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A. This paper investigates the stabilization of a desired equilibrium point
of a model describing the interaction of the immune system (CD4 cells and cyto-
toxic T lymphocytes CTL) with human immunodeficiecy virus HIV with sampled-
data controllers. The control variable is the drug dose. Two cases of anti-HIV
drugs are considered:1◦ reverse transcriptase inhibitors (RTI), and2◦ protease in-
hibitors (PI). The controller is constructed by a variant of the receding horizon con-
trol (RHC) method. We use the results obtained by [3] giving sufficient conditions
which guarantee that the receding horizon controller that stabilizes the approximate
discrete-time model also stabilizes the exact discrete-time model for sufficiently
small discretization parameters. Results of simulations are discussed.
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1. I

Mathematical models which describe the interaction of the immune system with
human immunodeficiency virus HIV have recently become the object of scientific
research (see, e. g., [1, 2, 4, 15, 16]). Anti-retroviral drug therapy has successfully
been used to significantly suppress viral replication and to delay disease progression
in many patients. Currently, these drugs act by two mechanisms: reverse transcrip-
tase inhibitors (RTI) interfere with the process of reverse transcriptase and prevent
the virus from infecting a cell; protease inhibitors (PI) prevent the assembly of new
infectious virus by an infected cell. Optimal control theory is used to optimize the
administration of drugs by considering the drug as a controlleru(t). One way to de-
sign an open-loop optimal controlleru∗(t) in connection with the HIV/AIDS model
is to use Pontryagin’s Maximum Principle (see, e. g., [4, 5, 11]). However, some
drawbacks may arise during the application of this method:1◦ the optimization is
performed over a finite time horizon, and no care is taken of the evolution of the
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process behind this time horizon;2◦ the optimal controller is obtained as continuous-
time controller in spite of the patient taking the drug doses in a discrete manner;
3◦ the optimal controller is given in open-loop form and it does not deal with the
changes that may happen in the system during the treatment. Therefore, it seems to
be better to design afeedback controllerbased on thediscrete-timemodel.

To overcome the first mentioned problem, the application of the receding horizon
method seems to be obvious. Nonlinear receding horizon control has received much
interest in the academic community in the past years [7,9,10,12] due to the capacity of
handling constraints and obtaining a stabilizing state feedback controller. Receding
horizon control RHC is a form of the control in which the current control action
is obtained by solving on-line, at each sampling instant, a finite horizon open-loop
optimal control problem, using the current state of the plant as the initial state; the
optimization yields an optimal control sequence and the first control in this sequence
is applied to the plant.

As far as the second problem is concerned, one has to investigate sampled data
systems. The stabilization of sampled data nonlinear systems is studied by several
papers (see, e. g., [6, 13, 14]). For nonlinear systems it is unusual to assume the
knowledge of the exact discrete-time model, hence we actually use the approximate
discrete-time model most of the time. If we use the approximate discrete-time model,
then the sampling periodT and/or integration parameterh should be sufficiently small
in order to have a small mismatch between the exact and approximate models.

Stabilization of sampled data nonlinear systems by receding horizon control via
approximate discrete-time models is studied in [3, 8]. In these papers sufficient con-
ditions are established which guarantee that the receding horizon controller that ren-
ders the origin to be asymptotically stable for the approximate model also stabilizes
the exact discrete-time model for sufficiently small discretization parameters for the
cases of fixed sampling period and varying integration parameter [3] and when these
two parameters coincide [8]. The aim of this paper is to investigate the stabilization
of the HIV/AIDS model by receding horizon controller in both (RTI) and (PI) cases
using the results obtained in [3,8].

2. R      

In this section, we shall give a summary of the idea of the receding horizon control
method and the main results of [3].

Consider a nonlinear control system described by

ẋ(t) = f (x(t),u(t)) , (1)

wherex(t) ∈ �n, u(t) ∈ U ⊂ �m, f : �n × U → �n, with f (0, 0) = 0, U is closed,
and 0∈ U. The system is to be controlled digitally using piecewise constant control
functionsu(t) = u(kT) =: uk, if t ∈ [kT, (k + 1)T), k ∈ �, whereT > 0 is the
sampling period. The functionf is assumed to have enough regularity to guarantee
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the existence and uniqueness of solutions of (1) withu(t) ≡ ū, x(0) = x0, defined on
[0,T]. Let t ∈ [0,T] 7→ φ(t, x0, ū) denote this solution. Then the exact discrete-time
model of the system can be defined as

xk+1 = Fe
T(xk,uk), (2)

whereFe
T(x, u) := φ(T, x, u).

We emphasize thatFe
T in (2) is not known in most cases and, therefore, the con-

troller design can be carried out by means of an approximate discrete-time model

xk+1 = Fa
T,h (xk,uk) . (3)

The results of [3] and [8] cover two cases: (i)T , h, and, in this caseT is fixed
and the family of approximate discrete-time models is generated by a numerical inte-
gration method with adjustable integration steph where,

∑m−1
i=0 hi = T andhi ≤ h [3];

(ii) T = h, andT can be adjusted [8].
It is unreasonable to consider the case whenT = h to obtain the approximate

discrete-time model for the HIV/AIDS model since, the sampling periodT cannot be
adjusted arbitrarily. Therefore, we shall study the case whenT , h using the results
obtained by [3].

We assume that bothFa
T,h and Fe

T are continuous inx andu and satisfy a local
Lipschitz condition.

The problem is to define a state-feedback controller at least in a neighborhood
X̄ ⊂ �n of the origin

vaT,h : X̄ −→ U

using the approximate model (3) which practically asymptotically stabilizes the ori-
gin for the exact model (2).

Theorem 1([6,13]). Suppose that, in a given compact neighborhood of the origin,
the following conditions are satisfied:

(i) the origin is an asymptotically stable equilibrium of the family of the closed-
loop systems(Fa

T,h, vaT,h) with a uniformly continuous Lyapunov function
Va

T,h(·);
(ii) the family of controllersvaT,h is uniformly bounded;
(iii) the familyFa

T,h is consistent withFe
T .

Then the family of the closed-loop systems(Fe
T , vaT,h) is practically asymptotically

stable near the origin.

Thus, a state-feedback controllervaT,h has to be defined using the approximate
model (3) for which all conditions of Theorem 1 are satisfied. In order to define
such a state feedback, let equation (3) be subject to the cost function

Ja
T,h(N, x,u) =

N−1∑

k=0

Tlh(φa
T,h(k, x,u),u(k)) + g(φa

T,h(N, x,u)), (4)
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under the constraints

u(k) ∈ U,

φa
T,h(N; x, u) ∈ Gη = {x : g(x) ≤ η}, (5)

wherelh andg are the running and terminal costs,u= {u0,u1,...,uN−1} is the control
sequence andφa

T,h(k, x0, u) is the trajectory of the approximate model.
Consider the optimization problem

Pa
T,h(N, x) : min

{
Ja

T,h(N, x,u), u(k) ∈ U, φa
T,h(N; x,u) ∈ Gη

}
. (6)

If this optimization problem has a solution denoted byu∗= {u∗0,u∗1, . . . ,u∗N−1}, then
the first element ofu∗, i. e., u∗0 is applied at the statex. Since the optimal solution
of Pa

T,h(N, x) naturally depends onx, in this way a feedback has been defined on the
basis of the approximate discrete-time model, i. e.,

vaT,h(x) := u∗0. (7)

We shall introduce the following notation

Va
T,h(x) = Ja

T,h(N, x,u∗). (8)

Assumption A1. The running and the terminal cost functions satisfy the following
conditions:

(i) lh is continuous with respect tox andu, uniformly in smallh;
(ii) there existh∗ > 0 and two class-K ∞ functionsϕ1 and ϕ2 such that the

inequality

ϕ1(‖x‖) + ϕ1(‖u‖) ≤ lh(x,u)

≤ ϕ2(‖x‖) + ϕ2(‖u‖)
holds for all x, u andh ∈ (0, h∗];

(iii) g is a continuous, strictly positive definite radially unbounded function.

Assumption A2. There exist anη > 0 andh∗ > 0 such that for allx ∈ Gη there
exists ak(x) ∈ U such that inequality

T lh(x, k(x)) + g
(
Fa

T,h(x, k(x))
)
≤ g(x) (9)

holds true for allh ∈ (0,h∗].

Assumption A3. Let∆ > 0, 0 < T ≤ T∗ be fixed. The exact discrete-time model is
practically asymptotically controllable fromB∆ = {x ∈ �n : ‖x‖ ≤ ∆} to the origin.

Using Theorem 1, the following theorem is proven in [3].

Theorem 2([3]). Let us suppose thatFa
T,h is consistent withFe

T and, in addition,
assumptionsA1–A3 hold. Then, in a given compact set, the family of the closed-loop
systemsFe

T brought about the receding horizon control(7) is practically asymptoti-
cally stable near the origin.
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3. T HIV /AIDS 

The mathematical model proposed by [1] and [4] is the nonlinear control system
described by

˙̄x(t) = λ − dx̄(t) − β(t)x̄(t)v̄(t),

˙̄y(t) = β(t)x̄(t)v̄(t) − aȳ(t) − pȳ(t)z̄(t),

˙̄v(t) = q(t)ȳ(t) − r v̄(t),

˙̄z(t) = cȳ(t)z̄(t) − bz̄(t).

(10)

Here, X(t) = (x̄(t), ȳ(t), v̄(t), z̄(t))
′ ∈ �4, t ∈ �≥0, and the variables ¯x(t), ȳ(t),

v̄(t) and z̄(t) represent the uninfected CD4 cells, infected cells, free viruses, and the
HIV-antigen specific cytoxic T lymphocytes (CTL). Moreover, it is assumed that the
parametersβ andq present an exponential characteristic with respect to controlleru
as follows:

1◦ The first case(RTI)

β(t) = β0e−u(t), q = q0;

2◦ The second case(PI)

q(t) = q0e−u(t), β = β0,

whereu is the drug dose,u ∈ U ⊂ �≥0 with a given closed setU. In the case of
absence of treatments (i. e.,β = β0 andq = q0), (10) leads to the model proposed by
[15]. In order to avoid numerical difficulties during the integration, a normalization
of the variables is introduced.

In this model the infected cells are produced by rateβx̄ v̄ and die at rateaȳ. Free
viruses are produced from infected cellsqȳ and decline at rater v̄, therefore the aver-
age life time of an infected cell is 1/a and the average life time of free virus particle
is 1/r. The total number of virus particles produced from one cell isq/a. Uninfected
cells are produced at a constant rateλ, from a pool of precursor cells and die at rate
dx.

The model takes into account the production of CTL by the organism, the rate of
CTL proliferation in response to antigen is given bycȳ z̄ and decay at ratebz̄, and
the infected cells are killed by CTLs at ratepȳ z̄. The parameterc denotes the CTL
responsiveness, defined earlier as the growth rate of specific CTLs after encountering
infected cells. The parameterp specifies the rate at which CTLs cells kill infected
cells. If ȳ > b/c, the CTL response will increase.
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The stationary points of model (10) in the absence of the drug doses, i. e., atu = 0,
are:

X(1)
0 =

[
λ

d
, 0,0,0

]

X(2)
0 =

[
ar

q0β0
,
λ

a
− dr

q0β0
,
q0λ

ar
− d
β0
,0

]

X(3)
0 =

[
cλr

bq0β0 + cdr
,
b
c
,
bq0

cr
,
−a(bq0β0 + cdr) + cq0λβ0

p(bq0β0 + cdr)

]
.

The matrix of the linearized system is


−d − β0v0 0 −β0x0 0
β0v0 −a− pz0 β0x0 −py0

0 q0 −r 0
0 cz0 0 cy0 − b


, (11)

where (x0, y0, v0, z0) is any stationary point. Before infection the system is in the
invariant hyperplane ¯y = v̄ = z̄ = 0 and it has one stationary pointX(1)

0 . If the

basic reproductive ratio of model (10),R0 =
λq0β0
adr , is smaller than 1, then at the

beginning of the infection, each virus-infected cell produces on average less than one
newly infected cell. Thus, the infection cannot spread and the system returns to the
uninfected stateX(1)

0 (stable case). IfR0 is larger than 1, then initially each virus-
infected cell produces on the average more than one newly infected cell (unstable
case).

The values of parameters of the model obtained from [4] are presented in Table 1.

Parameters d λ a p b c r q0 β0

Values 1 1 0.8 0.05 0.01 0.1 0.01107 1 1

T 1

In this case,R0 is greater than one and the stationary points become:

X(1)
0 = [1, 0 ,0, 0]

X(2)
0 = [0.008856, 1.23893, 111.918, 0] (12)

X(3)
0 = [0.0996669, 0.1, 9.03342, 164.067] .

Since the first stationary pointX(1)
0 is the healthy one, we shall consider the stabiliza-

tion of the system around this point. The eigenvalues of the matrix of the linearized
system atX(1)

0 are{0.669455, −1.48052, −1, −0.01}.
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Now we shall consider the first case (RTI) and the second case (PI) can be shown
in a similar way. For convenience we transform the pointX(1)

0 into the origin with
x = x̄− λ

d , y = ȳ, v = v̄, z = z̄, then (10) takes the form

ẋ(t) = −dx(t) − β0e−u(t)
(
x(t) +

λ

d

)
v(t)

ẏ(t) = β0e−u(t)
(
x(t) +

λ

d

)
v(t) − ay(t) − py(t)z(t)

v̇(t) = q0y(t) − rv(t)

ż(t) = cy(t)z(t) − bz(t).

(13)

Let the approximate discrete-time model be defined by the second order Taylor
series method in the following way. Let̄X = (xa(k), ya(k), va(k), za(k))

′
, ū = u(k).

With X̄ = X0, let

xk+1 = xk + h
[
−dxk − β0e−ū

(
xk +

λ

d

)
vk

]
+

h2

2

[(
−d − β0e−ūvk

)

(
−dxk − β0e−ū

(
xk +

λ

d

)
vk

)
− β0e−ū

(
xk +

λ

d

)
(q0yk − rvk)

]
,

yk+1 = yk + h
[
β0e−ū

(
xk +

λ

d

)
vk − ayk − pykzk

]

+
h2

2

[
β0e−ūvk

(
−dxk − β0e−ū

(
xk +

λ

d

)
vk

)

− (a + pzk)
(
β0e−ū

(
xk +

λ

d

)
vk − ayk − pykzk

)

+β0e−ū
(
xk +

λ

d

)
(q0yk − rvk) − pyk (cykzk − bzk)

]
,

vk+1 = vk + h
[
q0yk − rvk

]
+

h2

2

[
−r (q0yk − rvk)

+ q0

(
e−ū

(
xk +

λ

d

)
vk − ayk − pykzk

)]
,

and

zk+1 = zk + h
[
cykzk − bzk

]
+

h2

2

[
(cyk − b) (cykzk − bzk)

+ czk

(
β0e−ū

(
xk +

λ

d

)
vk − ayk − pykzk

)]
,

k = 0,1, ...,m− 1, and letXa(k + 1) = (xm, ym, vm, zm)′ whereh = T/m. The running
and the terminal costs can be chosen such that the final state constraints (5) and
Assumptions A1-A2 are satisfied:
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1◦ Case(RTI)

lh(X,u) = 0.01u2 + x2 + y2 +
(√

10v
)6

+ z2

g(X) = 100(x2 + y2 + v4 + z2)

2◦ Case(PI)
lh(X,u) = 0.001u2 + x2 + y2 + 1000v2 + z2

g(X) = 100(x2 + y2 + v4 + z2).

Simulations for the continuous-time system in both cases were carried out using
ODE45 program in MATLAB whenh = T

m, T = 0.5, m = 50 for (RTI) andT = 0.5,
m = 30 for (PI).

4. N 

We assume that the infection started near the equilibrium pointX(1)
0 with the val-

uesx̄0 = 1, ȳ0 = 0, v̄0 = 0.001 and ¯z0 = 0.03. For comparison purposes, we present
numerical simulations of two mechanisms of treatment (RTI) and (PI) when RHC
strategy is used. We vary initiation of the treatment beginning withT1 andT2 time
units after the onset of infection (dashed and solid lines types on the Figures, respec-
tively). Also, the non-treated case (u = 0) is shown (dotted lines on the Figures).
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On Figures 1a and 1b, the number of uninfected CD4 cells ¯x is seen to decay
rapidly for non-treated case (u = 0) and tends to the valueλ/d when RHC is used.
Moreover, comparing the two kinds of treatment one can observe slower convergence
to the equilibrium in the (PI) case than in the (RTI) one.
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The variation of the number of infected cells ¯y with time is shown in Figures 2a
and 2b. It is found that ¯y increases whenu = 0, and tends to zero when RHC is
applied. Further, it is seen that the convergence of ¯y is faster in the (RTI) case than in
the (PI) case.
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Figures 3a and 3b show that the amount of free viruses ¯v decreases under the
application of RHC in both the (RTI) and the (PI) cases and it rapidly increases if
there is no control.
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The CTL response ¯z can be seen in Figures 4a and 4b. It is found that the amount
of CTL rapidly increases for the non-treated case. Also, when the RHC is applied,
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the amount of CTL increases if ¯y > b/c and decreases if ¯y < b/c for both the (RTI)
and the (PI) cases.
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The control as a function of the time produced by RHC method for both the (RTI)
and the (PI) cases is shown in Figures 5a and 5b. The total amount of drugs during
finite intervals is given in Table 2 whenT1 = 10 andT2 = 12.
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We can say that the system can be stabilized by a smaller amount of drug doses if
we start the treatment earlier.

5. C

The stabilizing property of the RHC method for sampled data nonlinear systems
via their approximate models was proven. The proposed method was applied for the
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stabilization of the uninfected equilibrium point of the HIV/AIDS model. Two types
of treatment were considered. The results of simulations show that the proposed
method can effectively be applied to eliminate some drawbacks of the approaches
previously published in the literature.

Case Interval Total Amount of Drugs (T1) Total Amount of Drugs (T2)

RTI [0,50] 603 1068.25
PI [0,500] 6037.5 6861.37

T 2

A
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