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AsstrAct. This paper investigates the stabilization of a desired equilibrium point
of a model describing the interaction of the immune system (CD4 cells and cyto-
toxic T lymphocytes CTL) with human immunodeficiecy virus HIV with sampled-
data controllers. The control variable is the drug dose. Two cases of anti-HIV
drugs are considered® reverse transcriptase inhibitors (RTI), a2fdprotease in-
hibitors (PI). The controller is constructed by a variant of the receding horizon con-
trol (RHC) method. We use the results obtained 8iygiving suficient conditions
which guarantee that the receding horizon controller that stabilizes the approximate
discrete-time model also stabilizes the exact discrete-time model ficisatly

small discretization parameters. Results of simulations are discussed.
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1. INTRODUCTION

Mathematical models which describe the interaction of the immune system with
human immunodeficiency virus HIV have recently become the object of scientific
research (see, e. 91,2, 4,15, 1§. Anti-retroviral drug therapy has successfully
been used to significantly suppress viral replication and to delay disease progression
in many patients. Currently, these drugs act by two mechanisms: reverse transcrip-
tase inhibitors (RTI) interfere with the process of reverse transcriptase and prevent
the virus from infecting a cell; protease inhibitors (PI) prevent the assembly of new
infectious virus by an infected cell. Optimal control theory is used to optimize the
administration of drugs by considering the drug as a contra{@r One way to de-
sign an open-loop optimal controllet(t) in connection with the HIYAIDS model
is to use Pontryagin’'s Maximum Principle (see, e. ¢.,5, 11). However, some
drawbacks may arise during the application of this methisdthe optimization is
performed over a finite time horizon, and no care is taken of the evolution of the
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process behind this time horizaef, the optimal controller is obtained as continuous-
time controller in spite of the patient taking the drug doses in a discrete manner;
3° the optimal controller is given in open-loop form and it does not deal with the
changes that may happen in the system during the treatment. Therefore, it seems to
be better to designfeedback controllebased on théiscrete-timemodel.

To overcome the first mentioned problem, the application of the receding horizon
method seems to be obvious. Nonlinear receding horizon control has received much
interest in the academic community in the past yea$,[L0,12due to the capacity of
handling constraints and obtaining a stabilizing state feedback controller. Receding
horizon control RHC is a form of the control in which the current control action
is obtained by solving on-line, at each sampling instant, a finite horizon open-loop
optimal control problem, using the current state of the plant as the initial state; the
optimization yields an optimal control sequence and the first control in this sequence
is applied to the plant.

As far as the second problem is concerned, one has to investigate sampled data
systems. The stabilization of sampled data nonlinear systems is studied by several
papers (see, e. 9.6,[13,14). For nonlinear systems it is unusual to assume the
knowledge of the exact discrete-time model, hence we actually use the approximate
discrete-time model most of the time. If we use the approximate discrete-time model,
then the sampling periol andor integration parametérshould be sfficiently small
in order to have a small mismatch between the exact and approximate models.

Stabilization of sampled data nonlinear systems by receding horizon control via
approximate discrete-time models is studieddng. In these papers flicient con-
ditions are established which guarantee that the receding horizon controller that ren-
ders the origin to be asymptotically stable for the approximate model also stabilizes
the exact discrete-time model forfRaiently small discretization parameters for the
cases of fixed sampling period and varying integration param@tanfl when these
two parameters coincid@]. The aim of this paper is to investigate the stabilization
of the HIV/AIDS model by receding horizon controller in both (RTI) and (PI) cases
using the results obtained i4,[g).

2. RECEDING HORIZON CONTROL FOR SAMPLED DATA SYSTEMS

In this section, we shall give a summary of the idea of the receding horizon control
method and the main results &
Consider a nonlinear control system described by

X(t) = £ (x(®), u(t) , (1)

wherex(t) € R", u(t) e U cR™, f:R"xU — R", with f(0,0) = 0, U is closed,
and Oe U. The system is to be controlled digitally using piecewise constant control
functionsu(t) = u(kT) =: ug, if t € [KT,(k+ 1)T), k € N, whereT > 0 is the
sampling period. The functiof is assumed to have enough regularity to guarantee
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the existence and uniqueness of solutions of (1) with= u, x(0) = xo, defined on
[0,T]. Lett € [0, T] = &(t, Xo, U) denote this solution. Then the exact discrete-time
model of the system can be defined as

X1 = F§ (X, Uk), 2)

whereF$(x, u) := ¢(T, x, u).

We emphasize thdt$ in (2) is not known in most cases and, therefore, the con-

troller design can be carried out by means of an approximate discrete-time model
X1 = FT (X U) - 3

The results of 3] and [8] cover two cases: (iJ # h, and, in this cas@ is fixed
and the family of approximate discrete-time models is generated by a numerical inte-
gration method with adjustable integration staphere,zi@])l h; =T andh; < h[3];

(i) T = h, andT can be adjusted].

It is unreasonable to consider the case whiers h to obtain the approximate
discrete-time model for the HIMIDS model since, the sampling periddcannot be
adjusted arbitrarily. Therefore, we shall study the case vilhenh using the results
obtained by 8].

We assume that both$, and F$ are continuous irx andu and satisfy a local
Lipschitz condition.

_The problem is to define a state-feedback controller at least in a neighborhood
2" c R" of the origin B
v-ar’h 2 — U
using the approximate model (3) which practically asymptotically stabilizes the ori-
gin for the exact model (2).

Theorem 1([6,13). Suppose that, in a given compact neighborhood of the origin,
the following conditions are satisfied:

(i) the origin is an asymptotically stable equilibrium of the family of the closed-
loop systems(F%h, v%h) with a uniformly continuous Lyapunov function
V%h(');

(ii) the family of controllers»%h is uniformly bounded;

(iii) the familyFZ, is consistent withF3.
Then the family of the closed-loop systef$, v%h) is practically asymptotically
stable near the origin.

Thus, a state-feedback controllﬁ’h has to be defined using the approximate
model (3) for which all conditions of Theorem 1 are satisfied. In order to define
such a state feedback, let equation (3) be subject to the cost function

N-1

‘]'ia"h(N’ X, U) = Z T Ih(¢‘?’yh(k’ X, U), U(k)) + g(¢$,h(N’ X, U)), (4)
k=0
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under the constraints
u(k) e U,
$3h(N; X, U) € 9, = (x: g(x) <7}, (5)
wherely andg are the running and terminal costss {up,Us,..., Un-1} is the control
sequence and"%’h(k, Xo, U) is the trajectory of the approximate model.
Consider the optimization problem
P2 (N.X) - min{J2 (N, x.u), u(k) € U, ¢2(N;x u) € %,}. (6)

If this optimization problem has a solution denotedwy {ug,uj,...,uy_;}, then

the first element oti*, i. e., uj is applied at the state. Since the optimal solution
of P, (N, x) naturally depends og, in this way a feedback has been defined on the
basis of the approximate discrete-time model, i. e.,

v§ n(X) = up, )
We shall introduce the following notation
V'?,h(x) = J'ia"h(N’ X, U*) (8)

Assumption Al. The running and the terminal cost functions satisfy the following
conditions:

(i) I, is continuous with respect toandu, uniformly in smalkh;
(ii) there existh* > 0 and two class# ., functionsg1 and ¢» such that the
inequality
@1(IIXl) + @a(llull) < Tn(x, U)
< @2(IIMl) + e2(llull)
holds for allx, uandh € (0, h*];
(iii) g is a continuous, strictly positive definite radially unbounded function.

Assumption A2. There exist am > 0 andh* > 0 such that for allx € ¥, there
exists ak(x) € U such that inequality

Tln(% k(X)) + g (F3,(x k(%)) < g(x) ©)
holds true for allh € (0, h*].

Assumption A3. LetA > 0,0 < T < T* be fixed. The exact discrete-time model is
practically asymptotically controllable from#, = {x € R" : ||x|| < A} to the origin.

Using Theorem 1, the following theorem is proven3h [

Theorem 2([3]). Let us suppose th#&?  is consistent witlF$ and, in addition,
assumption&1-A3 hold. Then, in a given compact set, the family of the closed-loop
systemd=7 brought about the receding horizon cont(@) is practically asymptoti-
cally stable near the origin.
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3. Tue HIV /AIDS MoDEL

The mathematical model proposed Y §nd [4] is the nonlinear control system
described by

X(t) = A — dx(t) - BE)X()(L),

y(t) = BOXH(L) — ay(t) — py(H)Y),
oft) = a(t)y(t) — rutt),

Zt) = cy(t)zlt) - b(t).

(10)

Here, X(t) = (X(t), y(t), o(t), Z{t)) € R* t € Rsp, and the variable(f), y(t),
u(t) andz(t) represent the uninfected CD4 cells, infected cells, free viruses, and the
HIV-antigen specific cytoxic T lymphocytes (CTL). Moreover, it is assumed that the
parameterg andq present an exponential characteristic with respect to contmoller
as follows:

1° The first caséRTI)

B(t) = Boe™®,  q=qo;

2° The second cad®l)

q(t) = qoe™V, B = po,

whereu is the drug dosey € U c R, with a given closed sdil. In the case of
absence of treatments (i. .= Bo andqg = qp), (10) leads to the model proposed by
[15]. In order to avoid numerical fliculties during the integration, a normalization
of the variables is introduced.

In this model the infected cells are produced by gte and die at ratey. Free
viruses are produced from infected cejlsand decline at rate, therefore the aver-
age life time of an infected cell is/& and the average life time of free virus particle
is 1/r. The total number of virus particles produced from one cafj& Uninfected
cells are produced at a constant ratérom a pool of precursor cells and die at rate
dx

The model takes into account the production of CTL by the organism, the rate of
CTL proliferation in response to antigen is given tiyz and decay at ratbz, and
the infected cells are killed by CTLs at rgqpg z The parametec denotes the CTL
responsiveness, defined earlier as the growth rate of specific CTLs after encountering
infected cells. The parameterspecifies the rate at which CTLs cells kill infected
cells. Ify > b/c, the CTL response will increase.
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The stationary points of model (10) in the absence of the drug doses, ues,@&t
are:
A
X =|5.0,0,0
[ar A4 dr g1 d

@_| 2 Z2_— 27 _Zp
X9 |0oBo” @ CoBo” ar  fBo

cAr b bg -a(bqyBo + cdr) + coplBo

x((f) _ D 5%
| boyBo +cdr’c” cr’ p(bapBo + cdr)
The matrix of the linearized system is
—d - Bovo 0 —Boxo O
Bovo —a-pn PoXo  —Pyo
0 do —r 0 ’ (11)
0 Cc% 0 cyo—Db

where o, yo, vo, 20) iS any stationary point. Before infection the system is in the
invariant hyperplangg = v = z = 0 and it has one stationary poib(gl). If the

basic reproductive ratio of model (10Ry = ”g‘c’ﬁﬂ is smaller than 1, then at the
beginning of the infection, each virus-infected cell produces on average less than one
newly infected cell. Thus, the infection cannot spread and the system returns to the
uninfected staté((()l) (stable case). IRy is larger than 1, then initially each virus-
infected cell produces on the average more than one newly infected cell (unstable
case).

The values of parameters of the model obtained fréhaife presented in Table 1.

Parameters |[d |2 |a |p b c |r do | Bo
Values 1/1/08|005(0.01|01|001107|1 |1
TaBLE 1

In this caseRy is greater than one and the stationary points become:
XM =1, 0,0, O]
X{?) = [0.008856 1.23893 111918 0] (12)
X&) = [0.0996669 0.1, 9.03342 164067 .

Since the first stationary poimél) is the healthy one, we shall consider the stabiliza-
tion of the system around this point. The eigenvalues of the matrix of the linearized

system a'! are{0.669455 —1.48052 -1, —0.01}.
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Now we shall consider the first case (RTI) and the second case (PI) can be shown
in a similar way. For convenience we transform the prxﬁf into the origin with
X=X-4, y=y, v=10, z=Z then (10) takes the form

X(t) = —dx(t) — Boe™® (x(t) + g) o(t)

. _ A
0 = poe O (x(0) + 5 ) o) - aw(®) - py©2AD) (13)
o(t) = doy(t) — ro(t)
Z(t) = cy(t)z(t) — bat).
Let the approximate discrete-time model be defined by the second order Taylor
series method in the following way. L&t = (33(K), y2(K), v3(k), 2(K)) , U = u(k).
With X = Xo, let

2

Xer1 = X+ h [—d& —ﬁoe‘a(xk + /al) Uk] + % |(=d — Boe ")

(—ka —ﬁoe_ﬁ(xk + g) Uk) —ﬁoe‘a(xk + /al) (Ydoyx — rUk)] ,
Y1 =Yk +h [ﬁoe‘a(xk + /al) Uk — Yk — pykzk]

+ h; [ﬁoe_avk (—d& —ﬁoe‘a(xk + /al) Uk)

- (a+ pz) (ﬁoe‘a(xk + g) vk — AYk — Dykzk)
+ﬁoe‘a(xk + g) (Goyk — ru) — Pk (Cywzic — b&)] ,

2

h
Uk+1 = Uk + N [Qoyk — ru] + E[—f (Qoyk — ruk)

+do (G_J(Xk + /al) Uk — aYk — pykzk)],

and

h2
Z1 = Z + h[cykz — bz] + E[(Cyk - b) (cywz — bz)

T A
+ C% (ﬁoe ! (Xk + a)vk — ayk — pykzk)],
k=0,1,...m-1, and letX3(k + 1) = (Xm, Ym, vm, Zm)’ Whereh = T/m. The running

and the terminal costs can be chosen such that the final state constraints (5) and
Assumptions A1-A2 are satisfied:
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1° Case(RTI)
In(X, U) = 0.01U° + X + y° + (\/Ev)e + 27
g(X) = 1000¢ + y? + v* + 2)
2° Case(PI)

In(X, u) = 0.0002 + X2 + > + 10002 + 2
g(X) = 1000¢ + 2 + v* + 2).
Simulations for the continuous-time system in both cases were carried out using
ODE45 program in MATLAB wherih = % T = 0.5, m=50 for (RTI) andT = 0.5,
m = 30 for (PI).

4. NUMERICAL RESULTS

We assume that the infection started near the equilibrium p(ﬁﬁtwith the val-
uesxo = 1,y0 = 0,00 = 0.001 andzy = 0.03. For comparison purposes, we present
numerical simulations of two mechanisms of treatment (RTI) and (PI) when RHC
strategy is used. We vary initiation of the treatment beginning Witland T, time
units after the onset of infection (dashed and solid lines types on the Figures, respec-
tively). Also, the non-treated case £ 0) is shown (dotted lines on the Figures).

Uninfected CD4 Cells
o o

(2] ©

T

o
>
T

0.2r

I I I I I I I | -
0 5 10 15 20 25 30 35 40 45 50
Time

FiGure 1a

On Figures la and 1b, the number of uninfected CD4 ocells seen to decay
rapidly for non-treated case (= 0) and tends to the valu&/d when RHC is used.
Moreover, comparing the two kinds of treatment one can observe slower convergence
to the equilibrium in the (PI) case than in the (RTI) one.
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Uninfected CD4 Cells
o
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Time

FiGure 18

The variation of the number of infected cellsvith time is shown in Figures 2a
and 2b. It is found thay increases whem = 0, and tends to zero when RHC is
applied. Further, itis seen that the convergencgisffaster in the (RTI) case than in
the (PI) case.
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FIGURE 2A
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Infected Cells
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FiGure 2B

Figures 3a and 3b show that the amount of free virusdecreases under the
application of RHC in both the (RTI) and the (PI) cases and it rapidly increases if
there is no control.
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Time
FiGure 3a

The CTL response can be seen in Figures 4a and 4b. It is found that the amount
of CTL rapidly increases for the non-treated case. Also, when the RHC is applied,
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10

Free Viruses
u

0 50 100 150 200 250 300 350 400 450 500
Time

FiGure 38

the amount of CTL increasesyjf> b/c and decreases if < b/c for both the (RTI)
and the (PI) cases.

0.12

01f
0,08}

= 0.06

o

0.04

0.02

FiGure 4a

The control as a function of the time produced by RHC method for both the (RTI)
and the (PI) cases is shown in Figures 5a and 5b. The total amount of drugs during
finite intervals is given in Table 2 wheh, = 10 andT, = 12.
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FiGure 48

12

11

10 : /
Treatment started at t=12 after infection

sk Treatment started at t=10 after infection

Drug Doses" RHC"

0 5 10 15 20 25 30 35 40 45 50
Time

FiGUrE 5a

We can say that the system can be stabilized by a smaller amount of drug doses if
we start the treatment earlier.

5. CoONCLUSIONS

The stabilizing property of the RHC method for sampled data nonlinear systems
via their approximate models was proven. The proposed method was applied for the
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11

10 Treatment started at t=12 after infection

Treatment started at't=10 after infection

Drug Doses" RHC"

4 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500
Time

FiGure 58

stabilization of the uninfected equilibrium point of the HAMDS model. Two types

of treatment were considered. The results of simulations show that the proposed
method can #ectively be applied to eliminate some drawbacks of the approaches
previously published in the literature.

| Case | Interval | Total Amount of Drugs (T) | Total Amount of Drugs (T>) |

RTI [0,50] | 603 1068.25
Pl [0,50q4 | 6037.5 6861.37
TABLE 2
ACKNOWLEDGEMENT

The author is grateful to Prof. E. Gyurkovics (School of Mathematics, Budapest
University of Technology and Economics) for her precious ideas and comments.

REFERENCES

[1] Caerano, M. A. L. andYonevama, T.: A comparative evaluation of open loop and closed loop drug
administration strategies in the treatment of AID$ais da Academia Brasileira de cienci@g,
(1999), 589-597.

[2] Caerano, M. A. L., Feurpe DE Souza, J. A. M and Yonevama, T.: A model based analysis of
AIDS treatmentProceedings of the Western Multiconference on Health Sciences Simulation 2003,
Orlando, USA. pp. 56-70.

[3] Evaw, A. M., andGyurkovics, E.. Stabilizing receding horizon control of sampled-data nonlinear
systems via their approximate discrete-time madetsceedings of the ¥2IFAC Workshop on
Control Applications of Optimization, Visegr'ad, Hungary (2003).



186 A. M. ELAIW

[4] Feurere DE Souza, J. A. M., CGaerano, M. A. L. andYonevama, T.: Optimal control theory applied
to the anti-viral treatment of AIDSRroceedings of the 89Conference on decision and control,
Sydney, Australia (2000).

[5] Fister, K. R., Lennart, S.andMcNaLwy, J. S.:Optimizing chemotherapy in an HIV modElec-
tronic J. of Diferential Equationsl998No. 32 (1998), 1-12.

[6] Gring, L. andNesi¢, D.: Optimization based stabilization of sampled-data nonlinear systems via
their approximate discrete-time mode®AM J. of Control Optim42 (2003), 98-122.

[7] Gyurkovics, E.: Receding horizon control via Bolza-type optimizati8ystem and Control Let-
ters,35(1998), 195-200.

[8] Gyurkovics, E. and ELaiw, A. M. Stabilization of sampled data nonlinear systems by reced-
ing horizon control via discrete-time approximatidProceedings of the"® IFAC Conference on
Control Systems Design, Bratislava, Slovac Republic (2003).

[9] Ito, K. and Kunisch, K.: Asymptotic properties of receding horizon optimal control problems,
SIAM J. of Control Optim.40(2002), 1585-1610.

[10] JapaBaBaig, A. andHauser, J.: Unconstrained receding horizon control of nonlinear systdESE
Trans. Automatic Contro6 (2001), 776—783.

[11] KimrscHNER, S., LenarT, S.andSerein, S.: Optimal control of the chemotherapy of HLY, Math.
Biol. 35(1997), 775-792.

[12] Mayng, D. Q., Rawring, J. B., R, C. V. andScokaert, P. O. M.: Constrained model predictive
control: Stability and optimalityAutomatica,36 (2000), 789-814.

[13] Nesic, D.andTeeL, A. R.: A framework for stabilization of nonlinear sampled-data systems based
on their approximate discrete-time moddBEE Trans. Automatic Control (2003), to appear.

[14] Nesic, D., Teer, A. R. and Kokorovic¢, P. V.: Syficient conditions for stabilization of sampled-
data nonlinear systems via discrete-time approximatfystem and Control Letter838 (1999),
259-270.

[15 Nowak, M. A. and Bancuam, R. M.: Population dynamics of immune responses to persistent
viruses,Science272(1996), 74-79.

[16] Woparz, D. andNowak, M. A.: Mathematical models of HIV pathogenesis and treatnigiof:s-
says,24(2002), 1178-1187.

Author’s Address

A. M. Elaiw:

BupapesT UNIVERSITY OF TECHNOLOGY AND Economics, ScHooL oF MaraemMartics, H-1521 BipaPpesT,
HUNGARY

E-mail addresselaiw@math.bme.hu



