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AsstracT. We present an application of block eigenvalues of the block companion
matrix of a matrix polynomiaP(X) to obtain a general solution of thefidirential
matrix equation associated wiB(X).
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1. INTRODUCTION

The preliminary theory on matrix polynomials revisited next can be found in [4],
[1]. [6], [3] and [5].
Let

P(X) = XM+ AL X™L 4+ Ay (1.1)

be a monic (right) matrix polynomial of degreein the indeterminateX with the
codficients A4, ..., Ay, beingn x n complex matrices. Am x n matrix X1, such
that P(X1) = 0, is a (right) solvent oP(X). Furthermore for each nonsigularx n
matrix formed of leading vectors of Jordan chaind?Qi) it is possible to construct
one solvent ofP(X) and the total number of solvents will be the number of such
nonsingular matrices.

The matrix

On In On

In

-Am ~Ana1 ... AL

(where @ andl, are the null matrix and the identity matrix of orderrespectively)
associated with the céiicients of P(X), is said to be the block companion matrix
of P(X). Moreover, ifXy,..., Xm arem solvents ofP(X), then the respective block
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Vandermonde matrix is

In ... In

V(X1,....Xm) =| . :
Xt oo Xt

and if the matriX/(Xa, . .., Xm) is nonsingular, then we say that thessolvents form
a complete set of solvents B{X).

We consider now a flierential matrix equation, i. e., homogeneous ordinary dif-
ferential equation of ordamn havingn x n matrix codficients, written by

P(dﬂt) x = XM(t) + A X™ D) + ... + Anx(t) = 0. (1.3)

An important result on this is that Xy, ..., Xy, are a complete set of solvents of
the matrix polynomiaP (X) associated witHP(d%) X (that is, having the same ddie
cients), then every solution of
d
P+ |x=0
)

X(t) = €'z + €z + ... + iz, (1.4)
wherezy, 2, . ..,zn € C" ([5], p. 525).

is of the form

2. BLoOCK EIGENVALUES

We recall the classical equation of matrix thedkX = XB, whereA, B are given
complex square matrices (see [2], p. 215). We work here with a variation of this
equation that happens wh&rmspans an invariant subspacefgfand onlyA is given.

It appears in the computation of eigenvalues (see [8], p. 587).

Definition 1. Given a matrixA of orderp, if a matrix Y of orderq < pis such that
AW = WY (2.1)

for a rectangular matrixV of full rank. We say that is a (right) block eigenvalue of
A andW is a corresponding (right) block eigenvector of dimensjonp.

This definition can be restricted to block matrices, of ordet partitioned in
blocks of ordem. In this case the block eigenvalues are of the same order as the
blocks of the block matrix that ia and the corresponding block eigenvector is a
vector of blocks of dimensiomnx n (see [7]).

A block eigenvalue has the property that any similar block is also a block eigen-
value, and it is clear that a block eigenvectirspans an invariant subspace/Ayf
since being of full rank is equivalent to having linearly independent columns.

Next we have the strong relationship between a matrix and a block eigenvalue (see
also [9], Corollary II).
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Theorem 1. Let A be a matrix, then a matriX is a block eigenvalue &, if and only
if the eigenvalues of are also eigenvalues @, and for each common eigenvalug
the corresponding partial multiplicitieky(Y), ...,k (Y) in Y, andky(A),. .., kn(A)
in A, where the integerk; are in decreasing order of magnitude, satisfy

() n<m;

@iy k(YY) <k(A),i=1,...,n.
Proof. First note thah andm are the geometric multiplicities @f in Y, and inA, or
the number of Jordan blocks, @fin Jy, and inJa, the Jordan normal forms &fand
A, respectively. And that thig are the orders of these Jordan blocks. Let now
TJT-1, whereT is a nonsingular matrix. Then suppose tA&Y = WY, with W of
full rank, thusAWT = WYT=WTJ,T-1T = WTJ,. SinceWT is still of full rank, it
follows that the linearly independent columns\WiT are eigenvectors or generalized
eigenvectors of\, with respect to the eigenvalues &f, thus the eigenvalues df
(and ofY) are also ofA. Furthermore, fromAWT = WT J, it follows that Jy is
a submatrix ofJa. Therefore, for each common eigenvaluethe corresponding
geometric multiplicitiesm in A andn in Jy, and hence irY, satisfyn < m. Also
the orders of the Jordan blocks & and of Jy corresponding ta, satisfyk;(Y) <
ki(A),i = 1,...,n. Conversely, suppose that the eigenvalue¥ @dnd hence ofly),
are common téA. And supposing (i) and (ii) we can writdaZ = ZJy, where the
columns ofZ, eigenvectors or generalized eigenvectorf\ptorresponding to the
eigenvalues ofly, are linearly independent. HenZes of full rank, thusAZT-! =
ZX3T 1 = ZzT-1y, with ZT-?1 of full rank, and the conclusion is thatis a block
eigenvalue of\. O

We observe that, for each eigenvalue of a complex matrix, the respective number
of partial multiplicities gives the geometric multiplicity, and therefore the number of
Jordan blocks of the Jordan normal form of the matrix, for this eigenvalue. These
partial multiplicities are the sizes of these Jordan blocks, hence we can conclude that,
if we have the partial multiplicities of all the eigenvalues of a complex matrix, we can
write its Jordan normal form. Considering that, we define a set of block eigenvalues
in which this information can be obtained.

Definition 2. Let A be a matrix, and leYs, ..., Yk be a set of block eigenvalues of

A. We say that this set is a complete set of block eigenvalues, if the eigenvalues, and
respective partial multiplicities, of these block eigenvalues are the eigenvalues, with
the same partial multiplicities, of the matrx

Theorem 2. A set of block eigenvalues, ..., Yk of a matrixA, is a complete set, if
and only if there is a set of corresponding block eigenveddys . ., Wk , such that
the matrix[Wl e Wk] is of full rank, and

AWr o Wi =[Wa - W] diag(Ya. ..., Vi), (2.2)
where diagYi, ..., Yk) is a block diagonal matrix of the same order/Af
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Proof. LetY,..., Yk be a complete set of block eigenvalues, and let

D = diag(Ys, ..., Yi)

be a block diagonal matrix. Since the eigenvalues ofvie. ., Yy, and their partial
multiplicities, are the same as thoseAf The same happens @, the direct sum

of the Yy, ..., Yk. ConsequenthA andD have the same Jordan normal form, and
therefore they are similar, so that there is a nonsingular matsxch thalAR = RD.
Writing R = [Rl Rk] with the number of columns of ead®,i = 1,...,k
being equal to the order of, it follows that, AR = RY;, fori = 1,...,k, and itis
obvious that eacR,; is of full rank, and thus, it is a block eigenvector corresponding
to Y;. Conversely, leiV,, ..., W be a set of right block eigenvectors corresponding
toYs,..., Yy and let

AWe o Wi =|wa - W] diag(Ya, ..., Yi)
with the matrix[Wl Wk] being of full rank, thenA and diag¥, ..., Yx) are
similar, and hence their Jordan normal form, and the partial multiplicities of their
eigenvalues, are common. Thus the. .., Yk are a complete set. O

3. SOLUTIONS OF MATRIX DIFFERENTIAL EQUATIONS

Now we consider block eigenvalues of the block companion matrix, in order to
obtain a general solution to the previously mentiondfedéntial matrix equation.

Theorem 3. Let P(X) be a matrix polynomial and le€ be the associated block
companion matrix, if the matrices, ..., Yk are a complete set of block eigenvalues
of C, andWj, . .., W are the corresponding block eigenvectors . Then every solution
of P(&)x = 0is of the form

X(t) = (W12 + ... + Wiz, (3.1)
where(W, ), is the top submatrix af rows ofW,, fori = 1,2,... kandz,...,z € C".

Proof. From [5], p. 512, we have
X(t) = Pe*'z,
with P = [ ln Oy ... Op ] andz e C™ s arbitrary. Now let, ... ., Wi be block

eigenvectors o€ corresponding to the block eigenvalués.. ., Yk, thus we have
from Theorem 2

CWwa -+ Wi|=[Wa -+ W]diag(Ys,.... ).
now we writeW = [Wl e Wk] and it follows that
x(t) = Pty — pgidiag(ty.... Yk)W’ltzz

= pwéagt--Ytw-1z = pwdiage™, ..., e YWz
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Considering thaPW = [ (Wi)1 --- (Wk)1 | and by writing
7
wiz=| : |,
Z
we get
VAl
Xt) = [ (Wa)et - (W) |
Z

(Wl)leYltZ]_ +...+ (Wk)lethZk.

O

The goal here is to get a general solution when it is not possible to achieve it with
solvents. We see this in the following example.

Examplel. Consider the dierential equation
P(dﬂt) x = XA(t) + ApxI(t) + Aox(t),

with codficients given by

~98/25 10§25 -112/25
4/5  -24/5 -4/5
22/25 3§25 -182/25

the associated matrix polynomial is

P(X) = X2 + AtX + Ay,

A= , Ap=| -7/5 42/5 -8/5

-46/25 -59/25 25125

89/25 —-294/25 316’25]

wherem = 2 andn = 3. We have that

2 2 -2 -2 5 3

Vi=|1 1]{, Vo= 2 2 -1 -1

11 1 1 1 1

are the Jordan chains Bf1) and the respective Jordan blocks are

3100
I = 2 1 3 = 0310

1=lo 2| 2710 0 3 1|
0 00 3

It can be verified that there are no nonsingular matrices of order 3 with the leading
vectors ofVy and V, (Jordan chains oP(1)), henceP(X) has no solvents at all,
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therefore a general solution Bf(d%) x = 0 in terms of solvents does not exist. On the
other hand, we havé = Sdiag(Js, J2)S™1, where

| Vi V2

| Vii V22

is nonsigular. Thus we have from Theorem 2 thatnd J, form a complete set of
block eigenvalues of and

Vi Vs
v e v |
are the corresponding block eigenvectors. Hence from Theorem 3 it follows that

every solution oP () x = 0 is of the form

X(t) = Viel'zy + Voe?z,.

The considered block eigenvalues are in a canonical form, but in general this is not
necessary. In fact, i¥1 andY, are any matrices similar td; and J,, respectively,
thenY; andY> are also block eigenvalues, as pointed out before. Thus if we write
Y1 =T 1T andY; = T;13, T2, with Ty and T, nonsigular. It follows that

C = SdiagT V1T L ToYT, s =
Sdiag(T1, T2)diag(Ys, Y2)diag(T1, T2) 'S™t =
Udiag(Y1, Y2U™,

whereU = Sdiag(T1, T2) is nonsingular and s¢; andY; are a complete set of block
eigenvalues o€ (from Theorem 2) with
dl VeT2
V2JaT2

ViTy
VidiTh
being the corresponding block eigenvectors. Hence from Theorem 3 every solution
of P(d%) x = 0 can be written in the form
X(t) = VlTleYltzl + VQTzethZZ.

Numerical procedures to compute a complete set of block eigenvalues can be
found in [7].
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