. g.,f (a) > 0, f ′′(x) < 0. ThenE = a, Ê = b. By using the formulas

an+1 = an + f ′(an)/M2 + (2 f (an)/M2 +
(
f ′(an)/M2

)2)1/2

and

bn+1 = an + f ′(an)/m2 + (2 f (an)/m2 +
(
f ′(an)/m2

)2)1/2,

we get
d(Jn+1) = bn+1 − an+1 = f ′(an) (1/m2 − 1/M2)

+
(
2 f (an)/m2 +

(
f ′(an)/m2

)2)1/2

−
(
2 f (an)/M2 +

(
f ′(an)/M2

)2)1/2

= 1/m2 (y + F(m2)) − 1/M2 (y + F(M2))

(1.6)

wherey = f ′(an) = − |y| < 0, q = 2 f (an) and F(m) = (y2 + qm)1/2. We take
F′(m) = 1

2q(y2+qm)−1/2 andF′′(m) = −1
4q2(y2+qm)−3/2. By using Taylor’s formula,

we obtain

F(m) = F(0) + F′(0)m+
1
2

F′′(w)m2

= |y| + qm/(2 |y|) − 1
8

q2m2(y2 + qw)−3/2,

wherew ∈ (0,m). Then (1.6) takes the form

d(Jn+1) =
1

m2

(
y + |y| + q

m2

2 |y| −
1
8

q2m2
2

(
y2 + qw

)−3/2
)

− 1
M2

(
y + |y| + q

M2

2 |y| −
1
8

q2M2
2

(
y2 + qW

)−3/2
)

=
q2

8

(
M2

(
y2 + qW

)−3/2 −m2

(
y2 + qw

)−3/2
)

=
1
2

f 2(an)
(
M2

(
f ′2(an) + 2 f (an)W

)−3/2 −m2

(
f ′2(an) + 2 f (an)w

)−3/2
)
,

wherew ∈ (0,m2) andW ∈ (0,M2). The factor f 2(an) on the right-hand side can be
replaced byf ′2(tn)(α−an)2 for sometn ∈ (an, α) because, by the mean value theorem,
f (α) − f (an) = f ′(tn)(α − an). Thus, one can estimated(Jn+1) as follows:

d(Jn+1) ≤ 1
2

f ′2(tn)(α − an)2
(
M2/

∣∣∣ f ′(an)
∣∣∣3 −m2

(
f ′2(an) + 2 f (an)m2

)−3/2
)

≤ 1
2

f ′2(b)(α − an)2
(
M2/

∣∣∣ f ′(a)
∣∣∣3 −m2

(
f ′2(b) + 2 f (a)m2

)−3/2
)

=
1
2

u2(α − an)2
(
M2/v

3 −m2

(
u2 + 2 | f (E)|m2

)−3/2
)

≤ C(bn − an)2 = C (d(Jn))2 .
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In the remaining three cases corresponding to the signs off (a) and f ′′(x), the proofs
are quite similar. �

Remark1. Assumptions (1.1) and (A) imply that

v < u <
(
u2 + 2 | f (E)|m2

)1/2
,

soC > 0.

Remark2. A geometrical representation shows that our PP-method is faster than the
combined method described in [2]. (Namely, the “outer parabola” lies below (resp.,
above) the tangential line of Newton’s method iff (an) > 0 (resp.,f (an) < 0). This
fact is also reflected in the error estimates because

C = K − 1
2

u2m2

(
u2 + 2 | f (E)|m2

)−3/2
.

Remark3. If | f (an)| � 1 (i. e.,an is close toα), then

C ≈ 1
2

u2
(
M2/v

3 −m2/u
3
)

= K − 1
2

m2/u,

whereK is the error constant in [2].

Remark4. For the endpointÊ, we have f (Ê) f ′′(x) > 0. According to the Fourier
conditions, the Newton method can be used, starting atÊ (like in [1]).

The results above can be summarized in our main

Theorem 1. If assumptions(1.1) and (A) hold, then the sequence of compact real
intervals Jn = [an,bn] , n = 0,1,2, . . . , generated by the combined PP-method de-
scribed above has the following properties:

1◦ Jn+1 ⊂ Jn, n = 0, 1, 2, . . . ;
2◦

⋂∞
n=0 Jn = α ∈ I , f (α) = 0, f ′(α) , 0;

3◦ if f ′ keeps its sign onI = J0, then, for the diameters of the resulting intervals,
we have the estimate

d(Jn+1) ≤ C (d(Jn))2 , n = 0,1, 2, . . . ,

where

C =
1
2

u2
(
M2v

−3 −m2

(
u2 + 2 | f (E)|m2

)−3/2
)
,

u = | f ′(Ê)| = max
{| f ′(a)|, | f ′(b)|} , v = | f ′(E)| = min

{| f ′(a)|, | f ′(b)|} ,

andE, Ê are defined by the relations
{
E, Ê

}
= {a,b} and (1.4).
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2. A    

The algorithm for the PP-method can be given by the following Boolean function
procedurePPM. The input parameters area, b, eps,m2, M2, f and f 1 (corresponding
to f ′). If they fulfil the requirementsa < b, eps> 0, 0 < m2 ≤ M2 and f (a) f (b) ≤ 0,
thenPPM, the identifier of our Boolean procedure, will have the logical valuetrue,
otherwisePPM will be false. The other output parameters are the endpoints of the
resulting interval [A, B] including α (the zero off ) and having a diameter less than
eps, providedPPM = true. Otherwise, [A, B] will be the initial interval [a,b] .

The subroutines/procedures for the functionsf and f ′ have to be defined by the
user.

SUB is a real function procedure with the formal input parameterL. The actual
input parameters arem2 and M2. This procedure actually calculates the value of
FT P(z, r, L), the tangential parabola iterate ofz for L ∈ {m2,M2} , and puts it into
the output parameterSUB.

The integer variablek contains the information on convexity of the graph off . If
k = 1, then( f (a) + f (b)) /2 > f ((a + b)/2) and f is convex; ifk = −1, then f is
concave. Thus,k = sign( f (a) + f (b) − 2 f ((a + b)/2)) . (We havek , 0, i. e., f is
non-linear becausem2 > 0.)

Boolean procedure PPM (a, b, eps,m2, M2, A, B);
begin integer k, r, s; real a, b, eps,m2, M2, A, B, F, H, P, y, z;

real procedure f (x); real x; (user should definef )
real procedure f 1(x); real x; (user should definef 1 = f ′)
real procedure SUB(L); real L;
begin real T, S; T := 2? abs (F)/L; S := H/L;
SUB := z+ s? S + r ? sqr (T + S ? S) end SUB;

A := a; B := b;
if a < b and eps> 0 and 0 < m2 and m2 ≤ M2 then goto gd;

bd: PPM := false; goto E;
gd: PPM := true;

F := f (a); if F = 0 then begin B := a; goto E end;
P := f (b); if P = 0 then begin A := b; goto E end;
if F ? P > 0 then goto bd; k := sign (F + P− 2? f ((a + b)/2));
if F ? k < 0 then begin z := a; r := 1; end

else begin z := b; F := P; r := −1; end;

H := f 1(z); s := sign (F); y := SUB(m2);
if a > y then y := a; if y > b then y := b;

W: z := SUB(M2); if abs (z− y) < eps then goto T;
F := f (z); H := f 1(z); y := SUB(m2); goto W;

T: if r > 0 then begin A := z; B := y; end

else begin A := y; B := z; end;

E: end PPM;
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Some numerical examples can be found in the following tables, where the correct
digits are underlined.

Example1. f (x) = x− e−x, a = 0, b = 1(= E), M2 = 1, m2 = 0.35;
n an bn bn − an

0 0 1 1
1 0.562383493311499668990.597191641688819610913 · 10−2

2 0.567083735613347695840.567270152716621880722 · 10−4

3 0.56714328929501556755 0.56714329263260011212 3 · 10−9

4 0.56714329040978387265 0.56714329040978387368 1 · 10−18

5 0.567143290409783873000.567143290409783873001 · 10−37

Example2. f (x) = tan−1 x− 2.6 +
√

x, a = 1, b = 4(= E), M2 = 0.75, m2 = 0.035;
n an bn bn − an

0 1 4 3
1 1.899703783944499373192.960880857053715477091
2 2.065672775608429220802.366791765364152665993 · 10−1

3 2.138946823766438473372.168107975431851652433 · 10−2

4 2.146586934927196852632.146898751209870428633 · 10−4

5 2.14666632870554397592 2.14666636586609630990 4 · 10−8

6 2.14666633811284909659 2.14666633811284962657 5 · 10−16

7 2.146666338112849230742.146666338112849230741 · 10−31

Example3. f (x) = 1− x− sinx, a = 0.01, b = 1(= E), M2 = 0.842, m2 = 0.0099;
n an bn bn − an

0 0.01 1 1
1 0.454653260965631667660.517364539360879528336 · 10−2

2 0.510968153800427644640.510977234673132429019 · 10−6

3 0.51097342938671630865 0.51097342938993405418 3 · 10−12

4 0.510973429388569109520.510973429388569109524 · 10−25
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