
Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 5 (2004), No 1, pp. 25-32 DOI: 10.18514/MMN.2004.80

Automatic error analysis with Miller's

method

Attila Gáti

Miskolc Mathematical Notes
Vol. 5 (2004), No. 1, pp. 25–32

HU ISSN 1586-8850

AUTOMATIC ERROR ANALYSIS WITH MILLER’S METHOD

ATTILA G ÁTI

[Received: October 09, 2003]

A. The first considerable roundoff analyser software, which can provide
global error bounds for a given numerical algorithm, was designed by Webb Miller
and David Spooner in the second half of the 70s. Despite its abilities, the recently
software is not widely used, and since its publication it has not been upgraded. The
software was written in Fortran IV for the IBM 360/370 series. Without any modi-
fications, it is not usable in a PC environment with the most widely used compilers
based on the Fortran 77 standard (GNU compiler, Watcom, etc.), because there are
several non-standard solutions in the source. In addition, the user is bound by extra-
ordinary strict limitations of the size of the algorithm to analyse. We have upgraded
the package in order to make it suit the Fortran 77 standard, and to expand the
size limits. With the upgraded version we have analysed two variants of the ABS
method: the implicit LU and Huang methods.

Mathematics Subject Classification:Primary 12G34; Secondary 09G87

Keywords: Roundoff analysis, automatic roundoff analysis, ABS method, implicit
LU method, Huang method

1. I

O  , the arithmetic operations are performed in finite precision.
The analyses of propagation of the rounding errors in numerical algorithms,

i. e., the numerical stability, is one of the major tasks of numerical analysis. Basi-
cally, we can distinguish three different approaches to decide whether an algorithm
is stable or unstable. The most obvious technique is testing the numerical algorithm
upon sets of data for which the exact, or a relatively accurate, solution is known.
Another approach is formal roundoff analysis. The best known result of that type is
Wilkinson’s theorem. According to it, the ˆx computed solution of then× n system of
linear equationsAx = b found by the Gaussian elimination satisfies the relation

(A + ∆A) x̂ = b,

where‖∆A‖∞ ≤ 8n3%n ‖A‖∞ u + O
(
u2) (%n is the growth factor of the pivot entries,

andu is the machine rounding unit).

c©2004 M U P

25

26 ATTILA GÁTI

Both of these two approaches have defects. Testing is sometimes insufficient, and
the formal analysis needs a great deal of effort, which cannot always be afforded.
Because of this, even at the dawn of scientific computing already techniques appeared
in which computer is used to help us analyse the stability of a numerical computation.
So the third approach of analysing the effects of finite precision arithmetic is the
automatic roundoff analysis. Miller makes a distinction between local and global
techniques of automatic roundoff analysis [1]. Local methods are used to bound,
or estimate the error incurred in a single computation. Most local techniques use
special systems of computer arithmetic (e.g. interval arithmetic, or unnormalised
arithmetic) to monitor the error in each computed value. Using global techniques we
can determine the propagation of rounding errors in a given numerical method for all
permissible sets of data. In the beginning only local techniques were developed, the
first considerable roundoff analyser software, which can provide global error bounds
for a given numerical algorithm, was designed by Webb Miller and David Spooner in
the second half of the 1970s.

2. T M –S    

The software can be found in the ACM TOMS library with serial number 532, and
the Fortran language source code is available freely at the following location:

http://www.netlib.org/toms/532

Miller and his co-workers published the use and the theoretical background of
the program in two articles [1, 2] and also in a book [3]. The software package is
intended to help algorithm designers seeking numerically stable algorithms, or a user
doing initial testing of a numerical algorithm proposed for use.

The software cannot deal with every kind of numerical algorithm. Instead, direct
methods solving algebraic problems are most susceptible for analysis. The numerical
method to be analysed must be expressed in a special Fortran-like language. The lan-
guage allows for-loops and if-tests that are not based on the values of real variables.
If an algorithm contains branching based on real variables, then the possible paths
through comparisons must be treated separately. The parameters of the algorithm
defining the size of the problem (sizes of vectors and matrices) must be fixed for
analysis, and these parameters cannot be arbitrarily large due to memory limitations.

The method is based on the standard model of the floating point arithmetic, so we
assume that the relative error of each arithmetic operation is bounded by the machine
rounding unit, and we ignore the possibilities of overflow and underflow.

The basic idea of Miller’s method is very simple. Given a numerical method to
analyse, a numberω (d) is associated with each setd (d ∈ �n) of data. The function
ω measures rounding error, i. e.,ω (d) is large exactly when the method applied to
d produces results which are excessively sensitive to rounding errors. A numerical
maximiser is applied to search for large values ofω to provide information about the
numerical properties of the method. Finding large values ofω can be interpreted to

AUTOMATIC ERROR ANALYSIS WITH MILLER’S METHOD 27

mean that the given numerical method suffers from a specific kind of instability. With
the software package we can also compare the numerical stability of two algorithms
Q andR, which neglecting rounding errors, compute identical values. In this caseω
is large exactly whenQ produces a much larger error thanR.

The computation ofω is based on the partial derivatives at the nodes of the pro-
gram’s computational graph. As we use derivatives, the second order effects of round-
ing errors are neglected. In generalω is not a differentiable function of datad, so a
direct search method is used for maximisingω. As these methods are heuristic, fail-
ure of the maximiser to find large values ofω does not guarantee that none exists, so
unstable methods may appear to be stable.

The software package consists of three programs, a minicompiler and two error
analyser programs. The minicompiler takes as data the numerical method to analyse,
written in a special programming language, and produces as output a translation of
that program into a series of assignment statements. The output is presented in a
readable form for the user, and in a coded form for use as input to the error analyser
programs. One of the error analyser programs (i) is for deciding numerical stability
of a single algorithm, and the other (ii) is for comparing two competing algorithms.
Both (i) and (ii) form automatically the partial derivatives, and based on them, can
compute various error-measuring numbers (various ways to assignω).

First let us consider the error measuring numbers of program (i). The software pro-
vides four stability-measuring numbers,JWE (d), JWL (d), WKE (d), WKL (d), which
measure the minimum problem perturbation equivalent to rounding error in a given
program at datad. Other numbersERE (d) andERL (d) use a weaker comparison of
computed and exact solutions. LetZ : �n −→ �m be a vector-valued function, andR
an algorithm withk arithmetic operations for evaluatingZ. If the operations are per-
formed in floating point arithmetic, with the assumption of the standard model, then
the computed value is a functionR(d, δ), whereδ is the vector of individual relative
rounding errors on thek arithmetic operations (δ ∈ �k, ‖δ‖∞ ≤ u).

JWE (d) is the smallest number for which the equality

R(d, δ) = Z (d + π)

holds, for someπ ∈ �n, |πi | ≤ JWE (d) · |di | · u, 1 ≤ i ≤ n, whenever‖δ‖∞ ≤ u.
So,JWE (d) measures the componentwise backward error. The normwise backward
error is measured byJWL (d), in this case‖π‖∞ ≤ JWL (d) · ‖d‖∞ · u. WKX measures
(X = E, or L) the mixed forward-backward error, so we also allow perturbations in
the output space.WKE (d) is the smallest number for which the equality

R(d, δ) = Z (d + π) + φ

holds for some|πi | ≤ WKE (d) · |di | · u, andφ ∈ �m, |φi | ≤ WKE (d) · |Zi (d)| · u,
whenever‖δ‖∞ ≤ u. In the case of the normwise measuring numberWKL (d), we
have

‖π‖∞ ≤WKL (d) · ‖d‖∞ · u

28 ATTILA GÁTI

and
‖φ‖∞ ≤WKL (d) · ‖Z (d)‖∞ · u.

Note that
WKL (d) ≤WKE (d) ≤ JWE (d)

and
WKL (d) ≤ JWL (d) ≤ JWE (d) .

The numbersJWX andWKX require that the computed solution be obtained at (or
close to) the exact solution.ERX measures how much the data must be perturbed to
create an error as large as that in the computed solution. SoERE (d) is the smallest
number for which

‖R(d, δ) − Z (d)‖∞ = ‖Z (d + π) − Z (d)‖∞
for someπ, where|πi | ≤ ERE (d) · |di | · u, 1 ≤ i ≤ n. ERL measures normwise, in this
case the same equation holds forπ, ‖π‖∞ ≤ ERL (d) · ‖d‖∞ · u. The inequalities

ERL (d) ≤ ERE (d)

and
ERX (d) ≤ JWX (d) ,

whereX is eitherE or L, are obvious.
Now let us take a glance at the error-measuring numbers used by program (ii). Let

Q andR be two algorithms for evaluating the functionZ, and the computed values at
datad, with rounding errorsδ ∈ �k andγ ∈ �l beQ(d, δ) andR(d, γ). JWQ/R (d) is
the smallest number for which the condition

Q(d, δ) = R(d, γ)

holds whenever‖δ‖∞ ≤ u, for some‖γ‖∞ ≤ JWQ/R (d) · u. ERQ/R (d) is the smallest
number for which

‖Q (d, δ) − Z (d)‖∞ = ‖R(d, γ) − Z (d)‖∞
for all ‖δ‖∞ ≤ u, for some‖γ‖∞ ≤ ERQ/R (d) · u. The inequalities

ERQ/R (d) ≤ JWQ/R (d)

and
JWQ

X

JWR
X

≤ JWQ/R (d) ,

whereX = E or X = L, will also hold.
The input for the error-testing programs is arranged as follows: (1) the output of

the minicompiler (for program (i), which is the compiled version of the algorithm
to analyse; in the case of program (ii) we must provide the compiled version ofQ
followed byR), (2) a list of initial data for the numerical maximiser, (3) the code of
the chosen error-measuring value, (4) target value for the maximiser. The programs
return with the final set of data found by the maximiser routine and with the value

AUTOMATIC ERROR ANALYSIS WITH MILLER’S METHOD 29

of the chosen error-measuring number at this set of data. If program (i) diagnoses
instability (the value of the error-measuring number at the final set of data exceeds
the target value), then the condition number is also computed at the final set of data.

3. U   

The Miller–Spooner roundoff error analyser software was written in Fortran IV
for the IBM 360/370 series, and its final version was issued in 1979. Without any
modifications, it is not usable in a PC environment with the most widely used com-
pilers based on the Fortran 77 standard (GNU compiler, Watcom, etc.), because there
are several non-standard solutions in the source. In addition, the user is bound to
extraordinarily strict limitations of the size of the algorithm to analyse. The number
of inputs cannot exceed 30, the number of outputs must be smaller than 20, and the
total number of inputs and real arithmetic operations may not exceed 300. We have
upgraded the package in order to make it suit the Fortran 77 standard, and to expand
the size limits. The upgraded version works correctly with the compilers mentioned
earlier, and we can analyse algorithms with inputs up to 3000, outputs up to 1000,
and the total number of inputs and operations can be maximum 50000.

In [3], the abilities of the software are demonstrated by 14 important case studies.
In these cases the answers of the software are consistent with the known formal ana-
lytical results. The program shows correctly the stability properties of the Gaussian
elimination without pivoting and with partial pivoting, the Gauss–Jordan elimination,
the Cholesky factorisation, several QR factorisation methods (Householder transfor-
mation, Givens transformation, method by solving the normal equations), the clas-
sical and modified Gram-Schmidt methods and so on. We have tested the upgraded
version on these case studies, and with small dimensions we have obtained results
similar to those of Miller’s, with larger dimensions the results were consistent.

4. A    LU  H 

Using the software package we have analysed the numerical stability of solving the
Ax = b linear system (A ∈ �n×n, b ∈ �n) with the implicit LU and Huang methods.
These methods are special variants of the ABS method. The ABS method:

Algorithm 1. x1 ∈ �n, H1 = I , V = [v1, ..., vn] ∈ �n×n,
W = [w1, ..., wn] ∈ �n×n, Z = [z1, ..., zn] ∈ �n×n

for k = 1, ..., n
pk = HT

k zk (zk ∈ �n, pT
k ATvk , 0)

xk+1 = xk − pkv
T
k (Axk−b)

vTk Apk

Hk+1 = Hk − HkATvkw
T
k Hk

wT
k HkATvk

(wk ∈ �n, wT
k HkATvk , 0)

end
xn+1 = A−1b

30 ATTILA GÁTI

4.1. The implicit LU method. The implicit LU algorithm is given by the choice
W = Z = I . We consider the special case, whenV = I andx1 = 0. So the algorithm
to analyse is the following one:

Algorithm 2. x1 = 0, H1 = I
for k = 1, ..., n

xk+1 = xk − HT
k ekeT

k (Axk−b)

eT
k AHT

k ek

Hk+1 = Hk − HkATekeT
k Hk

eT
k HkATek

end

Let the initial data for maximising be:

A0 =



3 1 1 1
1 4 1 1
1 1 5 1
1 1 1 6


, b0 =



6
7
8
9


.

We have chosen 10,000 as target value. The maximiser finds values greater than
the target value for bothWKL and ERL error-measuring numbers. Because of the
inequalities held between the error-measuring numbers, a set of data exists for all
error-measuring numbers, where their values exceed 10, 000. In addition, at the final
set of data the condition number is extremely low. In the case ofWKL it is 12.3, and
in the case ofERL it is 8.1. So the implicit LU algorithm is unstable even at very
well-conditioned data.

Comparing the algorithm with the Gaussian elimination without pivoting, we ob-
tain

JWLU/Gauss> 10, 000, JWGauss/LU > 10,000, ERLU/Gauss> 10, 000,

and
ERGauss/LU < 29.

So, the implicit LU has worse stability properties than the Gaussian elimination with-
out pivoting.

4.2. The Huang method.The algorithm is obtained by the choice

wi = zi = ATvi .

We have analysed four variants of the method. With the given substitutions applied
to the general ABS algorithm, we get the first variant:

Algorithm 3. x1 ∈ �n, H1 = I
for k = 1, ..., n

pk = HT
k ATek

xk+1 = xk − pkeT
k (Axk−b)

eT
k Apk

AUTOMATIC ERROR ANALYSIS WITH MILLER’S METHOD 31

Hk+1 = Hk − HkATekeT
k AHk

eT
k AHkATek

end

We have started the maximiser from the same initial dataA0, b0 as in the case of the
implicit LU method. Applying the maximiser,ERL andWKL have exceeded 10,000,
so the method is unstable. Unlike the case of implicit LU, large values were found
at ill-conditioned data (61,710 forWKL and 32, 365 for ERL). So, the algorithm is
more sensitive to ill-conditioning than it is reasonable. Comparing the algorithm with
the modified Gram-Schmidt method, we get the following results:

JWHuang/MGS > 10,000, JWMGS/Huang< 3, 400, ERHuang/MGS > 10,000,

andERMGS/Huang< 2050. So, they are both sets of data where the Huang and sets of
data where the MGS method give much poorer results.

If we consider thatHi = HT
i , then the algorithm can be modified as follows:

Algorithm 4. x1 ∈ �n, H1 = I
for k = 1, ..., n

pk = HT
k ATek

xk+1 = xk − pkeT
k (Axk−b)

eT
k Apk

Hk+1 = Hk − pkpT
k

eT
k Apk

end

In this case, we have results very similar to the previous algorithm. Comparing
the two methods (Algorithm 3 and Algorithm 4), we see that all the error-measuring
numbers are bounded by 6.1. Thus, the two variants have the same stability proper-
ties.

The following version is based on the fact thatH2
i = Hi :

Algorithm 5. x1 ∈ �n, H1 = I
for k = 1, ..., n

pk = HT
k ATek

xk+1 = xk − pkeT
k (Axk−b)

eT
k Apk

Hk+1 = Hk − pkpT
k

pT
k pk

end

We have values forERL andWKL exceeding 10, 000 also at ill-conditioned sets of
data. Comparing the algorithm with the MGS method we get results similar to the
previous two cases. If we compare the method with the second variant (Algorithm
4), we get that all error-measuring numbers are not bounded by 10, 000 except that

ERHuang 3/Huang 2< 1.5.

So, the third variant is more stable than the previous ones.

32 ATTILA GÁTI

The fourth analysed algorithm was the so-called modified Huang method:

Algorithm 6. x1 ∈ �n, H1 = I
for k = 1, ..., n

pk = Hk

(
HT

k ATek

)

xk+1 = xk − pkeT
k (Axk−b)

eT
k Apk

Hk+1 = Hk − pkpT
k

pT
k pk

end

In this case the maximiser cannot find a value forJWL greater than 4.3, so the
algorithm is backward stable. A comparison with the MGS method produces the
following results:

JWHuang/MGS < 561, JWMGS/Huang> 10,000, ERHuang/MGS < 20,

and
ERMGS/Huang< 4, 038.

So, the modified Huang method has better stability properties than the MGS method.
If we compare the method with the previous (third) variant, we have that

ERHuang 4/Huang 3< 1.23, JWHuang 4/Huang 3< 1.6,

and the other two numbers are not bounded by 10, 000. So, the method is much more
stable than the previous variants of the Huang method.

R

[1] M, W.: Software for roundoff analysis, ACM Trans. Math. Software,1 (1975), No. 2, 108–
128.

[2] M, W.  S, D.: Software for roundoff analysis II, ACM Trans. Math. Software,4
(1978), No. 4, 388–390.

[3] M, W.  W, C.: Software for Roundoff Analysis of Matrix Algorithms, Academic
Press, New York, 1980.

[4] A, J.  S, E.: ABS Projection Algorithms: Mathematical Techniques for Linear
and Nonlinear Equations,Ellis Horwood Limited, Chichester, 1989.

Author’s Address

Attila G áti:
I  M, U  M, 3515 M-E́, H

E-mail address: matgati@gold.uni-miskolc.hu

