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AsstrACT. By using the always convergent method of tangential parabolas (but not
using any interval-arithmetic tool), a combined root-finding iterative algorithm is
given which provides a quadratically convergent descending sequence of compact
real intervalsJ, containing a simple zero of a twiceftlrentiable real function
defined onlJ,.
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1. PRELIMINARIES, CONVERGENCE, ERROR ESTIMATION

N [1] anp [2], we described two combined root-finding algorithms based on New-
ton’s method and the method of tangential parabolas which is always convergent.
The information used by the method in [1] comprises 4 Horner uriita;), f'(an),
f(by), and f’(b,). This number is reduced to 2 in [2]. Keeping this number 2 of
Horner’s units used, we aim here at finding a faster combined method generating an
interval sequence with the known features. The conditions (2), (3), and (6) in [2] will
be replaced by the assumption

my < [f”(X)] in | =[a,b] c R, for somem, > 0, (1.2)

providedf”” does not change its sign in

In this new algorithm, the tangential straight line in the “Newton—Parabola” com-
bined method described in [2] will be replaced by another tangential parabola lying
“outside” the graph of (the area between the curvefoéind thex-axis is considered
to be “inside”). For this “outer parabola,” we first prove our

Lemma 1. Assume that the functioh: | = [a,b] — R is twice dfferentiable in
the compact interval c R, assumptior{1.1) holds, andf(xg) # 0 for somexg in |.
Then, for the tangential parabola

P0) = F00) + 1) (X~ X0) ~ 5o sign(f(x0) (X~ Xo)
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106 Z.SZABD

the djferencep(x) — f(X) is non-negative (resp., non-positive), providék) is
positive (resp., negative), arfdis concave from below (resp., above)in

In other words, we claim thatt(xp) (p(X) — f(x)) > 0 in |, provided the assump-
tions are fulfilled.

Proof of Lemma 1Let f(xp) > 0. Then we have
, 1
P = f(%0) + /(o) (X = Xo0) = 5ma(x = o),

10 = 100) + F00)(X ~ %0) ~ 3 (X - %)

for somec € (Xp, X), and O< mp < —f”(x), x € |. Thus,

PO — 109 = 5(-1(Q) - mo)(x~ %)’ 20, xel.

because-f”(c) = [f”(c)| = mp. When f(xg) < 0, we havem, < f”(X), x € |, and the
proof is similar, namely, ip(x) — f(x), the term-f’(c) will be replaced by-m,. O

The convexity assumptions in Lemma 1 can be summarized as follows:

0 < mp < —sign(f(xg)) f"(X), x e I.

We need now a more accurate notation for the iteration function of the “tangential
parabola” method (briefly, TP-method) described in [1, pp. 581-582]. Let

X+ SF0)/M +1 (21T /M + (F(/M)?)

Fre(x,r,M) := if s=f(x) #0;
xif s=0.

In order to define our combined “parabola-parabola” method (PP-method for short),
we assume that the following condition is satisfied:

(A) The nonlinear functiorf : | = [a,b] — R is twice diferentiable o, the
inequalities f”(x)| < Mz # 0, x € I, and f(a) f(b) < O are fulfilled, andf”
does not change its sign ori

In addition, we assume that (1.1) holds as well. Let, €.(g) > 0 andf”’(x) < O.
Thus, f(a)f”(x) < 0. (It does not matter whethdr (a) is negative or non-negative.)
Starting with the pointsg = a andby = b, we construct the sequences

ant1 = Frp(an, 1, M2),  bny1 = min{Frp(an, 1,mp), b}, (1.2)

*Actually, assumption (A) is the same as (1) in [2].

At the endpoints of, the one-sided derivatives are to be considered.

|t follows from (A) that f” is monotonic orl, f has a unique zero (say) in |, ande is a simple
zero: f(a) =0, f'(@) £ 0.
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forn=0,1,2,.... Sincex is the only zero of in (a, b) and, according to [1, pp. 581-
582], Frp is an always convergent iteration functiofyp € A(f, 1), and we have
lim a, = a. So, after finitely many (sayyl) steps,

n—oo

bn = min{Frp(an-1, 1, mp), b} = Frp(an-1,1,mp) < b
and, forn > N, the formulae (1.2) take the form

an1 = Frp(an, 1, M2), bpi1 = Frp(an,1,mp), n=0,1,2,.... (1.3)
In this manner, we obtain the sequence of compact real intervals
Jh=[an,by]; n=012...; (Jo=1).

It follows that

Js1Cdn=0,12..., and ﬂJn:ael, f(a) =0, f'(a) 0.
n=0

In general, we start our iteration from the endpdirg {a, b} for which the inequality
f(E)f”(x) <0 (1.4)

is fulfilled. If, by using formulae similar to (1.3, (or b,) does not belong tb, then
we choose the nearest endpointl db bea, (or by). This nearest endpoint will be
E = {a,b}\ {E}. In particular, iff(a)f/(x) < O, thenE =a, E = b,r = 1, and (1.2)
remains the same; after a finite number of steps, we reach a point of iteagsach
that f/ keeps its sign indy, b]; if f(b)f”’(x) < O, thenE = b, E = a,r = -1, and
(1.2) becomes

an+l = max{ FT P(bn, _17 rnZ)’ a} ’ bn+1 = FT P(bna _19 M2)7 (15)

forn =0,1,2,.... In this case, after finitely many steps, we reach a pljirguch
that f” keeps its sign ind, b,] . On the other hand, we have= sign (@+b)/2-E) =
sign @+ b — 2E). An error estimate for our PP-method is contained in the following

Lemma 2. Assume that conditiond.1) and (A) are fulfilled, andf’ keeps its sign
in | = Jo. Then, for the diameters of the intervalg we have the estimate

d(Jns1) <CMGN)% n=0,1,2,...,
where
C = %uz(Mgv‘e‘ —mp (W + 2/ (E)| mz)’3/2),
u=If'(E)l = max{If’' (@)l It (b},
v=I[f(E)l = min{|f'(@)I,f'(b)I}
andE, E are defined by the relatior{&, E} = {a, b} and (1.4).
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Proof. Let, e. g.,f(a) > 0, f”(X) < 0. ThenE = a, E = b. By using the formulas
8n+1 = an + f/(8n)/Mz + (2f (an) /M2 + (' (an)/M2))?
and

bret = @n + f/(@0)/Mp + (2f (an) /My + (f'(an)/mp)?) 2,
we get
d(In+1) = bryr —ans1 = f,(an) (1/m2 - 1/M2)
+(2f @) /me + (F(@n)/me)?)

~ (2f(@n)/M2 + (f'(an)/M2)?)
=1/m (y + F(mp)) — 1/M2 (y + F(M2))

wherey = f'(a)) = —lyl < 0, q = 2f(an) andF(m) = (42 + gm¥2. We take
F'(m) = 3aq(?+am)~Y2 andF”(m) = —2¢2(y?+qm)~/2. By using Taylor’s formula,
we obtain

o (1.6)

F(m) = F(0) + F'(O)m+ %F”(w)mz

1
= Iyl + Y lyl) - AP (y” + qu) %,

wherew € (0, m). Then (1.6) takes the form

1 1 -3/2
d(Jns1) = P~ (y Iyl + O — 1 (47 + qu) )

2yl 8
- Miz (y + Iyl + q%zl E %qZMS (v°+ qW)_g/Z)
2 _ _
= g (M ¢ ) - o2+ ) )
1

=3h @) (M2 (@) + Zf(a”)w)_g/z —mp(f(an) + 2f(an)w)_3/2),

wherew € (0, mp) andW e (0, M»). The factorf?(a,) on the right-hand side can be
replaced byf"?(t,)(a —an)? for somet, € (an, @) because, by the mean value theorem,
f(a) - f(an) = f'(th)(@ — a,). Thus, one can estimatiJ,.1) as follows:

() < 5 720t~ a0)? (Mo [ (an)f® = o (12(a0) + 21 (@) )
< 2120~ a)? (Mo | /@) ~ o (1200) + 2f(@ymy) )

_ %uz(a _ an)Z(Mz/US -mp (u2 +2|f(E)l mz)_S/z)

< C(bn — an)? = C(d(In))?.
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In the remaining three cases corresponding to the sigh&prand f”/(x), the proofs
are quite similar. O
Remarkl. Assumptions (1.1) and (A) imply that

v<u< (u2+2|f(E)|mz)1/2,

soC > 0.

Remark2. A geometrical representation shows that our PP-method is faster than the
combined method described in [2]. (Namely, the “outer parabola” lies below (resp.,
above) the tangential line of Newton’s method (&,) > 0 (resp.,f(an) < 0). This

fact is also reflected in the error estimates because

1 _
C = K- Sum (&2 + 2[(E)I my) 3z

Remark3. If |f(ay)] < 1 (i. e.,a, is close taw), then

1, 3 3) _ 1
C~u (Mz/v —mz/u)_K—Emz/u,

whereK is the error constant in [2].

Remark4. For the endpoin€, we havef(E)f”(x) > 0. According to the Fourier
conditions, the Newton method can be used, startirig (@ike in [1]).

The results above can be summarized in our main

Theorem 1. If assumptiong1.1) and (A) hold, then the sequence of compact real
intervals J, = [a,,bn], N = 0,1,2,..., generated by the combined PP-method de-
scribed above has the following properties:

1° 1< J,n=012...;

2 Nigdh=acl, f(@)=0,f(a) #0;

3° if f” keeps its sign oh= Jy, then, for the diameters of the resulting intervals,
we have the estimate

d(Jns1) < C(d(JIn))?, n=0,12,...,
where
o %uZ(sz—?’ —mp (2 + 2/ (E)] mz)’w),
u=I[f(E)l = max{|f'(@I,1f' O}, v=If'(E)=min{f' @I D)},

andE, E are defined by the relatior{&, E} = {a, b} and (1.4).
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2. ALGORITHM AND SOME NUMERICAL EXAMPLES

The algorithm for the PP-method can be given by the following Boolean function
procedurd®PM. The input parameters aaeb, eps m2, M2, f andf1 (corresponding
to f’). If they fulfil the requirementa < b, eps> 0,0 < m2 < M2 andf(a)f(b) < 0,
thenPPM, the identifier of our Boolean procedure, will have the logical vdiue,
otherwisePPM will be false The other output parameters are the endpoints of the
resulting interval A, B] including « (the zero off) and having a diameter less than
eps providedPPM = true. Otherwise, P, B] will be the initial interval fa, b] .

The subroutingprocedures for the functionsand f’ have to be defined by the
user.

SUBis a real function procedure with the formal input paramétefhe actual
input parameters arep and M,. This procedure actually calculates the value of
Fre(zr,L), the tangential parabola iterate nfor L € {mp, M2}, and puts it into
the output paramet&SUR

The integer variabl& contains the information on convexity of the graphfoff
k =1, then(f(a) + f(b)) /2 > f((a+b)/2) and f is convex; ifk = -1, thenf is
concave. Thusk = sign(f (a) + f(b) — 2f ((a+ b)/2)). (We havek # 0, i. e., f is
non-linear becausa, > 0.)

Boolean procedure PPM @, b, epsm2, M2, A, B);
begin integerKk,r, s, real a, b, epsm2, M2,A/B,F,H,P,y, 7
real procedure f(X); real X; (user should defin€)
real procedure f1(x); real X; (user should definél = )
real procedure SUB(L); real L;
begin real T,S; T :=2xabsf)/L; S:= H/L;
SUB=z+sxS+r*sqr(l +S x S) end SUB;
A=aB:=b
if a<bandeps>0and0<m2and m2< M2 then goto gd;
bd: PPM = false; goto E;
gd: PPM = true;
F .= f(a); if F = 0 then begin B := a; goto E end;
P:= f(b); if P = 0 then begin A := b; goto E end;
if FxP>0 then goto bd; k:=signF +P-2x f((a+b)/2));
if Fxk<0O then beginz:=a;r:=1; end
else begin z:=b;F :=P;r:=-1; end;
H:= f1(2); s:=sign F); y := SUBM2);
ifa>y theny:=a ify>b theny:=Db;
W:z:=SUB(M2);if abs¢ - y) < eps then goto T,
F:=f(2;H:=f1(2; y := SUB(M2); goto W,
T:ifr >0 then begin A=z B:=y; end
else begin A:=y; B:=2z end;
E:end PPM;
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Some numerical examples can be found in the following tables, where the correct
digits are underlined.
Examplel. f(x)=x-e*,a=0,b=1(=E), M2 =1, m, = 0.35;
[n]an | bn [bn—an |
0 1 1
0.562383493311499668990.597191641688819610913 - 102

0.567083735613347695840.5672701527166218807p2 - 1074
0.567143892950155675% 0.5671432263260011212 3- 10°°
0.5671432904097838B5 | 0.5671432904097838%8 | 1- 10718

0.567143290409783873000.56714329040978387300L - 10737
Example2. f(x) =tamlx—26+ X, a=1b=4(= E), My = 0.75, m, = 0.035;
[n]an | bn [bn—an |

1 4 3
1.89970378394449937312.96088085705371547709
2.0656727756084292208®.3667917653641526659%8B - 101
2.138946823766438473372.168107975431851652433 - 1072
2.146686934927196852632.1468987512098704286(33 - 104
2.1466662870554397592 2.146666558660963099(0 4 - 1078
2.14666633811284M659| 2.146666338112842657| 5- 10716
2.146666338112849230742.14666633811284923074L - 10731

Example3. f(X) = 1— x—sinx, a= 0.01, b= 1(= E), M, = 0.842 m, = 0.0099;
IE® | bn [bn-an |
0.01 1 1
0.45465326096563166766).517364539360879528336 - 102
0.510968153800427644640.510977234673132429019-10°°

0.5109734293871630865 0.5109734293893405418 3- 10712
0.510973429388569109520.510973429388569109524 - 10-2°

b wWNEFO
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