Congruences in transitive relational systems

Ivan Chajda

Miskolc Mathematical Notes
HU ISSN 1586-8850
Vol. 5 (2004), No. 1, pp. 19-23

CONGRUENCES IN TRANSITIVE RELATIONAL SYSTEMS

IVAN CHAJDA

[Received: May 5, 2003]

Abstract

A transitive relational system means a pair (A, R) where $A \neq \varnothing$ and R is a transitive binary relation on A. We define a congruence θ on (A, R) and a factor relation R / θ on the factor set A / θ such that the factor system $(A / \theta, R / \theta)$ is also a transitive relational system. We show that these congruences are in a one-toone correspondence with the so-called LU-morphisms whenever the relation R is a quasiorder on A.

Mathematics Subject Classification: 08A02, 08A30
Keywords: Relational sytem, quasiorder, transitive relation, congruence, LU-morphism

The concept of a relational system was introduced by A. I. Maltsev [5, 6]. We will restrict our consideration to relational systems with only one binary relation. Hence, by a relational system we will mean a pair $\mathcal{A}=(A, R)$, where $A \neq \varnothing$ and $R \subseteq A \times A$, i. e., R is a binary relation on A. Relational systems play an important role both in mathematics and in applications since every formal description of a real system can be done by means of relations. For these considerations we often ask about a certain factorisation of a relational system $\mathcal{A}=(A, R)$ because it enables us to introduce the method of abstraction on \mathcal{A}. Hence, if θ is an equivalence relation on A, we ask about a 'factor relation' R / θ on the factor set A / θ such that the factor system $(A / \theta, R / \theta)$ shares some of 'good' properties of \mathcal{A}.

In this paper, we are mostly interested in relational systems $\mathcal{A}=(A, R)$ where R is transitive, i.e. $\langle a, b\rangle \in R$ and $\langle b, c\rangle \in R$ imply $\langle a, c\rangle \in R$. Then \mathcal{A} is called a transitive system. A transitive relation formalises the concept of an "ordering" so that, in a set A, one can thus ask what elements of A go "before" or "after" a given element of A. Our topic is to define a congruence θ on \mathcal{A} and a factor relation R / θ such that
(i) the system $(A / \theta, R / \theta)$ is also transitive, and if R is reflexive or symmetrical, then R / θ shares the same properties;
(ii) a possible common bound is preserved by our construction.

Let us note that a similar task for ordered sets was already solved in [4], and we will try to modify that construction for transitive relational systems.

A quasiordered system will mean a relational system $\mathcal{A}=(A, R)$ where R is a quasiorder on A, i. e., R is a reflexive and transitive relation. Quasiorders on a given set A form an algebraic lattice, which was studied, e. g., in [3]. Here, we are interested in quasiordered systems where elements may have common "lower" and/or "upper" bounds. The systems where every two elements of A have also suprema and infima with respect to the quasiorder R are very important in applications; they were investigated by the author in [1,2]. However, the lower and upper bounds can be defined also for general relational systems as follows.

Notation 1. Let $\mathcal{A}=(A, R)$ be a relational system and $a, b \in A$. Introduce the following notation:

$$
\begin{aligned}
& L_{A}(a, b)=\{x \in A ;\langle x, a\rangle \in R \text { and }\langle x, b\rangle \in R\}, \\
& U_{A}(a, b)=\{x \in A ;\langle a, x\rangle \in R \text { and }\langle b, x\rangle \in R\} .
\end{aligned}
$$

If $a=b$, we will write $L_{A}(a)$ or $U_{A}(a)$ instead of $L_{A}(a, a)$ or $U_{A}(a, a)$, respectively. Clearly, if R is reflexive, then $a \in L_{A}(a)$ and $a \in U_{A}(a)$ for each $a \in A$. It is easy to prove that if R is transitive, then $\langle a, b\rangle \in R$ iff $L_{A}(a, b)=L_{A}(a)$ iff $U_{A}(a, b)=U_{A}(a)$.

Naturally, if R is transitive and $a, b \in R$, then $L_{A}(a, b)$ is the set of all lower bounds of a, b and $U_{A}(a, b)$ is the set of all upper bounds of a, b with respect to R.

If $f: A \rightarrow B$ is a mapping and $P \subseteq A$, we put $f(P)=\{f(z): z \in P\}$.
Definition. Let $\mathcal{A}=(A, R), \mathcal{B}=(B, Q)$ be two relational systems. A surjective mapping $f: A \rightarrow B$ is called an $L U$-morphism if

$$
f\left(L_{A}(x, y)\right)=L_{B}(f(x), f(y))
$$

and

$$
f\left(U_{A}(x, y)\right)=U_{B}(f(x), f(y)) \quad \text { for all } x, y \in A
$$

A mapping f is called a homomorphism of \mathcal{A} into \mathcal{B} if

$$
\langle a, b\rangle \in R \Rightarrow\langle f(a), f(b)\rangle \in Q
$$

A homomorphism f is called strong if, for arbitrary $a, b \in A$, there exist $c, d \in A$ such that $f(c)=f(a), f(d)=f(b)$ and $\langle f(a), f(b)\rangle \in Q \Rightarrow\langle c, d\rangle \in R$.

Lemma 1. Let $\mathcal{A}=(A, R), \mathcal{B}=(B, Q)$ be transitive relational systems and f be an LU-morphism of \mathcal{A} onto \mathcal{B}. Then f is a homomorphism of \mathcal{A} onto \mathcal{B}. If R is, moreover, reflexive, then f is a strong homomorphism.

Proof. Suppose $\langle a, b\rangle \in R$. Since R is transitive, it implies $L_{A}(a, b)=L_{A}(a)$ and, therefore,

$$
L_{B}(f(a), f(b))=f\left(L_{A}(a, b)\right)=f\left(L_{A}(a)\right)=L_{B}(f(a))
$$

whence $\langle f(a), f(b)\rangle \in Q$; thus, f is a homomorphism. Suppose now that R is also reflexive. If $\langle f(a), f(b)\rangle \in Q$, then

$$
f\left(L_{A}(a, b)\right)=L_{B}(f(a), f(b))=L_{B}(f(a))=f\left(L_{A}(a)\right)
$$

and, on account of reflexivity, we have $a \in L_{A}(a)$; thus, $f(a) \in f\left(L_{A}(a)\right)=f\left(L_{A}(a, b)\right)$. Analogously, one can show that $f(b) \in f\left(U_{A}(a, b)\right)$. Hence, there exist $c \in L_{A}(a, b)$ and $d \in U_{A}(a, b)$ such that $f(c)=f(a), f(d)=f(b)$. The condition $c \in L_{A}(a, b)$ yields $\langle c, a\rangle \in R$ and $\langle c, b\rangle \in R$, and the condition $d \in U_{A}(a, b)$ implies that $\langle a, d\rangle \in R$ and $\langle b, d\rangle \in R$. Using the transitivity of R, we conclude that $\langle c, d\rangle \in R$. Hence, f is a strong homomorphism.

If $f: A \rightarrow B$ is a mapping, we denote by θ_{f} the so-called induced equivalence on A, i. e., $\langle x, y\rangle \in \theta_{f}$ iff $f(x)=f(y)$.

We say that relational systems \mathcal{A}, \mathcal{B} are isomorphic, in symbols $\mathcal{A} \cong \mathcal{B}$, if there exists a bijection $f: A \rightarrow B$ such that both f and f^{-1} are homomorphisms.

Theorem 1. Let $\mathcal{A}=(A, R), \mathcal{B}=(B, Q)$ be quasiordered relational systems and $f: A \rightarrow B$ a surjective mapping. The following statements are equivalent:
(1) f is an LU-morphism;
(2) f is a homomorphism and, for arbitrary $x, y \in A$ with $\langle f(x), f(y)\rangle \in Q$, there exist $u, v \in A$ such that $\langle v, x\rangle \in R,\langle x, u\rangle \in R$ and $\langle v, y\rangle \in R,\langle y, u\rangle \in R$ and $f(u)=f(y), f(v)=f(x)$.

Proof. The implication (1) \Rightarrow (2) follows directly by the same argument as in the proof of Lemma 1.

Let us prove the implication (2) $\Rightarrow(1)$. Let f be a homomorphism of \mathcal{A} onto \mathcal{B}. Then $f\left(U_{A}(x, y)\right) \subseteq U_{B}(f(x), f(y))$ and $f\left(L_{A}(x, y)\right) \subseteq L_{B}(f(x), f(y))$. Let us prove the converse inclusions. Suppose that $z \in U_{B}(f(x), f(y))$. Then $z=f(w)$ for some $w \in A$ with $\langle f(x), f(w)\rangle \in Q,\langle f(y), f(w)\rangle \in Q$. By (2), there exist $c, d \in A$ such that $\langle x, c\rangle \in R,\langle w, c\rangle \in R$ and $\langle y, d\rangle \in R,\langle w, d\rangle \in R$ and $f(c)=f(w)=f(d)$. Applying the reflexivity of Q, we obtain $\langle f(c), f(d)\rangle \in Q$ and, by (2), there exists $u \in A$ such that $\langle c, u\rangle \in R,\langle d, u\rangle \in R$ and $f(u)=f(c)=f(w)=z$. Since R is transitive, it follows that $\langle x, u\rangle \in R,\langle y, u\rangle \in R$, thus $u \in U_{A}(x, y)$, i. e., $z=f(u) \in f\left(U_{A}(x, y)\right)$. Analogously, it can be shown that the inclusion $f\left(L_{A}(x, y)\right) \supseteq L_{B}(f(x), f(y))$ is true.

Definition. Let $\mathcal{A}=(A, R)$ be a relational system and θ be an equivalence on A. Define a binary relation R / θ on the set A / θ as follows:

$$
\left\langle[a]_{\theta},[b]_{\theta}\right\rangle \in R / \theta \text { iff there exist } x \in[a]_{\theta} \text { and } y \in[b]_{\theta} \text { with }\langle x, y\rangle \in R \text {. }
$$

The system $\mathcal{A} / \theta=(A / \theta, R / \theta)$ will be called a factor system of \mathcal{A} by θ.
The following statement is obvious.
Lemma 2. Let $\mathcal{A}=(A, R)$ and θ be an equivalence on A. If R is reflexive or symmetrical, then R / θ also has this property.

Definition. Let $\mathcal{A}=(A, R)$ be a relational system and θ be an equivalence on A. We say that θ is a congruence on \mathcal{A} if $\theta=R \times R$ or
(a) for arbitrary $x, y \in[a]_{\theta}$, there exists a $c \in[a]_{\theta}$ such that $\langle x, c\rangle \in R$ and $\langle y, c\rangle \in R$;
(b) if $\langle v, a\rangle \in R,\langle v, b\rangle \in R$, and $\langle v, a\rangle \in \theta$, then there exists a $t \in A$ such that $\langle a, t\rangle \in R,\langle b, t\rangle \in R$, and $\langle b, t\rangle \in \theta$
and the conditions (a) and (b) hold for R^{-1}.
Theorem 2. Let $\mathcal{A}=(A, R)$ be a transitive relational system and θ be a congruence on \mathcal{A}. Then $\mathcal{A} / \theta=(A / \theta, R / \theta)$ is also a transitive relational system.

Proof. Suppose $\left\langle[a]_{\theta},[b]_{\theta}\right\rangle \in R / \theta$ and $\left\langle[b]_{\theta},[c]_{\theta}\right\rangle \in R / \theta$. Then there exist $x \in[a]_{\theta}$, $y, y^{\prime} \in[b]_{\theta}$, and $z \in[c]_{\theta}$ such that $\langle x, y\rangle \in R$ and $\left\langle y^{\prime}, z\right\rangle \in R$. By (a), there exists an $u \in[b]_{\theta}$ such that $\langle y, u\rangle \in R$ and $\left\langle y^{\prime}, u\right\rangle \in R$. Since R is transitive and $\langle x, y\rangle \in R$, we also have $\langle x, u\rangle \in R$. By (b), there exists a $v \in A$ such that $\langle u, v\rangle \in R,\langle z, v\rangle \in R$ and $\langle z, v\rangle \in \theta$, i. e., $v \in[c]_{\theta}$. However, $\langle x, u\rangle \in R$ and $\langle u, v\rangle \in R$ yield $\langle x, v\rangle \in R$; thus, $\left\langle[a]_{\theta},[c]_{\theta}\right\rangle \in R / \theta$.

Theorem 3. Let $\mathcal{A}=(A, R), \mathcal{B}=(B, Q)$ be quasiordered relational systems. Then:
(1) if $f: \mathcal{A} \rightarrow \mathcal{B}$ is an LU-morphism, then θ_{f} is a congruence on \mathcal{A} and $\mathcal{A} / \theta_{f} \cong$ \mathcal{B};
(2) if θ is a congruence on \mathcal{A}, then the canonical mapping $h: \mathcal{A} \rightarrow \mathcal{A} / \theta$ (given by the relation $\left.h(a)=[a]_{\theta}\right)$ is an $L U$-morphism.

Proof. (1) Suppose that $x, y \in[a]_{\theta_{f}}$. Then $f(x)=f(y)$ and, in view of the reflexivity of Q, we have $\langle f(x), f(y)\rangle \in Q$. By Theorem 1 , there exists an $u \in A$ with $\langle x, u\rangle \in R$, $\langle y, u\rangle \in R$ and $f(x)=f(u)=f(y)$. Hence, $u \in[a]_{\theta_{f}}$. Analogously, one can show the existence of $v \in[a]_{\theta_{f}}$ with $\langle v, x\rangle \in R,\langle v, y\rangle \in R$, i. e., $[a]_{\theta_{f}}$ satisfies (a) and its dual (i. e., it is "directed").

Let us prove (b). Let $\langle v, a\rangle \in R,\langle v, b\rangle \in R$ and $\langle v, a\rangle \in \theta_{f}$. Then $f(v)=f(a)$ and, therefore, $f\left(U_{A}(a, b)\right)=U_{B}(f(a), f(b))=U_{B}(f(v), f(b))=U_{B}(f(b))=f\left(U_{A}(b)\right)$. Hence, there exists a $t \in A$ such that $t \in U_{A}(a, b)$ and $f(t)=f(b)$, whence $\langle b, t\rangle \in \theta_{f}$ and $\langle a, t\rangle \in R,\langle b, t\rangle \in R$. We have thus shown that (b) holds. Analogously, the dual of (b) can be obtained.
(2) Suppose that $a, b \in A$ and $\langle a, b\rangle \in R$. Since $a \in[a]_{\theta}, b \in[b]_{\theta}$, we have $\langle h(a), h(b)\rangle=\left\langle[a]_{\theta},[b]_{\theta}\right\rangle \in R / \theta$, i. e., h (the canonical mapping) is a surjective homomorphism. Let $x, y \in A$ and $\langle h(x), h(y)\rangle \in Q$. Then $\left\langle[x]_{\theta},[y]_{\theta}\right\rangle \in R / \theta$; thus, there exist $c \in[x]_{\theta}, d \in[y]_{\theta}$ with $\langle c, d\rangle \in R$. By (a), there exists a $v \in A$ with $\langle v, x\rangle \in R$, $\langle v, c\rangle \in R$ and $v \in[x]_{\theta}$, and there exists $t \in A$ with $\langle d, t\rangle \in R,\langle y, t\rangle \in R$ and $t \in[y]_{\theta}$. By (b), there is an $u \in A$ such that $\langle t, u\rangle \in R,\langle x, u\rangle \in R$ and $\langle u, t\rangle \in \theta$. On account of the transitivity of R, we also have $\langle x, u\rangle \in R,\langle y, u\rangle \in R$, and $u \in[y]_{\theta}$, i. e., $h(u)=h(y)$. Analogously, there is an $s \in A$ such that $\langle s, x\rangle \in R,\langle s, y\rangle \in R$, and $h(s)=h(x)$. By Theorem 1, h is an LU-morphism.

Theorem 4. Let $\mathcal{A}=(A, R)$ be a quasiordered system and θ be an equivalence on A. Then θ is a congruence on \mathcal{A} if and only if the following assertion is true: for every $a \in A,[a]_{\theta}$ is directed and
(i) $\langle a, b\rangle \in R,\left\langle a, a_{1}\right\rangle \in \theta \Rightarrow \exists b_{1} \in A$ with $\left\langle a_{1}, b_{1}\right\rangle \in R$ and $\left\langle b_{1}, b\right\rangle \in \theta$;
(ii) $\langle a, b\rangle \in R,\left\langle b, b_{1}\right\rangle \in \theta \Rightarrow \exists a_{1} \in A$ with $\left\langle a_{1}, b_{1}\right\rangle \in R$ and $\left\langle a_{1}, a\right\rangle \in \theta$.

Proof. (1) Suppose that $\langle a, b\rangle \in R$ and $\left\langle a, a_{1}\right\rangle \in \theta$ for some $a, a_{1}, b \in A$. By (a), there exists $d \in[a]_{\theta}$ with $\left\langle d, a_{1}\right\rangle \in R,\langle d, a\rangle \in R$ and, due to the transitivity, $\langle d, b\rangle \in R$. By (b), there exists $b_{1} \in[b]_{\theta}$ such that $\left\langle a_{1}, b_{1}\right\rangle \in R$. We have obtained (i). Analogously, it can be shown that (ii) is true.
(2) Let θ be an equivalence on A satisfying (i) and (ii). Clearly, (i) + (ii) yields property (b).

Corollary. Let $\mathcal{A}=(A, R)$ be a quasiordered system and θ be an equivalence on A. Then θ is a congruence on \mathcal{A} if and only if:
(i) R / θ is a quasiorder on A / θ;
(ii) $\left[L_{A}(x, y)\right]_{\theta}=L_{A / \theta}\left([x]_{\theta},[y]_{\theta}\right)$ and $\left[U_{A}(x, y)\right]_{\theta}=U_{A / \theta}\left([x]_{\theta},[y]_{\theta}\right)$ for arbitrary $x, y \in A$.

Proof. If θ is a congruence on \mathcal{A}, then by Theorem 2 and Lemma 2, we obtain (i). Applying Theorem 3, we have (ii). Conversely, let θ be an equivalence on A satisfying (i) and (ii). Then the canonical mapping $h: A \rightarrow A / \theta$ is an LU-morphism and, due to Theorem 3, we have $\theta=\theta_{h}$ is a congruence on \mathcal{A}.

References

[1] Chajda, I.: Lattices in quasiordered sets, Acta. Univ. Palack. Olom., Fac. Rer. Nat., Mathematica, 31 (1992), 6-12.
[2] Chajda, I.: An algebra of quasiordered logic, Mathem. Bohemica, 119 (1994), 129-135.
[3] Chajda, I. and Czédli, G.: How to generate the involution lattice of quasiorders?, Stud. Sci. Math. Hungar., 32 (1996), 415-427.
[4] Chajda, I. and Snášel, V.: Congruences in ordered sets, Czech. Math. Journal, 123 (1998), 95100.
[5] Maltsev, A. I.: Toward a general theory of algebraic systems, Matem. Sb., 33 (1954), 3-20.
[6] Maltsev, A. I.: Algebraic systems, Springer-Verlag, Berlin, 1973.

Author's Address

Ivan Chajda:

Defartment of Algebra and Geometry, Palacký University Olomouc, Tomkova 40, 77900 Olomouc, Сzech Republic

E-mail address: Chajda@risc.upol.cz

