

Miskolc Mathematical Notes Vol. 5 (2004), No 1, pp. 19-23 $\begin{array}{c} {\rm HU\ e\text{-}ISSN\ 1787\text{-}2413} \\ {\rm DOI:\ 10.18514/MMN.2004.77} \end{array}$

Congruences in transitive relational systems

Ivan Chajda

CONGRUENCES IN TRANSITIVE RELATIONAL SYSTEMS

IVAN CHAJDA

[Received: May 5, 2003]

ABSTRACT. A transitive relational system means a pair (A, R) where $A \neq \emptyset$ and R is a transitive binary relation on A. We define a congruence θ on (A, R) and a factor relation R/θ on the factor set A/θ such that the factor system $(A/\theta, R/\theta)$ is also a transitive relational system. We show that these congruences are in a one-to-one correspondence with the so-called LU-morphisms whenever the relation R is a quasiorder on A.

Mathematics Subject Classification: 08A02, 08A30

Keywords: Relational sytem, quasiorder, transitive relation, congruence, LU-morphism

The concept of a Relational system was introduced by A. I. Maltsev [5, 6]. We will restrict our consideration to relational systems with only one binary relation. Hence, by a *relational system* we will mean a pair $\mathcal{A} = (A, R)$, where $A \neq \emptyset$ and $R \subseteq A \times A$, i. e., R is a binary relation on A. Relational systems play an important role both in mathematics and in applications since every formal description of a real system can be done by means of relational system $\mathcal{A} = (A, R)$ because it enables us to introduce the method of abstraction on \mathcal{A} . Hence, if θ is an equivalence relation on A, we ask about a 'factor relation' R/θ on the factor set A/θ such that the factor system $(A/\theta, R/\theta)$ shares some of 'good' properties of \mathcal{A} .

In this paper, we are mostly interested in relational systems $\mathcal{A} = (A, R)$ where *R* is *transitive*, i.e. $\langle a, b \rangle \in R$ and $\langle b, c \rangle \in R$ imply $\langle a, c \rangle \in R$. Then \mathcal{A} is called a *transitive* system. A transitive relation formalises the concept of an "ordering" so that, in a set *A*, one can thus ask what elements of *A* go "before" or "after" a given element of *A*. Our topic is to define a congruence θ on \mathcal{A} and a factor relation R/θ such that

- (i) the system $(A/\theta, R/\theta)$ is also transitive, and if *R* is reflexive or symmetrical, then R/θ shares the same properties;
- (ii) a possible common bound is preserved by our construction.

Let us note that a similar task for ordered sets was already solved in [4], and we will try to modify that construction for transitive relational systems.

©2004 Miskolc University Press

19

IVAN CHAJDA

A *quasiordered system* will mean a relational system $\mathcal{A} = (A, R)$ where R is a *quasiorder* on A, i. e., R is a reflexive and transitive relation. Quasiorders on a given set A form an algebraic lattice, which was studied, e. g., in [3]. Here, we are interested in quasiordered systems where elements may have common "lower" and/or "upper" bounds. The systems where every two elements of A have also suprema and infima with respect to the quasiorder R are very important in applications; they were investigated by the author in [1, 2]. However, the lower and upper bounds can be defined also for general relational systems as follows.

Notation 1. Let $\mathcal{A} = (A, R)$ be a relational system and $a, b \in A$. Introduce the following notation:

$$L_A(a, b) = \{x \in A; \langle x, a \rangle \in R \text{ and } \langle x, b \rangle \in R\},\$$
$$U_A(a, b) = \{x \in A; \langle a, x \rangle \in R \text{ and } \langle b, x \rangle \in R\}.$$

If a = b, we will write $L_A(a)$ or $U_A(a)$ instead of $L_A(a, a)$ or $U_A(a, a)$, respectively. Clearly, if *R* is reflexive, then $a \in L_A(a)$ and $a \in U_A(a)$ for each $a \in A$. It is easy to prove that if *R* is transitive, then $\langle a, b \rangle \in R$ iff $L_A(a, b) = L_A(a)$ iff $U_A(a, b) = U_A(a)$.

Naturally, if *R* is transitive and $a, b \in R$, then $L_A(a, b)$ is the set of all lower bounds of *a*, *b* and $U_A(a, b)$ is the set of all upper bounds of *a*, *b* with respect to *R*.

If $f : A \to B$ is a mapping and $P \subseteq A$, we put $f(P) = \{f(z) : z \in P\}$.

Definition. Let $\mathcal{A} = (A, R), \mathcal{B} = (B, Q)$ be two relational systems. A surjective mapping $f : A \to B$ is called an *LU-morphism* if

$$f(L_A(x, y)) = L_B(f(x), f(y))$$

and

$$f(U_A(x,y)) = U_B(f(x), f(y))$$
 for all $x, y \in A$.

A mapping f is called a *homomorphism* of \mathcal{A} into \mathcal{B} if

$$\langle a, b \rangle \in R \Rightarrow \langle f(a), f(b) \rangle \in Q.$$

A homomorphism *f* is called *strong* if, for arbitrary *a*, *b* \in *A*, there exist *c*, *d* \in *A* such that f(c) = f(a), f(d) = f(b) and $\langle f(a), f(b) \rangle \in Q \Rightarrow \langle c, d \rangle \in R$.

Lemma 1. Let $\mathcal{A} = (A, R)$, $\mathcal{B} = (B, Q)$ be transitive relational systems and f be an LU-morphism of \mathcal{A} onto \mathcal{B} . Then f is a homomorphism of \mathcal{A} onto \mathcal{B} . If R is, moreover, reflexive, then f is a strong homomorphism.

Proof. Suppose $\langle a, b \rangle \in R$. Since R is transitive, it implies $L_A(a, b) = L_A(a)$ and, therefore,

$$L_B(f(a), f(b)) = f(L_A(a, b)) = f(L_A(a)) = L_B(f(a)),$$

whence $\langle f(a), f(b) \rangle \in Q$; thus, f is a homomorphism. Suppose now that R is also reflexive. If $\langle f(a), f(b) \rangle \in Q$, then

$$f(L_A(a,b)) = L_B(f(a), f(b)) = L_B(f(a)) = f(L_A(a))$$

20

and, on account of reflexivity, we have $a \in L_A(a)$; thus, $f(a) \in f(L_A(a)) = f(L_A(a, b))$. Analogously, one can show that $f(b) \in f(U_A(a, b))$. Hence, there exist $c \in L_A(a, b)$ and $d \in U_A(a, b)$ such that f(c) = f(a), f(d) = f(b). The condition $c \in L_A(a, b)$ yields $\langle c, a \rangle \in R$ and $\langle c, b \rangle \in R$, and the condition $d \in U_A(a, b)$ implies that $\langle a, d \rangle \in R$ and $\langle b, d \rangle \in R$. Using the transitivity of R, we conclude that $\langle c, d \rangle \in R$. Hence, f is a strong homomorphism.

If $f : A \to B$ is a mapping, we denote by θ_f the so-called *induced equivalence* on A, i. e., $\langle x, y \rangle \in \theta_f$ iff f(x) = f(y).

We say that relational systems \mathcal{A} , \mathcal{B} are *isomorphic*, in symbols $\mathcal{A} \cong \mathcal{B}$, if there exists a bijection $f : A \to B$ such that both f and f^{-1} are homomorphisms.

Theorem 1. Let $\mathcal{A} = (A, R)$, $\mathcal{B} = (B, Q)$ be quasiordered relational systems and $f : A \to B$ a surjective mapping. The following statements are equivalent:

- (1) f is an LU-morphism;
- (2) f is a homomorphism and, for arbitrary $x, y \in A$ with $\langle f(x), f(y) \rangle \in Q$, there exist $u, v \in A$ such that $\langle v, x \rangle \in R$, $\langle x, u \rangle \in R$ and $\langle v, y \rangle \in R$, $\langle y, u \rangle \in R$ and f(u) = f(y), f(v) = f(x).

Proof. The implication $(1) \Rightarrow (2)$ follows directly by the same argument as in the proof of Lemma 1.

Let us prove the implication $(2) \Rightarrow (1)$. Let f be a homomorphism of \mathcal{A} onto \mathcal{B} . Then $f(U_A(x,y)) \subseteq U_B(f(x), f(y))$ and $f(L_A(x,y)) \subseteq L_B(f(x), f(y))$. Let us prove the converse inclusions. Suppose that $z \in U_B(f(x), f(y))$. Then z = f(w) for some $w \in A$ with $\langle f(x), f(w) \rangle \in Q$, $\langle f(y), f(w) \rangle \in Q$. By (2), there exist $c, d \in A$ such that $\langle x, c \rangle \in R, \langle w, c \rangle \in R$ and $\langle y, d \rangle \in R, \langle w, d \rangle \in R$ and f(c) = f(w) = f(d). Applying the reflexivity of Q, we obtain $\langle f(c), f(d) \rangle \in Q$ and, by (2), there exists $u \in A$ such that $\langle c, u \rangle \in R, \langle d, u \rangle \in R$ and f(u) = f(c) = f(w) = z. Since R is transitive, it follows that $\langle x, u \rangle \in R, \langle y, u \rangle \in R$, thus $u \in U_A(x, y)$, i. e., $z = f(u) \in f(U_A(x, y))$. Analogously, it can be shown that the inclusion $f(L_A(x, y)) \supseteq L_B(f(x), f(y))$ is true. \Box

Definition. Let $\mathcal{A} = (A, R)$ be a relational system and θ be an equivalence on A. Define a binary relation R/θ on the set A/θ as follows:

 $\langle [a]_{\theta}, [b]_{\theta} \rangle \in R/\theta$ iff there exist $x \in [a]_{\theta}$ and $y \in [b]_{\theta}$ with $\langle x, y \rangle \in R$.

The system $\mathcal{A}/\theta = (A/\theta, R/\theta)$ will be called a *factor system* of \mathcal{A} by θ .

The following statement is obvious.

Lemma 2. Let $\mathcal{A} = (A, R)$ and θ be an equivalence on A. If R is reflexive or symmetrical, then R/θ also has this property.

Definition. Let $\mathcal{A} = (A, R)$ be a relational system and θ be an equivalence on A. We say that θ is a *congruence on* \mathcal{A} if $\theta = R \times R$ or

IVAN CHAJDA

- (a) for arbitrary $x, y \in [a]_{\theta}$, there exists a $c \in [a]_{\theta}$ such that $\langle x, c \rangle \in R$ and $\langle y, c \rangle \in R$;
- (b) if $\langle v, a \rangle \in R$, $\langle v, b \rangle \in R$, and $\langle v, a \rangle \in \theta$, then there exists a $t \in A$ such that $\langle a, t \rangle \in R$, $\langle b, t \rangle \in R$, and $\langle b, t \rangle \in \theta$

and the conditions (a) and (b) hold for R^{-1} .

Theorem 2. Let $\mathcal{A} = (A, R)$ be a transitive relational system and θ be a congruence on \mathcal{A} . Then $\mathcal{A}/\theta = (A/\theta, R/\theta)$ is also a transitive relational system.

Proof. Suppose $\langle [a]_{\theta}, [b]_{\theta} \rangle \in R/\theta$ and $\langle [b]_{\theta}, [c]_{\theta} \rangle \in R/\theta$. Then there exist $x \in [a]_{\theta}$, $y, y' \in [b]_{\theta}$, and $z \in [c]_{\theta}$ such that $\langle x, y \rangle \in R$ and $\langle y', z \rangle \in R$. By (a), there exists an $u \in [b]_{\theta}$ such that $\langle y, u \rangle \in R$ and $\langle y', u \rangle \in R$. Since *R* is transitive and $\langle x, y \rangle \in R$, we also have $\langle x, u \rangle \in R$. By (b), there exists a $v \in A$ such that $\langle u, v \rangle \in R$, $\langle z, v \rangle \in R$ and $\langle z, v \rangle \in \theta$, i. e., $v \in [c]_{\theta}$. However, $\langle x, u \rangle \in R$ and $\langle u, v \rangle \in R$ yield $\langle x, v \rangle \in R$; thus, $\langle [a]_{\theta}, [c]_{\theta} \rangle \in R/\theta$.

Theorem 3. Let $\mathcal{A} = (A, R)$, $\mathcal{B} = (B, Q)$ be quasiordered relational systems. Then:

- (1) if $f : \mathcal{A} \to \mathcal{B}$ is an LU-morphism, then θ_f is a congruence on \mathcal{A} and $\mathcal{A}/\theta_f \cong \mathcal{B}$;
- (2) if θ is a congruence on \mathcal{A} , then the canonical mapping $h : \mathcal{A} \to \mathcal{A}/\theta$ (given by the relation $h(a) = [a]_{\theta}$) is an LU-morphism.

Proof. (1) Suppose that $x, y \in [a]_{\theta_f}$. Then f(x) = f(y) and, in view of the reflexivity of Q, we have $\langle f(x), f(y) \rangle \in Q$. By Theorem 1, there exists an $u \in A$ with $\langle x, u \rangle \in R$, $\langle y, u \rangle \in R$ and f(x) = f(u) = f(y). Hence, $u \in [a]_{\theta_f}$. Analogously, one can show the existence of $v \in [a]_{\theta_f}$ with $\langle v, x \rangle \in R$, $\langle v, y \rangle \in R$, i. e., $[a]_{\theta_f}$ satisfies (a) and its dual (i. e., it is "directed").

Let us prove (b). Let $\langle v, a \rangle \in R$, $\langle v, b \rangle \in R$ and $\langle v, a \rangle \in \theta_f$. Then f(v) = f(a) and, therefore, $f(U_A(a, b)) = U_B(f(a), f(b)) = U_B(f(v), f(b)) = U_B(f(b)) = f(U_A(b))$. Hence, there exists a $t \in A$ such that $t \in U_A(a, b)$ and f(t) = f(b), whence $\langle b, t \rangle \in \theta_f$ and $\langle a, t \rangle \in R$, $\langle b, t \rangle \in R$. We have thus shown that (b) holds. Analogously, the dual of (b) can be obtained.

(2) Suppose that $a, b \in A$ and $\langle a, b \rangle \in R$. Since $a \in [a]_{\theta}, b \in [b]_{\theta}$, we have $\langle h(a), h(b) \rangle = \langle [a]_{\theta}, [b]_{\theta} \rangle \in R/\theta$, i. e., h (the canonical mapping) is a surjective homomorphism. Let $x, y \in A$ and $\langle h(x), h(y) \rangle \in Q$. Then $\langle [x]_{\theta}, [y]_{\theta} \rangle \in R/\theta$; thus, there exist $c \in [x]_{\theta}, d \in [y]_{\theta}$ with $\langle c, d \rangle \in R$. By (a), there exists a $v \in A$ with $\langle v, x \rangle \in R$, $\langle v, c \rangle \in R$ and $v \in [x]_{\theta}$, and there exists $t \in A$ with $\langle d, t \rangle \in R, \langle y, t \rangle \in R$ and $t \in [y]_{\theta}$. By (b), there is an $u \in A$ such that $\langle t, u \rangle \in R, \langle x, u \rangle \in R$ and $\langle u, t \rangle \in \theta$. On account of the transitivity of R, we also have $\langle x, u \rangle \in R, \langle y, u \rangle \in R$, and $u \in [y]_{\theta}$, i. e., h(u) = h(y). Analogously, there is an $s \in A$ such that $\langle s, x \rangle \in R, \langle s, y \rangle \in R$, and h(s) = h(x). By Theorem 1, h is an LU-morphism.

22

Theorem 4. Let $\mathcal{A} = (A, R)$ be a quasiordered system and θ be an equivalence on A. Then θ is a congruence on \mathcal{A} if and only if the following assertion is true: for every $a \in A$, $[a]_{\theta}$ is directed and

- (i) $\langle a, b \rangle \in R$, $\langle a, a_1 \rangle \in \theta \Rightarrow \exists b_1 \in A \text{ with } \langle a_1, b_1 \rangle \in R \text{ and } \langle b_1, b \rangle \in \theta$;
- (ii) $\langle a, b \rangle \in R$, $\langle b, b_1 \rangle \in \theta \Rightarrow \exists a_1 \in A \text{ with } \langle a_1, b_1 \rangle \in R \text{ and } \langle a_1, a \rangle \in \theta$.

Proof. (1) Suppose that $\langle a, b \rangle \in R$ and $\langle a, a_1 \rangle \in \theta$ for some $a, a_1, b \in A$. By (a), there exists $d \in [a]_{\theta}$ with $\langle d, a_1 \rangle \in R$, $\langle d, a \rangle \in R$ and, due to the transitivity, $\langle d, b \rangle \in R$. By (b), there exists $b_1 \in [b]_{\theta}$ such that $\langle a_1, b_1 \rangle \in R$. We have obtained (i). Analogously, it can be shown that (ii) is true.

(2) Let θ be an equivalence on A satisfying (i) and (ii). Clearly, (i) + (ii) yields property (b).

Corollary. Let $\mathcal{A} = (A, R)$ be a quasiordered system and θ be an equivalence on A. Then θ is a congruence on \mathcal{A} if and only if:

- (i) R/θ is a quasiorder on A/θ ;
- (ii) $[L_A(x,y)]_{\theta} = L_{A/\theta}([x]_{\theta}, [y]_{\theta})$ and $[U_A(x,y)]_{\theta} = U_{A/\theta}([x]_{\theta}, [y]_{\theta})$ for arbitrary $x, y \in A$.

Proof. If θ is a congruence on \mathcal{A} , then by Theorem 2 and Lemma 2, we obtain (i). Applying Theorem 3, we have (ii). Conversely, let θ be an equivalence on A satisfying (i) and (ii). Then the canonical mapping $h : A \to A/\theta$ is an LU-morphism and, due to Theorem 3, we have $\theta = \theta_h$ is a congruence on \mathcal{A} .

References

- CHAJDA, I.: Lattices in quasiordered sets, Acta. Univ. Palack. Olom., Fac. Rer. Nat., Mathematica, 31 (1992), 6–12.
- [2] CHAJDA, I.: An algebra of quasiordered logic, Mathem. Bohemica, 119 (1994), 129–135.
- [3] CHAJDA, I. AND CZÉDLI, G.: How to generate the involution lattice of quasiorders?, Stud. Sci. Math. Hungar., 32 (1996), 415–427.
- [4] CHAJDA, I. AND SNÁŠEL, V.: Congruences in ordered sets, Czech. Math. Journal, 123 (1998), 95– 100.
- [5] MALTSEV, A. I.: Toward a general theory of algebraic systems, Matem. Sb., 33 (1954), 3-20.
- [6] MALTSEV, A. I.: Algebraic systems, Springer-Verlag, Berlin, 1973.

Author's Address

Ivan Chajda:

Department of Algebra and Geometry, Palacký University Olomouc, Tomkova 40, 779 00 Olomouc, Czech Republic

E-mail address: Chajda@risc.upol.cz