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1. I

As it is well-known [1,4], the integrability by quadratures of a differential equation
in space�n is a method of seeking its solutions by means of a finite number of
algebraic operations (together with the inversion of functions) and “quadratures”,
i. e., calculation of integrals of known functions.

Assume that our differential equation is given as a Hamiltonian dynamical system
on some appropriate symplectic manifold (M2n, ω(2)), n ∈ �+, in the form

du/dt = {H, u} , (1.1)
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whereu ∈ M2n, H : M2n → � is a sufficiently smooth Hamiltonian function [1, 4]
with respect to the Poisson bracket{·, ·} onD(M2n), dual to the symplectic structure
ω(2) ∈ Λ2(M2n), and t ∈ � is the evolution parameter. More than one hundred
and fifty years ago French mathematicians and physicists, first E. Bour and next J.
Liouville, proved the first “integrability by quadratures” theorem which in modern
terms [33] can be formulated as follows.

Theorem 1. LetM2n ' T
∗
(�n) be a canonically symplectic phase space and there

be given a dynamical system(1.1)with a Hamiltonian functionH : M2n × �t → �,
possessing a Poissonian Lie algebraG of n ∈ �+ invariantsH j : M2n × �t → �,
j = 1, n, such that

{Hi , H j} =

n∑

s=1

cs
i j Hs, (1.2)

and for all i, j, k = 1, n thecs
i j ∈ � are constants onM2n ×�t. Suppose further that

Mn+1
h :=

{
(u, t) ∈ M ×�t : h(H j) = h j , j = 1,n, h ∈ G∗

}
, (1.3)

the integral submanifold of the setG of invariants at a regular elementh ∈ G∗ is a
well defined connected submanifold ofM ×�t. Then, if:

(i) All functions ofG are functionally independent onMn+1
h ;

(ii)
∑n

s=1 cs
i j hs = 0 for all i, j = 1, n;

(iii) The Lie algebraG = span�{H j : M2n ×�t → � : j = 1, n} is solvable,

the Hamiltonian system(1.1)on M2n is integrable by quadratures.

As a simple corollary of the Bour-Liouville theorem one gets the following

Corollary 1. If a Hamiltonian system onM2n = T∗ (�n) possesses justn ∈ �+

functionally independent invariants in involution, that is a Lie algebraG is abelian,
then it is integrable by quadratures.

In the autonomous case when a HamiltonianH = H1, and invariantsH j : M2n →
�, j = 1, n, are independent of the evolution parametert ∈ �, the involutivity con-
dition {Hi ,H j} = 0, i, j = 1, n, can be replaced by the weaker one{H,H j} = c jH for
some constantsc j ∈ �, j = 1, n.

The first proof of Theorem 1 was based on a result of S. Lie, which can be formu-
lated as follows.

Theorem 2 (S. Lie). Let vector fieldsK j ∈ Γ(M2n), j = 1,n, be independent in
some open neighborhoodUh ∈ M2n, generate a solvable Lie algebraG with respect
to the usual commutator[·, ·] on Γ(M2n) and [K j ,K] = c jK for all j = 1,n, where
c j ∈ �, j = 1, n, are constants. Then the dynamical system

du/dt = K (u) , (1.4)

whereu ∈ Uh ⊂ M2n, is integrable by quadratures.
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Example1 (Motion of three particles on� under a uniform potential field). The
motion of three particles on the axis� pairwise interacting via a uniform potential
field Q (‖·‖) is described as a Hamiltonian system on the canonically symplectic phase
spaceM = T∗(�3) with the following Lie algebraG of invariants onM2n:

H = H1 =

3∑

j=1

p2
j /2mj +

3∑

i< j=1

Q(‖qi − q j‖), (1.5)

H2 =

3∑

j=1

q j p j , H3 =

3∑

j=1

p j ,

where (q j , p j) ∈ T∗ (�), j = 1,3, are coordinates and momenta of particles on the
axis�. The commutation relations for the Lie algebraG are

{H1,H3} = 0, {H2,H3} = H3, {H1,H2} = 2H1, (1.6)

hence it is clearly solvable. Taking a regular elementh ∈ G∗, such thath(H j) = h j =

0, for j = 1 and 3, andh (H2) = h2 ∈ � being arbitrary, one obtains the integrability
of the problem above in quadratures.

In 1974 V. Arnold proved [4] the following important result known as the commu-
tative (abelian) Liouville–Arnold theorem.

Theorem 3(J. Liouville – V. Arnold). Suppose a setG of functionsH j : M2n→ �,
j = 1,n, on a symplectic manifoldM2n is abelian, that is

{Hi ,H j} = 0 (1.7)

for all i, j = 1, n. If on the compact and connected integral submanifold

Mn
h =

{
u ∈ M2n : h(H j) = h j ∈ �, j = 1, n, h ∈ G∗

}

with h ∈ G being regular, all functionsH : M2n → �, j = 1,n, are functionally
independent, thenMn

h is diffeomorphic to then-dimensional torusTn ' M2n, and the
motion on it with respect to the HamiltonianH = H1 ∈ G is a quasi-periodic function
of the evolution parametert ∈ �.

A dynamical system satisfying the hypotheses of Theorem 3 is called completely
integrable.

In 1978 Mishchenko and Fomenko [2] proved the following generalization of the
Liouville–Arnold Theorem 3:

Theorem 4 (A. Mishchenko – A. Fomenko). Assume that on a symplectic man-
ifold (M2n, ω(2)) there is a nonabelian Lie algebraG of invariantsH j : M ∈ �,
j = 1, k, with respect to the dual Poisson bracket onM2n, that is

{Hi ,H j} =

k∑

s=1

cs
i j Hs, (1.8)
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where all valuescs
i j ∈ �, i, j, s = 1, k, are constants, and the following conditions are

satisfied:

(i) The integral submanifoldMr
h := {u ∈ M2n : h(H j) = h ∈ G∗} is compact and

connected at a regular elementh ∈ G∗;
(ii) All the functionsH j : M2n → � j = 1, k, are functionally independent on

M2n;
(iii) The Lie algebraG of invariants satisfies the following relationship:

dimG + rankG = dim M2n, (1.9)

whererankG = rankGh is the dimension of a Cartan subalgebraGh ⊂ G.
Then the submanifoldMr

h ⊂ M2n is r = rankG-dimensional, invariant with respect
to each vector fieldK ∈ Γ(M2n), generated by an elementH ∈ Gh, and diffeomorphic
to ther-dimensional torus�r ' Mr

h, on which the motion is a quasiperiodic function
of the evolution parametert ∈ �.

The simplest proof of the Mishchenko–Fomenko Theorem 4 can be obtained from
the well-known [3,16] classical Lie–Cartan theorem.

Theorem 5 (S. Lie – E. Cartan). Suppose that a pointh ∈ G∗ for a given Lie
algebraG of invariants H j : M2n → �, j = 1, k, is not critical, and the rank
‖{Hi ,H j} : i, j = 1, k‖ = 2(n− r) is constant in an open neighborhoodUh ∈ �n

of the point{h(H j) = h j ∈ � : j = 1, k} ⊂ �k. Then in the neighborhood(h ◦ H)−1 :
Uh ⊂ M2n there existk ∈ �+ independent functionsfs : G → �, s = 1, k, such that
the functionsFs := ( fs ◦ H) : M2n ∈ �, s = 1, k, satisfy the following relationships:

{F1, F2} = {F3, F4} = . . . =
{
F2(n−r)−1, F2(n−r)

}
= 1, (1.10)

with all other brackets{Fi , F j} = 0, where(i, j) , (2s− 1,2s) , s = 1,n− r . In
particular, (k + r − n) ∈ �+ functionsF j : M2n → �, j = 1,n− r, andFs : M2n →
�, s = 1, k− 2(n− r), compose an abelian algebraGτ of new invariants onM2n,
independent on(h ◦ H)−1(Uh) ⊂ M2n.

As a simple corollary of the Lie–Cartan Theorem 5 one obtains the following: in
the case of the Mishchenko–Fomenko Theorem where rankG + dimG = dim M2n,
that is r + k = 2n, the abelian algebraGτ (it is not a subalgebra ofG!) of invari-
ants onM2n is just n = 1/2 dimM2n-dimensional, giving rise to its local complete
integrability in (h ◦ H)−1 (Uh) ⊂ M2n via the abelian Liouville–Arnold Theorem 3.
It is also evident that the Mishchenko–Fomenko nonabelian integrability Theorem 4
reduces to the commutative (abelian) Liouville–Arnold case when a Lie algebraG of
invariants is just abelian, since then rankG = dimG = 1/2 dimM2n = n ∈ Z+, the
standard complete integrability condition.
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All the cases of integrability by quadratures described above pose the following
fundamental question: How can one effectively construct by means of algebraic-
analytical methods the corresponding integral submanifold imbedding

πh : Mr
h→ M2n, (1.11)

wherer = rankG, thereby making it possible to express the solutions of an integrable
flow on Mr

h as some exact quasi-periodic functions on the torus�r ' Mr
h.

Below we shall describe an algebraic-analytical algorithm for resolving this ques-
tion for the case when a symplectic manifoldM 2n is diffeomorphic to the canonically
symplectic cotangent phase spaceT∗ (�) ' M2n.

2. G 

Our main object of study will be differential systems of vector fields on the cotan-
gent phase spaceM2n = T∗ (�n) , n ∈ �+, endowed with the canonical symplectic
structureω(2) ∈ Λ2(M2n), where byω(2) = d (pr∗ α(1)), and

α(1) := 〈p, dq〉 =

n∑

j=1

p jdqj , (2.1)

is the canonical 1-form on the base space�n, lifted naturally to the spaceΛ1(M2n),
(q, p) ∈ M2n are canonical coordinates onT∗ (�n) , pr : T∗ (�n) → � is the canoni-
cal projection, and〈·, ·〉 is the usual scalar product in�n.

Assume further that there is also given a Lie subgroupG (not necessarily compact),
acting symplectically via the mappingϕ : G× M2n→ M2n on M2n, generating a Lie
algebra homomorphismϕ∗ : T(G)→ Γ(M2n) via the diagram

G × G ' T(G)

²²

ϕ∗(u) // T(M2n)

²²
G ϕ(u) // M2n

(2.2)

whereu ∈ M2n. Thus, for anya ∈ G one can define a vector fieldKa ∈ Γ(M2n) as
follows:

Ka = ϕ∗ · a. (2.3)

Since the manifoldM2n is symplectic, one can naturally define for anya ∈ G a
functionHa ∈ D(M2n) as follows:

−iKaω
(2) = dHa, (2.4)

whose existence follows from the invariance property

LKaω
(2) = 0 (2.5)

for all a ∈ G. The following lemma [1] is useful in applications.
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Lemma 1. If the first homology groupH1 (G;�) of the Lie algebraG vanishes,
then the mappingΦ : G → D(M2n) defined as

Φ(a) := Ha (2.6)

for anya ∈ G is a Lie algebra homomorphism ofG andD(M2n) (endowed with the
Lie structure induced by the symplectic structureω(2) ∈ Λ2(M2n)). In this caseG is
said to be Poissonian.

As the mappingΦ : G → D(M2n) is evidently linear inG, expression (2.6) natu-
rally defines a momentum mappingl : M2n → G∗ as follows: for anyu ∈ M2n and
all a ∈ G

(l(u), a)G := Ha (u) , (2.7)

where(·, ·)G is the standard scalar product on the dual pairG∗ × G. The following
characteristic equivariance [1] lemma holds.

Lemma 2. The diagram

M2n

ϕg

²²

l // G∗
Ad∗

g−1

²²
M2n l // G∗

(2.8)

commutes for allg ∈ G, whereAd∗
g−1 : G∗ → G∗ is the corresponding co-adjoint

action of the Lie groupG on the dual spaceG∗.
Take now any vectorh ∈ G∗ and consider a subspaceGh ⊂ G, consisting of

elementsa ∈ G, such that ad∗a h = 0, where ad∗a : G∗ → G∗is the corresponding Lie
algebraG representation in the dual spaceG∗.

The following lemmas hold.

Lemma 3. The subspaceGh ⊂ G is a Lie subalgebra ofG, called here a Cartan
subalgebra.

Lemma 4. Assume a vectorh ∈ G∗ is chosen in such a way thatr = dimGh is
minimal. Then the Cartan Lie subalgebraGh ⊂ G is abelian.

In Lemma 4 the corresponding elementh ∈ G∗ is called regular and the number
r = dimGh is called the rankG of the Lie algebraG.

About twenty years ago Mishchenko and Fomenko [2] proved the following im-
portant noncommutative (nonabelian) Liouville–Arnold theorem.

Theorem 6. On a symplectic space(M2n, ω(2)) let there be given a set of smooth
functionsH j ∈ D(M2n), j = 1, k, whose linear span over� comprises a Lie algebra
G with respect to the corresponding Poisson bracket onM2n. Suppose also that the
set

M2n−k
h :=

{
u ∈ M2n : h(H j) = h j ∈ �, j = 1, k, h ∈ G∗

}
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with h ∈ G∗ regular, is a submanifold ofM2n, and onM2n−k
h all the functionsH j ∈

D(M2n), j = 1, k, are functionally independent. Assume also that the Lie algebraG
satisfies the following condition:

dimG + rankG = dim M2n. (2.9)

Then the submanifoldMr
h := M2n−k

h is rankG = r-dimensional and invariant with
respect to each vector fieldKā ∈ Γ(M2n) with ā ∈ Gh ⊂ G. Given a vector field
K = Kā ∈ Γ(M2n) with ā ∈ Gh or K ∈ Γ(M2n) such that[K,Ka] = 0 for all a ∈ G,
then, if the submanifoldMr

h is connected and compact, it is diffeomorphic to the
r-dimensional torusTr ' Mr

h and the motion of the vector fieldK ∈ Γ(M2n) on it is a
quasiperiodic function of the evolution parametert ∈ �.

The easiest proof of this result can be obtained from the well-known [3] classical
Lie–Cartan theorem, mentioned in the Introduction. Below we shall only sketch the
original Mishchenko–Fomenko proof which is heavily based on symplectic theory
techniques, some of which have been discussed above.

S  . Define a Lie groupG naturally asG = expG, whereG is the
Lie algebra of functionsH j ∈ D(M2n), j = 1, k, in the theorem , with respect to the
Poisson bracket{·, ·} on M2n. Then for an elementh ∈ G∗ and anya =

∑k
j=1 c jH j ∈ G,

wherec j ∈ �, j = 1, k, the following equality

(h, a)G :=
k∑

j=1

c jh(H j) =

k∑

j=1

c jh j (2.10)

holds. Since all functionsH j ∈ D(M2n), j = 1, k, are independent on the level
submanifoldMr

h ⊂ M2n, this evidently means that the elementh ∈ G∗ is regular
for the Lie algebraG. Consequently, the Cartan Lie subalgebraGh ⊂ G is abelian.
The latter is proved by means of simple straightforward calculations. Moreover, the
corresponding momentum mappingl : M2n→ G∗ is constant onMr

h and satisfies the
following relation:

l(Mr
h) = h ∈ G∗. (2.11)

From this it can be shown that all vector fieldsKā ∈ Γ(M2n), ā ∈ Gh, are tangent
to the submanifoldMr

h ⊂ M2n. Thus the corresponding Lie subgroupGh := expGh

acts naturally and invariantly onMr
h. If the submanifoldMr

h ⊂ M2n is connected and
compact, it follows from (2.9) that dimMr

h = dim M2n − dimG = rankG = r, and
one obtains via the Arnold theorem [4] thatMr

h ' �r and the motion of the vector
field K ∈ Γ(M2n) is a quasiperiodic function of the evolution parametert ∈ �, thus
proving the theorem. �
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As a nontrivial consequence of the Lie–Cartan theorem mentioned before and of
Theorem 6, one can prove the following dual theorem about abelian Liouville–Arnold
integrability.

Theorem 7. Let a vector fieldK ∈ Γ(M2n) be completely integrable via the non-
abelian scheme of Theorem 6. Then it is also Liouville–Arnold integrable onM2n and
possesses, under some additional conditions, yet another abelian Lie algebraGh of
functionally independent invariants onM2n, for whichdimGh = n = (1/2) dimM2n.

The available proof of the theorem above is quite complicated, and we shall com-
ment on it in detail later on. We mention here only that some analogs of the reduction
Theorem 6 for the case whereM2n ' G∗, so that an arbitrary Lie groupG acts sym-
plectically on the manifold, were proved also in [6–10, 34]. Notice here, that in the
case when equality (2.10) is not satisfied one can then construct in the usual way the
reduced manifoldM̄2n−k−r

h := M2n−k
h /Gh on which there exists a symplectic structure

ω̄(2)
h ∈ Λ2(M̄2n−k−r

h

)
, defined as

r∗hω̄
(2)
h = π∗hω

(2) (2.12)

with respect to the following compatible reduction-imbedding diagram:

M̄2n−k−r
h M2n−k

h

rhoo πh // M2n (2.13)

whererh : M2n−k
h → M̄2n−k−r

h andπh : M2n−k
h → M2n are, respectively, the cor-

responding reductions and imbedding mappings. The nondegeneracy of the 2-form
ω̄(2)

h ∈ Λ2(M̄h) defined by (2.13), follows simply from the expression

ker (π∗hω
(2)(u)) = Tu(M2n−k

h ) ∩ T⊥u (M2n−k
h )

= span
�

{
Kā (u) ∈ Tu(M̄2n−k−r

h := M2n−k
h /Gh) : ā ∈ Gh

}
(2.14)

for any u ∈ M2n−k
h , since all vector fieldsKā ∈ Γ(M2n), ā ∈ Gh, are tangent to

M̄2n−k−r
h := M2n−k

h /Gh. Thus, the reduced spacēM2n−k−r
h := M2n−k

h /Gh with respect to
the orbits of the Lie subgroupGh action onM2n−k

h will be a (2n− k− r)-dimensional
symplectic manifold. The latter evidently means that the number 2n−k−r = 2s ∈ �+

is even as there is no symplectic structure on odd-dimensional manifolds. This ob-
viously is closely connected with the problem of existence of a symplectic group
action of a Lie groupG on a given symplectic manifold (M2n, ω(2)) with a symplectic
structureω(2) ∈ Λ(2)(M2n) beinga priori fixed. From this point of view one can con-
sider the inverse problem of constructing symplectic structures on a manifoldM2n,
admitting a Lie groupG action. Namely, owing to the equivariance property (2.8)
of the momentum mappingl : M2n → G∗, one can obtain the induced symplectic
structurel∗Ω(2)

h ∈ Λ2(M̄2n−k−r
h ) on M̄2n−k−r

h from the canonical symplectic structure

Ω
(2)
h ∈ Λ(2) (Or(h; G)) on the orbit Or(h; G) ⊂ G∗ of a regular elementh ∈ G∗.



INTEGRABILITY OF HAMILTONIAN SYSTEMS AND PICARD–FUCHS EQUATIONS 73

Since the symplectic structurel∗Ω(2)
h ∈ Λ2(M̄h) can be naturally lifted to the 2-form

ω̃(2) = (r∗h ◦ l∗)Ω(2)
h ∈ Λ2(M2n−k

h ), the latter being degenerate onM2n−k
h can appar-

ently be nonuniquely extended on the whole manifoldM2n to a symplectic structure
ω(2) ∈ Λ2(M2n), for which the action of the Lie groupG is a priori symplectic.
Thus, many properties of a given dynamical system with a Lie algebraG of invari-
ants onM2n are deeply connected with the symplectic structureω(2) ∈ Λ2(M2n) the
manifold M2n is endowed with, and in particular, with the corresponding integral
submanifold imbedding mappingπh : M2n−k

h → M2n at a regular elementh ∈ G∗.
The problem of direct algebraic-analytical construction of this mapping was in part
solved in [11] in the case wheren = 2 for an abelian algebraG on the manifold
M4 = T∗(�2). The treatment of this problem in [11] was extensively based both
on the classical Cartan studies of integral submanifolds of ideals in Grassmann al-
gebras and on the modern Galisot–Reeb-Françoise results for a symplectic manifold
(M2n, ω(2)) structure, on which there exists an involutive setG of functionally inde-
pendent invariantsH j ∈ D(M2n), j = 1,n. In what follows below we generalize the
Galisot–Reeb–Françoise results to the case of a nonabelian set of functionally inde-
pendent functionsH j ∈ D, (M2n), j = 1, k, comprising a Lie algebraG and satisfying
the Mishchenko–Fomenko condition (2.9): dimG+ rankG = dim M2n. This makes it
possible to devise an effective algebraic-analytical method of constructing the corre-
sponding integral submanifold imbedding and reduction mappings, giving rise to a
wide class of exact, integrable by quadratures, solutions of a given integrable vector
field onM2n.

3. I       L   



We shall consider here only a setG of commuting polynomial functionsH j ∈
D(M2n), j = 1, n, on the canonically symplectic phase spaceM2n = T∗(�n). Due
to the Liouville–Arnold theorem [4], any dynamical systemK ∈ Γ(M2n) commuting
with corresponding Hamiltonian vector fieldsKa for all a ∈ G, will be integrable
by quadratures in case of a regular elementh ∈ G∗, which defines the correspond-
ing integral submanifoldMn

h := {u ∈ M2n : h(H j) = h j ∈ �, j = 1, n} which is
diffeomorphic (when compact and connected) to then-dimensional torus�n ' Mn

h.
This in particular means that there exists some algebraic-analytical expression for the
integral submanifold imbedding mappingπh : Mn

h → M2n into the ambient phase
spaceM2n, which one should find in order to properly demonstrate integrability by
quadratures.

The problem formulated above was posed and in part solved (as was mentioned
above) forn = 2 in [11] and in [13] for a Henon–Heiles dynamical system which
had previously been integrated [14, 15] using other tools. Here we generalize the
approach of [11] for the general casen ∈ �+ and proceed further in Section 3 to solve
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this problem in the case of a nonabelian Lie algebraG of polynomial invariants on
M2n = T∗(�n), satisfying all the conditions of the Mishchenko–Fomenko Theorem 6.

Define now the basic vector fieldsK j ∈ Γ(M2n), j = 1, n, generated by basic
elementsH j ∈ G of an abelian Lie algebraG of invariants onM2n, as follows:

−iK jω
(2) = dH j (3.1)

for all j = 1,n. It is easy to see that the condition{H j ,Hi} = 0 for all i, j = 1, n,
yields also [Ki ,K j ] = 0 for all i, j = 1,n. Taking into account that dimM2n = 2n,
one obtains the equality (ω(2))n = 0 identically onM2n. This makes it possible to
formulate the following Galisau–Reeb result.

Theorem 8. Assume that an elementh ∈ G∗ is chosen to be regular and a Lie
algebraG of invariants onM2n is abelian. Then there exist differential 1-forms
h(1)

j ∈ Λ1(U(Mn
h)), j = 1, n, whereU(Mn

h) is some open neighborhood of the inte-

gral submanifoldMn
h ⊂ M2n, satisfying the following properties:

(i) ω(2)|U(Mn
h) =

∑n
j=1 dH j ∧ h(1)

j ;

(ii) The exterior differentialsdh(1)
j ∈ Λ2(U(Mn

h)) belong to the idealI (G) in the

Grassmann algebraΛ(U(Mn
h)) generated by the1-formsdH j ∈ Λ1(U(Mn

h)),

j = 1, n.

P. Consider the following identity onM2n :
(
⊗n

j=1iK j

)
(ω(2))n+1 = 0 = ± (n + 1)!

(
∧n

j=1dH j

)
∧ ω(2), (3.2)

which implies that the 2-formω(2) ∈ I (G) . Therefore, one can find 1-formsh(1)
j ∈

Λ1(U(Mn
h)), j = 1, n, satisfying the condition

ω(2)
∣∣∣
U(Mn

h) =

n∑

j=1

dH j ∧ h(1)
j . (3.3)

Sinceω(2) ∈ Λ2(U(Mn
h)) is nondegenerate onM2n, it follows that all 1-formsh(1)

j ,

j = 1, n, in (3.3) are independent onU(Mn
h), proving part (i) of the Theorem. As

dω(2) = 0 onM2n, from (2.3) one gets that

n∑

j=1

dH j ∧ dh(1)
j = 0 (3.4)

onU(Mn
h), hence it is obvious thatdh(1)

j ∈ I (G) ⊂ Λ(U(Mn
h)) for all j = 1,n, proving

part (ii) of the Theorem. �
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Now we proceed to study properties of the integral submanifoldMn
h ⊂ M2n of the

idealI (G) in the Grassmann algebraΛ(U(Mn
h)). In general, the integral submanifold

Mn
h is completely described [16] by means of the imbedding

πh : Mn
h → M2n (3.5)

and using this, one can reduce all vector fieldsK j ∈ Γ(M2n), j = 1, n, on the sub-
manifold Mn

h ⊂ M2n, since they are all evidently in its tangent space. IfK̄ j ∈ Γ(Mn
h),

j = 1, n, are the corresponding pulled-back vector fieldsK j ∈ Γ(M2n), j = 1,n, then
by definition, the equality

πh∗ ◦ K̄ j = K j ◦ πh (3.6)

holds for all j = 1, n. Similarly one can construct 1-forms̄h(1)
j := π∗h ◦ h(1)

j ∈ Λ1(Mn
h),

j = 1,n, which are characterized by the following Cartan–Jost [16] Theorem.

Theorem 9. The following assertions are true:

(i) The1-formsh̄(1)
j ∈ Λ1(Mn

h), j = 1,n, are independent onMn
h;

(ii) The1-formsh̄(1)
j ∈ Λ1(Mn

h), j = 1,n, are exact onMn
h and satisfȳh(1)

j (K̄ j) =

δi j , i, j = 1, n.

P. As the idealI (G) is by definition vanishing onMn
h ⊂ M2n and closed on

U(Mn
h), the integral submanifoldMn

h is well defined in the case of a regular element
h ∈ G∗. This implies that the imbedding (3.5) is nondegenerate onMn

h ⊂ M2n, or

the 1-formsh̄(1)
j := π∗h ◦ h(1)

j , j = 1,n, will persist in being independent if they are

1-formsh(1)
j ∈ Λ1(U(Mn

h)), j = 1,n, proving part (i) of the theorem. Using property

(ii) of Theorem 8, one sees that on the integral submanifoldMn
h ⊂ M2n all 2-forms

dh̄(1)
j = 0, j = 1,n. Consequently, owing to the Poincaré lemma [1, 16], the 1-forms

h̄(1)
j = dt̄ j ∈ Λ1(Mn

h), j = 1, n, for some mappings̄t j : Mn
h → �, j = 1,n, defining

global coordinates on an appropriate universal covering ofMn
h. Consider now the

following identity based on the representation (3.3):

iK jω
(2)

∣∣∣
U(Mn

h)
= −

n∑

i=1

h(1)
i (K j)dHi := −dH j , (3.7)

which holds for anyj = 1,n. As all dH j ∈ Λ1(U(Mn
h)), j = 1,n, are independent,

from (3.7) one infers thath(1)
i (K j) = δi j for all i, j = 1,n. Recalling now that for any

i = 1, n, Ki ◦ πh = πh∗ ◦ Ki , one readily computes that

h̄(1)
i (K̄ j) = π∗hh(1)

i (K̄ j) := h(1)
i (πh∗ ◦ K j) := h(1)

i (K j ◦ πh) = δi j

for all i, j = 1, n, proving part (ii) of the Theorem. �

The following is a simple consequence of Theorem 9:
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Corollary 2. Suppose that the vector fieldsK j ∈ Γ(M2n), j = 1,n, are parametri-
zed globally along their trajectories by means of the corresponding parameterst j :
M2n→ �, j = 1, n, that is on the phase spaceM2n

d/dt j := K j (3.8)

for all j = 1, n. Then the following important equalities hold (up to constant normal-
izations) on the integral submanifoldMn

h ⊂ M2n:

t j

∣∣∣
Mn

h
= t̄ j , (3.9)

where1 ≤ j ≤ n.

We consider a completely integrable via Liouville–Arnold Hamiltonian system on
the cotangent canonically symplectic manifold (T∗ (�n) , ω(2)), n ∈ �+, possessing
exactly n ∈ �+ functionally independent and Poisson commuting algebraic poly-
nomial invariantsH j : T∗ (�n) → �, j = 1,n. Due to the Liouville–Arnold theo-
rem this Hamiltonian system can be completely integrated by quadratures in quasi-
periodic functions on its integral submanifold when taken compact. It is equiva-
lent to the statement that this compact integral submanifold is diffeomorphic to a
torus�n, which makes it possible to formulate the problem of integrating the system
by means of searching the corresponding integral submanifold imbedding mapping
πh : Mn

h −→ T∗ (�n) , where by definition

Mn
h :=

{
(q, p) ∈ T∗

(
�n) : H j (q, p) = h j ∈ �, j = 1,n

}
. (3.10)

SinceMn
h ' �n, and the integral submanifold (1.1) is invariant subject to all Hamil-

tonian flowsK j : T∗ (�n)→ T (T∗ (�n)) , j = 1,n, where

iK jω
(2) = −dH j , (3.11)

there exist corresponding “action–angle” coordinates (ϕ, γ) ∈ (�n
γ,�

n) on the torus
�n
γ w Mn

h, specifying its imbeddingπγ : �n
γ → T∗ (�n) by means of a set of smooth

functionsγ ∈ D (�n) , where

�n
γ := {(q, p) ∈ T∗

(
�n) : γ j (H) = γ j ∈ �, j = 1,n}. (3.12)

The induced by (3.12) mappingγ : �n 3 h→ �n is of great interest for many appli-
cations and was studied still earlier by Picard and Fuchs subject to the corresponding
differential equations it satisfies:

∂γ j (h) /∂hi = Fi j (γ; h) , (3.13)

whereh ∈ �n and Fi j : �n × �n → �, i, j = 1, n, are some almost everywhere
smooth functions. In the case when the right hand side of (1.5) is a set of algebraic
functions on�n × �n 3 (γ; h) , all Hamiltonian flowsK j : T∗ (�n) → T (T∗ (�n)) ,
j = 1, n, are said to be algebraically completely integrable in quadratures. In general
equations like (3.13) were studied in [19,31], a recent example can be found in [18].
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It is clear enough that Picard–Fuchs equations (3.13) are related to the associated
canonical transformation of the symplectic 2-formω(2) ∈ Λ2 (T∗ (�n)) in a neighbor-
hoodU(Mn

h) of the integral submanifoldMn
h ⊂ T∗ (�n) . To make it more precise,

denoteω(2) (q, p) = dpr∗ α(1) (q; p) , where for(q, p) ∈ T∗ (�n)

α(1) (q; p) :=
n∑

j=1

p jdqj = 〈p,dq〉 ∈ Λ1 (
�n) (3.14)

is the canonical Liouville 1-form on�n, 〈·, ·〉 is the usual scalar product in�n, pr :
T∗ (�n)→ �n is the bundle projection. One can now define a mapping

dSq : �n→ T∗q
(
�n) , (3.15)

such thatdSq (h) ∈ T∗q (�n) is an exact 1-form for allq ∈ Mn
h andh ∈ �n, yielding

(dSq)∗(dpr∗ α(1)) = (dSq)∗ω(2) := d2Sq ≡ 0. (3.16)

Thereby the mapping (3.15) defines a so-called generating function [1,2]Sq : �n→
�, satisfying onMn

h the relationship

pr∗ α(1) (q; p) + 〈t, dh〉 = dSq (h) , (3.17)

wheret ∈ �n is the set of evolution parameters. From (3.17) one gets right away that
equality

Sq (h) =

∫ q

q(0)
〈p,dq〉

∣∣∣∣
Mn

h

(3.18)

holds for anyq, q(0) ∈ Mn
h. On the other hand, one can define one more generating

functionSµ : �n→ �, such that

dSµ : �n→ T∗µ(Mn
h), (3.19)

whereµ ∈ Mn
h w ⊗n

j=1�
1
j are global separable coordinates existing onMn

h owing to the
Liouville–Arnold theorem. Thus one can write the following canonical relationsip:

〈w,dµ〉 + 〈t,dh〉 = dSµ (h) , (3.20)

wherew j := w j(µ j ; h) ∈ T∗µ j
(�1

j ) for every j = 1,n. Whence it follows readily that

Sµ (h) =

n∑

j=1

∫ µ j

µ(0)
j

w (λ; h) dλ, (3.21)

satisfying onMn
h ⊂ T∗ (�n) the following relationship

dSµ + dLµ = dSq

∣∣∣
q=q(µ;h) (3.22)

for some mappingLµ : �n → �. As a result of (3.21) and (3.22) one gets that the
following important expressions

ti = ∂Sµ (h) /∂hi , 〈p, ∂q/∂µi〉 = wi + ∂Lµ/∂µi (3.23)
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hold for all i = 1,n. A construction similar to the above can be done subject to the
imbedded torus�n

γ ⊂ T∗ (�n) :

dS̃q (γ) :=
n∑

j=1

p jdqj +

n∑

i=1

ϕidγi , (3.24)

where owing to (3.15)̃Sq (γ) := Sq(ξ · γ), ξ · γ (h) = h, for all (q; γ) ∈ U(Mn
h). For

angle coordinatesϕ ∈ �n
γ one obtains from (3.24) that

ϕi = ∂S̃q (γ) /∂γi (3.25)

for all i = 1,n. As ϕi ∈ �/2π�, i = 1, n, from (3.26) one derives that

1
2π

∮

σ(h)
j

dϕi = δi j =
1
2π

∂

∂γi

∮

σ(h)
j

dS̃q (γ) =
1
2π

∂

∂γi

∮

σ(h)
j

〈p, dq〉 (3.26)

for all canonical cyclesσ(h)
j ⊂ Mn

h, j = 1, n, constituting a basis of the one dimen-

sional homology groupH1(Mn
h;�). Thereby, owing to (3.26), it follows that for all

i = 1,n “action” variables can be found as

γi =
1
2π

∮

σ(h)
i

〈p, dq〉 (3.27)

Recall now thatMn
h ' �n

γ are diffeomorphic also to⊗n
j=1�

1
j , where�1

j , j = 1, n,
are some one-dimensional real circles. The evolution along any of the vector fields
K j : T∗ (�n)→ T (T∗ (�n)) , j = 1, n, on Mn

h ⊂ T∗ (�n) is known [1,2] to be a linear
winding around the torus�n

γ, that can be interpreted also this way: the above intro-

duced independent of every other global coordinate on circles�1
j , j = 1, n, are such

that the resulting evolution undergoes a quasiperiodic motion. These coordinates be-
ing still called Hamilton–Jacobi ones prove to be very important for accomplishing
the complete integrability by quadratures via solving the corresponding Picard–Fuchs
type equations.

Let us denote these separable coordinates on the integral submanifoldMn
h ' ⊗n

j=1�
1
j

by µ j ∈ �1
j , j = 1, n, and define the corresponding imbedding mappingπh : Mn

h →
T∗ (�n) as

q = q (µ; h) , p = p (µ; h) . (3.28)

There exist two important cases subject to the imbedding (3.28) .
The first case is related to the integral submanifoldMn

h ⊂ T∗ (�n) which can be
parametrized as a manifold by means of the base coordinatesq ∈ �n of the cotangent
bundleT∗ (�n) . This can be explained as follows: the canonical Liouville 1-form
α(1) ∈ Λ1 (�n) , in accordance with the diagram
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T∗(Mn
h) '

pr

²²

T∗
(
⊗n

j=1�
1
j

)

pr

²²

T∗ (�n)π∗oo

pr

²²
Mn

h ' ⊗n
j=1�

1
j

π // �n

(3.29)

is mapped by the imbedding mappingπ = pr · πh : Mn
h → �n not depending on a set

of parametersh ∈ �n, into the 1-form

α(1)
h = π∗α(1) =

n∑

j=1

w j(µ j ; h)dµ j , (3.30)

where(µ, w) ∈ T∗
(
⊗n

j=1�
1
j

)
' ⊗n

j=1T∗(�1
j ). The imbedding mappingπ : Mn

h → �n

due to equality (3.30) makes the functionLµ : �n → � to be zero giving rise to the
generating functionSµ : �n→ �, enjoying the condition

dSµ = dSq

∣∣∣
q=q(µ;h) , (3.31)

where as before

Sµ (h) =

n∑

j=1

p jdqj +

n∑

j=1

t jdhj (3.32)

and det||∂q (µ; h) /∂µ|| , 0 almost everywhere onMn
h for all h ∈ �n. Similarly to

(3.23), one gets from (3.32) that

t j = ∂Sµ (h) /∂h j (3.33)

for j = 1,n. Concerning the second part of the imbedding mapping (3.28) we arrive
due to equality (3.30) at the following simple result:

pi =

n∑

j=1

w j(µ j ; h)∂µ j/∂qi , (3.34)

wherei = 1, n and det||∂µ/∂q|| , 0 almost everywhere onπ(Mn
h) due to the local

invertibility of the imbedding mappingπ : Mn
h → �n. Thus, we can claim that the

problem of complete integrability in the first case is solved iff the only imbedding
mappingπ : Mn

h → �n ⊂ T∗ (�n) is constructed. This case was in detail considered
in [11], where the corresponding Picard–Fuchs type equations were built based on an
extension of Galisot–Reeb and Françoise results [18]. Namely, similarly to (3.13),
these equations are defined as follows:

∂w j(µ j ; h)/∂hk = Pk j(µ j , w j ; h), (3.35)

wherePk j : T∗
(
⊗n

j=1�
1
j

)
× �n → �, k, j = 1,n, are some algebraic functions of their

arguments.
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Concerningthe second casewhen the integral submanifoldMn
h ⊂ T∗ (�n) cannot

be imbedded almost everywhere into the base space�n ⊂ T∗ (�n) , the relation-
ship like (3.32) does not take place, and we are forced to consider the usual canon-
ical transformation fromT∗ (�n) to T∗ (�n) based on a mappingdLq : ⊗n

j=1�
1
j →

T∗ (�n) , whereLq : ⊗n
j=1�

1
j → � enjoys for allµ ∈ ⊗n

j=1�
1
j w Mn

h 3 q the following
relationship

pr∗ α(1) (q; p) =

n∑

j=1

w j dµ j + dLq (µ) . (3.36)

In this case we can derive for anyµ ∈ ⊗n
j=1�

1
j the previously introduced hereditary

generating functionLµ : �n→ T∗
(
⊗n

j=1�
1
j

)
as

dLµ = dLq

∣∣∣
q=q(µ;h) , (3.37)

satisfying evidently the following canonical transformation condition:

dSq (h) =

n∑

j=1

w j( µ j ; h) dµ j +

n∑

j=1

t jdhj + dLµ (h) , (3.38)

for almost allµ ∈ ⊗n
j=1�

1
j andh ∈ �n. Based on (3.38) one can derive the following

relationships:
∂Lµ (h) /∂h j = 〈p, ∂q/∂h j〉

∣∣∣
Mn

h
(3.39)

for all j = 1,2, µ ∈ ⊗n
j=1�

1
j andh ∈ �n. Whence the following important analytical

result,

ts =

n∑

j=1

∫ µ j

µ(0)
j

(
∂w j (λ; h) /∂hs

)
dλ,

n∑

j=1

p j (µ; h)
(
∂q j/∂µs

)
= ws + ∂Lµ (h) /∂µs, (3.40)

holds for all s = 1,2 andµ, µ(0) ∈ ⊗n
j=1�

1
j with parametersh ∈ �n being fixed.

Thereby we have found a natural generalization of relationships (3.34) subject to the
extended integral submanifold imbedding mappingπh : Mn

h → T∗ (�n) in the form
(3.28).

Assume now that functionsw j : � × �n → �, j = 1, n, satisfy in general Picard–
Fuchs equations like (3.35), having the following [3] algebraic solutions:

w
n j

j +

n j−1∑

k=0

c j,k (λ; h)wk
j = 0, (3.41)

wherec j,k : � × �n → �, k = 0,n j − 1, j = 1,n, are some polynomials inλ ∈ �.
Each algebraic curve of (3.41) is known to be in general topologically equivalent
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due to the Riemann theorem [20] to some Riemannian surfaceΓ
( j)
h , of genusg j ∈ �+,

j = 1, n. Thereby, one can realize the local diffeomorphism% : Mn
h → ⊗n

j=1Γ
( j)
h ,

mapping homology group basis cyclesσ(h)
j ⊂ Mn

h, j = 1,n, into homology subgroup

H1

(
⊗n

j=1Γ
( j)
h ;�

)
basis cyclesσj (Γh) ⊂ Γ

( j)
h , j = 1,n, satisfying the following rela-

tionships:

%(σ(h)
j ) =

n∑

k=1

n jkσk (Γh) , (3.42)

wheren jk ∈ �, k = 1, j and j = 1, n, are some fixed integers. Based on (3.42) and
(3.37) one can write down, for instance, expressions (3.27) as follows:

γi =
1
2π

n∑

j=1

ni j

∮

σj (Γh)
w j (λ; h) dλ, (3.43)

wherei = 1,n. Subject to the evolution onMn
h ⊂ T∗ (�n) one can easily obtain from

(3.39) that

dti =

n∑

j=1

(
∂w j(µ j ; h)/∂hi

)
dµ j (3.44)

atdhi = 0 for all i = 1, n, giving rise evidently to a globalτ-parametrization of the set
of circles⊗n

j=1�
1
j ⊂ ⊗n

j=1Γ
( j)
h , that is one can define some inverse algebraic functions

to Abelian type integrals (3.37) as

µ = µ (τ; h) , (3.45)

where as before,τ = (t1, t2, ..., tn) ∈ �n is an a vector of evolution parameters. Recall-
ing now expressions (3.28) for integral submanifold mappingπh : Mn

h → T∗ (�n) ,
one can at last write down final expressed by “quadratures” mappings for evolutions
on Mn

h ⊂ T∗ (�n) as follows:

q = q (µ (τ; h)) = q̃ (τ; h) , p = p (µ (τ; h)) = p̃ (τ; h) , (3.46)

where obviously, a vector(q̃, p̃) ∈ T∗ (�n) is quasiperiodic in each variableti ∈ τ,
i = 1, n.

Theorem 10. Every completely integrable Hamiltonian system admitting an al-
gebraic submanifoldMn

h ⊂ T∗ (�n) pessesses a separable canonical transforma-
tion (3.38)which is described by differential algebraic Picard–Fuchs type equations
whose solution is a set of algebraic curves(3.41).

Therefore, the main ingredient of this scheme of integrability by quadratures is
finding the Picard–Fuchs type equations (3.35) corresponding to the integral sub-
manifold imbedding mapping (3.28) depending in general on�n 3 h-parameters for
the case when the integral submanifoldMn

h ⊂ T∗ (�n) cannot be imbedded into the
base space�n ⊂ T∗ (�n) of the phase spaceT∗ (�n) . Based now on Theorem 8 one
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can find 1-formsh(1)
j ∈ Λ1 (T∗ (�n)) , j = 1,n, enjoying the following identity on

T∗ (�n):

ω(2) (q, p) :=
n∑

j=1

dpj ∧ dqj =

n∑

j=1

dH j ∧ h(1)
j . (3.47)

The 1-formsh(1)
j ∈ Λ1 (T∗ (�n)) , j = 1, n, possess the stated important property:

pullbacked to the integral submanifold (3.10) gives rise to the global linearization

π∗hh(1)
j := h̄(1)

j = dt j (3.48)

where h̄(1)
j ∈ Λ1(Mn

h), andπh∗d/dt j = K j · πh for all j = 1,n. Expressions (2.2)
combined with those in (3.44) give rise easily to the following set of relationships

h̄(1)
j =

n∑

j=1

(
∂w j(µ j ; h)/∂hi

)
dµ j (3.49)

at dhj = 0 for all j = 1,n on Mn
h w ⊗n

j=1�
1
j ⊂ ⊗n

j=1Γ
( j)
h for all j = 1,n. Since we

are interested in the integral submanifold imbedding mapping (3.25) being locally
diffeomorphic in a neighborhoodU(Mn

h) ⊂ T∗ (�n) , the Jacobian det||∂q(µ; h)/∂µ|| ,
0 almost everywhere inU(Mn

h). On the other hand, as it was proved in [4], the set of

1-formsh̄(1)
j ∈ Λ1(Mn

h), j = 1, n, can be in general, represented inU(Mn
h) as

h̄(1)
j =

n∑

k=1

h̄(1)
jk (q, p) dqk

∣∣∣∣
Mn

h

, (3.50)

whereh̄(1)
jk : T∗ (�n) → �, k, j = 1, n, are some algebraic expressions of their argu-

ments. Thereby, one easily finds from (3.50) and (3.49) that

∂wi (µi ; h) /∂h j =

n∑

k=1

h̄(1)
jk (q (µ; h) , p (µ; h)) (∂qk (µ; h) /∂µi) (3.51)

for all i, j = 1,n. Subject top-variables in (3.51) we must, owing to (3.40), use the
expressions

n∑

j=1

p j (µ; h) (∂q j/∂µs) = ws + ∂Lµ (h) /∂µs, (3.52)

∂Lµ (h) /∂h j = 〈p, ∂q/∂h j〉
∣∣∣
Mn

h
,

being true fors = 1, n and allµ ∈ ⊗n
j=1� j , h ∈ �n in the neighborhoodU(Mn

h) ⊂
T∗ (�n) chosen before. Thereby, we arrived at the following form of equations (3.51):

∂wi (µi ; h) /∂h j = P̄ ji (µ, w; h) , (3.53)
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where for alli, j = 1, n expressions

P̄ ji (µ, w; h) :=
n∑

k=1

h̄(1)
jk (q (µ; h) , p (µ; h)) (∂qk/∂µi) (3.54)

depend correspondingly only onΓ(i)
h 3 (µi , wi)-variables for eachi ∈ {1, n} and all

j = 1,n. This condition can be evidently written as follows:

∂P̄ ji (µ, w; h) /∂µk = 0, ∂P̄ ji (µ, w; h) /∂wk = 0 (3.55)

for j, i , k ∈ {1,n} at almost allµ ∈ ⊗n
j=1�

1
j and h ∈ �n. The set of conditions

(3.51) gives rise in general to a system of algebraic-differential equations subject
to the imbedding mapping prπh : Mn

h → �n defined analytically by (3.28) and the
generating function (3.37). As a result of solving these equations we obtain evidently,
owing to (3.53) and (3.55), the following system of Picard–Fuchs type equations:

∂wi (µi ; h) /∂h j = P ji (µi , wi ; h) (3.56)

where, in general, mappings

P ji : Γ
(i)
h ×�n→ � (3.57)

are some algebraic expressions. Since the set of algebraic curves (3.41) must enjoy
the system (3.56), we can retrieve this set solving the Picard–Fuchs type equations
(3.56). The latter gives rise due to (3.39) and (3.28) to the integrability of all flows
on Mn

h ⊂ T∗ (�n) by quadratures as was mentioned in Section 1.

Theorem 11. Let there be given a completely integrable Hamiltonian system on
the coadjoint manifoldT∗ (�n) whose integral submanifoldMn

h ⊂ T∗(�n) is de-
scribed by Picard–Fuchs type algebraic equations(3.56). The corresponding imbed-
ding mappingπh : Mn

h → T∗(�n) (3.28) is a solution of a compatibility condition
subject to the differential-algebraic relationships(3.55) on the canonical transfor-
mations generating function(3.37).

To show that the scheme described above really leads to an algorithmic proce-
dure of constructing the Picard–Fuchs type equations (3.56) and the corresponding
integral submanifold imbedding mappingπh : Mn

h → T∗ (�n) in the form (3.28),
we apply it below in Section 6 to some Hamiltonian systems including a so-called
truncated Focker–Plank Hamiltonian system on the canonically symplectic cotangent
spaceT∗ (�n). Making use of representations (3.21) and (3.28) and equation (3.31),
we have shown above that the set of 1-forms (3.30) is reduced to the following purely
differential-algebraic relations onM2n

h,τ:

∂wi (µi ; h) /∂h j = P ji (µi , wi ; h) , (3.58)
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which generalize similar relations from [18, 31], where the characteristic functions
P ji : T∗(Mn

h)→ �, i, j = 1,n, are defined as follows:

P ji (µi , wi ; h) := P̄ ji (µ, w; h)
∣∣∣
Mn

h
. (3.59)

It is clear that the above set of purely differential-algebraic relationships (3.33) and
(3.34) makes it possible to write explicitly some first order compatible differential-
algebraic equations, whose solution yields the first half of the desired imbedding (3.5)
for the integral submanifoldMn

h ⊂ M2n in an open neighborhoodM2n
h,τ ⊂ M2n. As a

result of the above computations one can formulate the following main theorem.

Theorem 12. The imbedding(3.5) for the integral submanifoldMn
h ⊂ M2n (com-

pact and connected), parametrized by a regular parameterh ∈ G∗, is an algebraic
solution (up to diffeomorphism) to the set of characteristic Picard–Fuchs type equa-
tions (3.35)on T∗(Mn

h), and can be represented in the general case[19] in the fol-
lowing algebraic-geometric form:

w
n j

j +

n∑

s=1

c js (λ; h)w
n j−s
j = 0, (3.60)

wherec js : �×G∗ → �, s, j = 1, n are algebraic expressions, depending only on the
functional structure of the original abelian Lie algebraG of invariants onM2n. In
particular, if the right-hand side of the characteristic equations(3.35)is independent
of h ∈ G∗, then this dependence will be linear inh ∈ G∗.

It should be noted here that some ten years ago an attempt was made in [18, 19]
to describe the explicit algebraic form of the Picard–Fuchs type equations (3.35)
by means of straightforward calculations for the well-known completely integrable
Kowalewskaya top Hamiltonian system. The idea suggested in [18, 19] was in some
aspects very close to that devised independently and thoroughly analyzed in [11]
which did not consider the explicit form of the algebraic curves (3.37) starting from
an abelian Lie algebraG of invariants on a canonically symplectic phase spaceM2n.

As is well known, a set of algebraic curves (3.37), prescribed via the above al-
gorithm, to a givena priori abelian Lie algebraG of invariants on the canonically
symplectic phase spaceM2n = T∗ (�n) can be realized by means of a set ofn j-
sheeted Riemannian surfacesΓ

n j

h , j = 1, n, covering the corresponding real-valued

cycles�1
j , j = 1,n, which generate the corresponding homology groupH1 (�n;�) of

the Arnold torus�n ' ⊗n
j=1�

1
j diffeomorphic to the integral submanifoldMn

h ⊂ M2n.

Thus, upon solving the set of algebraic equations (3.37) with respect to the func-
tions w j : �1

j × G∗ → �, j = 1,n, from (3.29) one obtains a vector parameter
τ = (t1, ..., tn) ∈ �n on Mn

h explicitly described by means of the following abelian
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type equations:

t j =

n∑

s=1

∫ µs

µ0
s

dλ ∂ws (λ; h) /∂h j =

n∑

s=1

∫ µs

µ0
s

dλ P̄ js (λ, ws; h) , (3.61)

where j = 1,n, (µ0; h) ∈
(
⊗n

j=1Γ
n j

h

)
× G∗. Using expression (3.28) and recalling that

the generating functionS : Mn
h ×�n→ � is a one-valued mapping on an appropriate

covering space (̄Mn
h; H1(Mn

h;�)), one can construct via the method of Arnold [4] the
so called action-angle coordinates onMn

h. Denote the basic oriented cycles onMn
h by

σ j ⊂ Mn
h, j = 1,n. These cycles together with their duals generate homology group

H1(Mn
h;�) ' H1 (�n;�) = ⊕n

j=1� j . By virtue of the diffeomorphismMn
h ' ⊗n

j=1�
1
j

described above, there is a one-to-one correspondence between the basic cycles of
H1(Mn

h;�) and those on the algebraic curvesΓ
n j

h , j = 1,n, given by (3.37):

% : H1(Mn
h;�)→ ⊕n

j=1� jσh, j , (3.62)

whereσh, j ⊂ Γ
n j

h , j = 1, n are the corresponding real-valued cycles on the Riemann

surfacesΓ
n j

h , j = 1,n.
Assume that the following meanings of the mapping (3.37) are prescribed:

% (σi) := ⊕n
j=1ni j σh, j (3.63)

for eachi = 1, n, whereni j ∈ �,i, j = 1,n - some fixed integers. Then following
the Arnold construction [4, 18], one obtains the set of so-called action-variables on
Mn

h ⊂ M2n:

γ j: :=
1
2π

∮

σ j

dS =

n∑

s=1

n js

∮

σh,s

dλ ws (λ; h) , (3.64)

where j = 1,n. It is easy to show [4, 16] that expressions (3.41) naturally define an
a. e. differentiable invertible mapping

ξ : G∗ → �n, (3.65)

which enables one to treat the integral submanifoldMn
h as a submanifoldMn

γ ⊂ M2n,
where

Mn
γ :=

{
u ∈ M2n : ξ (h) = γ ∈ �n

}
. (3.66)

But, as was demonstrated in [18, 32], functions (3.43) do not in general generate a
global foliation of the phase spaceM2n, as they are connected with both topological
and analytical constraints. Since functions (3.41) are evidently also commuting in-
variants onM2n, one can define a further canonical transformation of the phase space
M2n, generated by the following relationship onM2n

h,τ:

n∑

j=1

w jdµ j +

n∑

j=1

ϕ jdγ j = dS(µ; γ), (3.67)
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whereϕ = (ϕ1, ..., ϕn) ∈ �n are the so-called angle-variables on the torus�n ' Mn
h

andS : Mn
γ × �n → � is the corresponding generating function. Whence it follows

easily from (3.28) and (3.38) that

ϕ j := ∂S (µ; γ) /∂γ j =

n∑

s=1

∂S (µ; γ (h)) /∂hs ∂hs/∂γ j =

n∑

s=1

tsωs j (γ) ,

1
2π

∮

σ j

dϕk = δ jk,

(3.68)

whereΩ := {ωs j : �n → �, s, j = 1,n} is the so-called [4] frequency matrix, which
is a. e. invertible on the integral submanifoldMn

γ ⊂ M2n. As an evident result of
(3.45), we claim that the evolution of any vector fieldKa ∈ Γ(M2n) for a ∈ G on the
integral submanifoldMn

γ ⊂ M2n is quasiperiodic with a set of frequencies generated

by the matrixΩ
a. e.∈ Aut (�n) defined above. As examples showing the effectiveness

of the above method of construction of integral submanifold imbeddings for abelian
integrable Hamiltonian systems, one can verify the Liouville–Arnold integrability of
all Henon–Heiles and Neumann type systems described in detail in [21,22]; however,
we shall not dwell on this here.

4. I       L   



We shall assume below that there is given a Hamiltonian vector fieldK ∈ Γ(M2n)
on the canonically symplectic phase spaceM2n = T∗ (�n) , n ∈ �+,which is endowed
with a nonabelian Lie algebraG of invariants, satisfying all the conditions of the
Mishchenko–Fomenko Theorem 6, that is

dimG + rankG = dim M2n. (4.1)

Then, as was proved above, an integral submanifoldMr
h ⊂ M2n at a regular element

h ∈ G∗ is rankG = r-dimensional and diffeomorphic (when compact and connected)
to the standardr-dimensional torus�r ' ⊗r

j=1�
1
j . It is natural to ask the following

question: How does one construct the corresponding integral submanifold imbedding

πh : Mr
h→ M2n, (4.2)

which characterizes all possible orbits of the dynamical systemK ∈ Γ(M2n)?
Having gained some experience in constructing the imbedding (4.2) in the case

of the abelian Liouville–Arnold theorem on integrability by quadratures, we proceed
below to study the integral submanifoldMr

h ⊂ M2n by means of Cartan’s theory
[3,12,16,22] of the integrable ideals in the Grassmann algebraΛ(M2n). LetI (G∗) be
an ideal inΛ(M2n), generated by independent differentialsdH j ∈ Λ1(M2n), j = 1, k,
in an open neighborhoodU(Mr

h), where by definition,r = dimG. The idealI (G∗)
is obviously Cartan integrable [16,23] with the integral submanifoldMr

h ⊂ M2n (at a
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regular elementh ∈ G∗), on which it vanishes, that isπ∗hI (G∗) = 0. The dimension
dim Mr

h = dim M2n − dimG = r = rankG due to condition (4.1) imposed on the
Lie algebraG. It is useful to note here that, owing to the inequalityr ≤ k for the
rankG, one readily obtains from (3.1) that dimG = k ≥ n. Since each base element
H j ∈ G, j = 1, k, generates a symplectically dual vector fieldK j ∈ Γ(M2n), j = 1, k,
one can try to study the corresponding differential systemK (G) which is also Cartan
integrable in the entire open neighborhoodU(Mr

h) ⊂ M2n. Denote the corresponding
dimension of the integral submanifold by dimMk

h = dimK (G) = k. Consider now an
abelian differential systemK (Gh) ⊂ K (G), generated by the Cartan subalgebraGh ⊂
G and its integral submanifold̄Mr

h ⊂ U(Mr
h). Since the Lie subgroupGh = expGh

acts on the integral submanifoldMr
h invariantly (see Section 2) and dim̄Mr

h = rank
G = r, it follows that M̄r

h = Mr
h. On the other hand, the systemK (Gh) ⊂ K (G) by

definition means that the integral submanifoldMr
h is an invariant part of the integral

submanifoldMk
h ⊂ U(Mr

h) with respect to the Lie groupG = expG-action onMk
h. In

this case one has the following result.

Lemma 5. There exist just(n− r) ∈ �+ vector fieldsF̃ j ∈ K (G) /K (Gh), j =

1,n− r, for which

ω(2)(F̃i , F̃ j) = 0 (4.3)

onU(Mr
h) for all i, j = 1, n− r .

P. It is obvious that the matrixω(K̃) := {ω(2)(K̃i , K̃ j) : i, j = 1, k} has on
U(Mr

h) the rankω(K̃) = k− r, since dim� ker (π∗hω
(2)) = dim� (πh∗K (Gh)) = r on Mr

h
at the regular elementh ∈ G∗. Let us now complexify the tangent spaceT(U(Mr

h))
using its even dimensionality. Whence one can easily deduce that onU(Mr

h) there ex-

ist just (n− r) ∈ �+ vectors (not vector fields!)̃K�
j ∈ K� (G) /K� (Gh), j = 1,n− r,

from the complexified [24] factor spaceK� (G) /K� (Gh) . To show this, let us re-
duce the skew-symmetric matrixω(K̃) ∈ Hom (�k−r ) to its self-adjoint equivalent
ω(K̃�) ∈ Hom (�n−r ), having taken into account that dim��k−r = dim��

k+r−2r =

dim��
2(n−r) = dim� �

n−r . Let now f�j ∈ �n−r , j = 1,n− r, be eigenvectors of the

nondegenerate self-adjoint matrixω(K̃�) ∈ Hom
(
�n−r ), that is

ω(K̃�) f �j = λ̃ j f�j , (4.4)

whereλ̃ j ∈ �, j = 1,n− r , and for all i, j = 1, n− r, 〈 f �i , f�j 〉 = δi, j . The above

obviously means that in the basis{ f�j ∈ K� (G) /K� (Gh) : j = 1, n− r} the matrix

ω(K̃�) ∈ Hom
(
�n−r ) is strictly diagonal and representable as

ω(K̃�) =

n−r∑

j=1

λ̃ j f�j ⊗� f�j , (4.5)
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where⊗�is the usual Kronecker tensor product of vectors from�n−r. Owing to the
construction of the complexified matrixω(K̃�) ∈ Hom

(
�n−r ) , one sees that the space

K� (G) /K� (Gh) ' �n−r carries a K̈ahler structure [24] with respect to which the
following expressions

ω(K̃) = Imω(K̃), 〈·, ·〉� = Re〈·, ·〉 (4.6)

hold. Making use now of the representation (4.5) and expressions (4.6), one can find
vector fieldsF̃ j ∈ K (G) /K (Gh), j = 1, n− r, such that

ω(F̃) = Imω(F̃�) = J, (4.7)

holds onU(Mr
h), whereJ ∈ Sp

(
�n−r ) is the standard symplectic matrix, satisfying

the complex structure [24] identityJ2 = −I .By virtue of the normalization conditions
〈 f�j , f�j 〉 = δi, j , for all i, j = 1, n− r, one easily infers from (3.7) thatω(2)(F̃i , F̃ j) = 0

for all i, j = 1, n− r, where by definition

F̃ j := ReF̃�j (4.8)

for all j = 1,n− r, and this proves the lemma. �

Assume now that the Lie algebraG of invariants onM2n has been split into a direct
sum of subspaces as

G = Gh ⊕ G̃h, (4.9)

whereGh is the Cartan subalgebra at a regular elementh ∈ G∗ (being abelian) and
G̃h ' G /Gh is the corresponding complement toGh. Denote a basis ofGh as{H̄i ∈
Gh : i = 1, r}, where dimGh = rankG = k ∈ �+, and correspondingly, a basis of
G̃h as{H̃ j ∈ G̃h ' G/Gh : j = 1, k− r}. Then, owing to the results of Section 2, the
following relationships hold:

{H̄i , H̄ j} = 0, h({H̄i , H̃s}) = 0 (4.10)

in the open neighborhoodU(Mr
h) ⊂ M2n for all i, j = 1, r and s = 1, k− r. We

have as yet had nothing to say of expressionsh({H̃s, H̃m}) for s,m = 1, k− r . Making
use of the representation (4.8) for our vector fields (if they exist)F̃ j ∈ K (G) /K (Gh),
j = 1, n− r, one can write the following expansion:

F̃i =

k−r∑

j=1

c ji (h) K̃ j , (4.11)

where i K̃ j
ω(2) := −dH̃ j , c ji : G∗ → �, i = 1,n− r , j = 1, k− r , are real-valued

functions onG∗, being defined uniquely as a result of (4.11). Whence it clearly
follows that there exist invariants̃fs : U(Mr

h)→ �, s = 1,n− r , such that

−i F̃s
ω(2) =

k−r∑

j=1

c js (h) dH̃ j := d f̃s, (4.12)
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where f̃s =
∑k−r

j=1 c js (h) H̃ j , s = 1,n− r, holds onU(Mr
h).

To proceed further, let us look at the following identity which is similar to (3.2):(
⊗r

j=1i K̄ j

) (
⊗n−r

s=1i
F̃s

)
(ω(2))n+1 = 0 = ± (n + 1)!

(
∧r

j=1dH̄ j

) (
∧n−r

s=1d f̃s
)
∧ ω(2), (4.13)

onU(Mr
h).Whence, the following result is easily obtained using Cartan theory [3,16]:

Lemma 6. The symplectic structureω(2) ∈ Λ2(U(Mr
h)) has the following canoni-

cal representation:

ω(2)
∣∣∣
U(Mr

h) =

r∑

j=1

dH̄ j ∧ h̄(1)
j +

n−r∑

s=1

d f̃s∧ h̃(1)
s , (4.14)

whereh̄(1)
j , h̃

(1)
s ∈ Λ1(U(Mr

h)), j = 1, r , s = 1,n− r.

Expression (4.14) obviously means, that onU(Mr
h) ⊂ M2n the differential 1-forms

h̄(1)
j , h̃(1)

s ∈ Λ1(U(Mr
h)), j = 1, r, s = 1,n− r, are independent together with exact

1-formsdH̄ j , j = 1, r , andd f̃s, s = 1,n− r . Sincedω(2) = 0 on M2n identically,
from (4.14) one obtains that the differentialsdh̄(1)

j , dh̃(1)
s ∈ Λ2(U(Mr

h)), j = 1, r ,

s = 1, n− r, belong to the idealI(G̃h) ⊂ I (G∗) , generated by exact formsd f̃s,
s = 1, n− r , anddH̄ j , j = 1, r , for all regularh ∈ G∗. Consequently, one obtains the
following analog of the Galisau-Reeb Theorem 8.

Theorem 13. Let a Lie algebraG of invariants on the symplectic spaceM2n

be nonabelian and satisfy the Mishchenko–Fomenko condition(4.1). At a regular
elementh ∈ G∗ in some open neighborhoodU(Mr

h) of the integral submanifold

Mr
h ⊂ M2n there exist differential1-formsh̄(1)

j , j = 1,n, andh̃(1)
s , s = 1,n− r , satisfy-

ing the following properties:

(i) ω(2)|U(Mr
h) =

∑r
j=1 dH̄ j∧h̄(1)

j +
∑n−r

s=1 d f̃s∧h̃(1)
s whereH̄ j ∈ G, j = 1, r , is a basis

of the Cartan subalgebraGh ⊂ G (being abelian), andf̃s ∈ G, s = 1,n− r,
are invariants from the complementary spaceG̃h ' G/Gh;

(ii) The1-formsh̄(1)
j ∈ Λ1(U(Mr

h)), j = 1, r, andh̃(1)
s ∈ Λ1(U(Mr

h)), s = 1,n− r,

are exact onMr
h and satisfy the equations:̄h(1)

j (K̄i) = δi, j for all i, j = 1, r,

h̄(1)
j (F̃s) = 0 andh̃(1)

s (K̄ j) = 0 for all j = 1, r, s = 1, n− r , andh̃(1)
s (F̃m) = δs,m

for all s,m = 1,n− r.

P. Obviously we need to prove only the last statement (ii). Making use of
Theorem 13, one can find on the integral submanifoldMr

h ⊂ M2n the differential

2-forms dh̄(1)
j ∈ Λ2(U(Mr

h)), j = 1, r, anddh̃(1)
s ∈ Λ2(U(Mr

h)), s = 1, n− r, are
identically vanishing. This means in particular, owing to the classical Poincaré lemma
[1,4,16], that there exist some exact 1-formsdt̄h, j ∈ Λ1(U(Mr

h)), j = 1, r, anddt̃h,s ∈
Λ1(U(Mr

h)), s = 1,n− r, where t̄h, j : Mr
h → �, j = 1, r, and t̃h,s : Mr

h → �,
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s = 1,n− r, are smooth independent a. e. functions onMr
h; they are one-valued on

an appropriate covering of the manifoldMr
h ⊂ M2n and supply global coordinates on

the integral submanifoldMr
h. Using representation (4.14), one can easily obtain that

− i K̄i
ω(2)

∣∣∣
U(Mr

h) =

r∑

j=1

dH̄ j h̄
(1)
j (K̄i) +

n−r∑

s=1

d f̃sh̃
(1)
s (K̄i) = dH̄i (4.15)

for all i = 1, r and

− i F̃m
ω(2)

∣∣∣
U(Mr

h) =

r∑

j=1

dH̄ j h̄
(1)
j (F̃m) +

n−r∑

s=1

d f̃sh̃
(1)
s (F̃m) = d f̃m (4.16)

for all m = 1, n− r . Whence, from (4.15) it follows on that onU(Mr
h),

h̄(1)
j (K̄i) = δi, j , h̃(1)

s (K̄i) = 0 (4.17)

for all i, j = 1, r ands = 1, n− r , and similarly, from (4.16) it follows that onU(Mr
h),

h̄(1)
j (F̃m) = 0, h̃(1)

s (F̃m) = 0 (4.18)

for all j = 1, r ands,m = 1,n− r . Thus the theorem is proved. �

Having now defined global evolution parameterst j : M2n → �, j = 1, r, of the
corresponding vector fields̄K j = d/dt j , j = 1, r, and local evolution parameterst̃s :
M2n∩U(Mr

h)→ �, s = 1,n− r, of the corresponding vector fields̃Fs|U(Mr
h) := d/dt̃s,

s = 1, n− r, one can easily see from (4.18) that the equalities

t j |U(Mr
h) = t̄ j , t̃s|U(Mr

h) = t̃h,s (4.19)

hold for all j = 1, r, s = 1,n− r, up to constant normalizations. Thereby, one can
develop a new method, similar to that of Section 3, for studying the integral subman-
ifold imbedding problem in the case of the nonabelian Liouville–Arnold integrability
theorem.

Before starting, it is interesting to note that the system of invariants

Gτ := Gh ⊕ span
�

{
f̃s ∈ G/Gh : s = 1,n− r

}

constructed above, comprises a new involutive (abelian) complete algebraGτ, to
which one can apply the abelian Liouville–Arnold theorem on integrability by quadra-
tures and the integral submanifold imbedding theory devised in Section 3, in order
to obtain exact solutions by means of algebraic-analytical expressions. Namely, the
following corollary holds.

Corollary 3. Assume that a nonabelian Lie algebraG satisfies the Mishchenko–
Fomenko condition(4.1)andMr

h ⊂ M2n is its integral submanifold (compact and con-
nected) at a regular elementh ∈ G∗, is diffeomorphic to the standard torus�r ' Mn

h,τ.
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Assume also that the dual complete abelian algebraGτ (dimGτ = n = 1/2 dimM2n)
of independent invariants constructed above is globally defined. Then its integral
submanifoldMn

h,τ ⊂ M2n is diffeomorphic to the standard torus�n ' Mn
h,τ, and con-

tains the torus�r ' Mr
h as a direct product with some completely degenerate torus

�n−r , that isMn
h,τ ' Mr

h × �n−r .

Thus, having successfully applied the algorithm of Section 3 to the algebraic-
analytical characterization of integral submanifolds of a nonabelian Liouville -Arnold
integrable Lie algebraG of invariants on the canonically symplectic manifoldM2n '
T∗ (�n) , one can produce a wide class of exact solutions represented by quadratures
- which is just what we set out to find. At this point it is necessary to note that up to
now the (dual toG ) abelian complete algebraGτ of invariants at a regularh ∈ G ∗
was constructed only in some open neighborhoodU(Mr

h) of the integral submanifold
Mr

h ⊂ M2n. As mentioned before, the global existence of the algebraGτ strongly de-
pends on the possibility of extending these invariants to the entire manifoldM2n. This
possibility is in 1-1 correspondence with the existence of a global complex structure
[24] on the reduced integral submanifold̃M2(n−r)

h,τ := Mk
h/Gh, induced by the reduced

symplectic structureπ∗τ ω(2) ∈ Λ2(Mk
h/Gh), whereπτ : Mk

h → M2n is the imbedding
for the integrable differential systemK (G) ⊂ Γ(M2n), introduced above. If this is the
case, the resulting complexified manifold�M̃n−r

h,τ ' M̃2(n−r)
h,τ will be endowed with a

Kählerian structure, which makes it possible to produce the dual abelian algebraGτ
as a globally defined set of invariants onM2n. This problem will be analyzed in more
detail in Section 6.

5. E

Below we consider some examples of nonabelian Liouville–Arnold integrability
by quadratures covered by Theorem 6.

Example2 (Point vortices in the plane). Considern ∈ �+ point vortices on the
plane�2, described by the Hamiltonian function

H = − 1
2π

n∑

i, j=1

ξiξ j ln
∥∥∥qi − p j

∥∥∥ (5.1)

with respect to the following partially canonical symplectic structure onM2n '
T∗ (�n) :

ω(2) =

n∑

j=1

ξ jdpj ∧ dqj , (5.2)
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where (p j , q j) ∈ �2, j = 1,n, are coordinates of the vortices in�2. There exist three
additional invariants

P1 =

n∑

j=1

ξ jq j , P2 =

n∑

j=1

ξ j p j , (5.3)

P =
1
2

n∑

j=1

ξ j

(
q2

j + p2
j

)
,

satisfying the following Poisson bracket conditions:

{P1,P2} = −
n∑

j=1

ξ j , {P1,P} = −P2, {P2,P} = P1, (5.4)

{P,H} = 0 = {P j ,H}.
It is evident, that invariants (5.1) and (5.3) comprise on

∑n
j=1 ξ j = 0 a four-

dimensional Lie algebraG, whose rankG = 2. Indeed, assume that a regular vector
h ∈ G∗ is chosen, and parametrized by real valuesh j ∈ �, j = 1, 4, where

h (Pi) = hi , h (P) = h3, h (H) = h4, (5.5)

andi = 1,2. Then, one can easily verify that the element

Qh =


n∑

j=1

ξ j

 P−
n∑

i=1

hiPi (5.6)

belongs to the Cartan Lie subalgebraGh ⊂ G, that is

h ({Qh,Pi}) = 0, h ({Qh,P}) = 0. (5.7)

Since{Qh,H} = 0 for all valuesh ∈ G∗, we claim thatGh = span� {H,Qh}— the
Cartan subalgebra ofG. Thus, rankG = dimGh = 2, and it comes right away that the
condition (4.1)

dim M2n = 2n = rankG + dimG = 6 (5.8)

holds only ifn = 3. Thereby, the following theorem is proved.

Theorem 14. The three-vortex problem(5.1)on the plane�2 is nonabelian Liou-
ville–Arnold integrable by quadratures on the phase spaceM6 ' T∗(�3) with the
symplectic structure(5.2).

As a result, the corresponding integral submanifoldM2
h ⊂ M6 is two-dimensional

and diffeomorphic (when compact and connected) to the torus�2 ' M2
h, on which

the motions are quasiperiodic functions of the evolution parameter.
Concerning Corollary 3, the dynamical system (5.1) is also abelian Liouville–

Arnold integrable with an extended integral submanifoldM3
h,τ ⊂ M6, which can be

found via the scheme suggested in Section 4. Using simple calculations, one ob-
tains an additional invariantQ = (

∑3
j=1 ξ j)P − ∑3

i=1 P2
i < G, which commutes with
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H andP of Gh. Therefore, there exists a new complete dual abelian algebraGτ =

span� {Q,P,H} of independent invariants onM6 with dimGτ = 3 = 1/2 dimM6,
whose integral submanifoldM3

h,τ ⊂ M6 (when compact and connected) is diffeomor-

phic to the torus�3 ' M2
h × �1.

Note also here that the above additional invariantQ ∈ Gτ can be naturally extended
to the case of an arbitrary numbern ∈ �+ of vortices as follows:Q = (

∑n
j=1 ξ j)P −∑n

i=1 P2
i ∈ Gτ, which obviously also commutes with invariants (5.1) and (5.3) on the

entire phase spaceM2n.

Example3 (A material point motion in a central field). Consider the motion of a
material point in the space�3 under a central potential field whose Hamiltonian

H =
1
2

3∑

j=1

p2
j + Q (‖q‖) , (5.9)

contains a central fieldQ : �+ → �. The motion takes place in the canonical phase
spaceM6 = T∗

(
�3

)
, and possesses three additional invariants:

P1 = p2q3 − pq, P2 = p3q1 − p1q3, P3 = p1q2 − p2q1, (5.10)

satisfying the following Poisson bracket relations:

{P1,P2} = P3, {P3,P1} = P2, {P2,P3} = P1. (5.11)

Since{H,P j} = 0 for all j = 1,3, one sees that the problem under consideration has
a four-dimensional Lie algebraG of invariants, isomorphic to the classical rotation
Lie algebra so(3) × � ' G. Let us show that at a regular elementh ∈ G∗ the Cartan
subalgebraGh ⊂ G has the dimension dimGh = 2 = rankG. Indeed, one easily
verifies that the invariant

Ph =

3∑

j=1

h jP j (5.12)

belongs to the Cartan subalgebraG, that is

{H,Ph} = 0, h({Ph,P j}) = 0 (5.13)

for all j = 1, 3. Thus, as the Cartan subalgebraGh = span� {H andPh ⊂ G} , one gets
dimGh = 2 = rankGh, and the Mishchenko–Fomenko condition (4.1)

dim M6 = 6 = rankG + dimG = 4 + 2 (5.14)

holds. Hence one can prove its integrability by quadratures via the nonabelian Liou-
ville Liouville–Arnold Theorem 6 and obtain the following theorem:

Theorem 15. It follows from Theorem 6 that the free material point motion in
�3 is a completely integrable by quadratures dynamical system on the canonical
symplectic phase spaceM6 = T∗(�3). The corresponding integral submanifoldM2

h ⊂
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M6 at a regular elementh ∈ G∗ (if compact and connected) is two-dimensional and
diffeomorphic to the standard torus�2 ' M2

h.

Making use of the integration algorithm devised in Section 2 and 3, one can readily
obtain the corresponding integral submanifold imbedding mappingπh : M2

h → M6

by means of algebraic-analytical expressions and transformations.
There are clearly many other interesting nonabelian Liouville–Arnold integrable

Hamiltonian systems on canonically symplectic phase spaces that arise in applica-
tions, which can similarly be integrated using algebraic-analytical means. We hope
to study several of these systems in detail elsewhere.

6. E       

It was proved in Section 4, that locally, in some open neighborhoodU(Mr
h) ⊂ M2n

of the integral submanifoldMr
h ⊂ M2n one can find by algebraic-analytical means just

n − r ∈ �+ independent vector fields̃F j ∈ K (G) /K (Gh) ∩ Γ(U(Mr
h)), j = 1,n− r ,

satisfying condition (4.3). Since each vector fieldF̃ j ∈ K (G) /K (Gh) , j = 1,n− r ,
is generated by an invariantH̃ j∈ D(U(Mr

h)), j = 1,n− r , it follows readily from (4.3)
that

{H̃i , H̃ j} = 0 (6.1)

for all i, j = 1, n− r . Thus, in an open neighborhoodU(Mr
h) there exist justn − r

invariants in addition toH̃ j∈ D(U(Mr
h)), j = 1,n− r , all of which are in invo-

lution. Denote as before this new set of invariants asGτ, keeping in mind that
dimGτ = r + (n− r) = n ∈ �+. Whence, in an open neighborhoodU(Mr

h) ⊂ M2n

we have constructed the setGτ of just n = 1/2 dimM2n invariants commuting with
each other, thereby guaranteeing via the abelian Liouville–Arnold theorem its lo-
cal complete integrability by quadratures. Consequently, there exists locally a map-
ping πτ : Mk

h,τ → M2n, where Mk
h,τ := U(Mr

h) ∩ Mk
τ is the integral submani-

fold of the differential systemK (G) , and one can therefore describe the behav-
ior of integrable vector fields on the reduced manifold̄M2(n−r)

h,τ := Mk−r
h,τ /Gh. For

global integrability properties of a given setG of invariants on (M2n, ω(2)), sat-
isfying the Mishchenko–Fomenko condition (4.1), it is necessary to have the ad-
ditional set of invariantsH̃ j∈ D(U(Mr

h)), j = 1, n− r , extended fromU(Mr
h) to

the entire phase spaceM2n. This problem evidently depends on the existence of
extensions of vector fields̃F j ∈ Γ(U(Mr

h)), j = 1, n− r , from the neighborhood
U(Mr

h) ⊂ M2n to the whole phase spaceM2n. On the other hand, as stated before,
the existence of such a continuation depends intimately on the properties of the com-
plexified differential systemK� (G) /K� (Gh) , which has a nondegenerate complex
metricω(K̃�) : T(M̄2(n−r)

h,τ )� × T(M̄2(n−r)
h,τ )� → �, induced by the symplectic structure

ω(2) ∈ Λ2(M2n). This point can be clarified further by using the notion [24–27] of a
Kähler manifold and some of the associated constructions presented above. Namely,
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consider the local isomorphismT(M̄2(n−r)
h,τ )� ' T(�M̄n−r

h,τ ), where�M̄n−r
h,τ is the com-

plex (n− r)-dimensional local integral submanifold of the complexified differential
systemK� (G) /K� (Gh). This means that the spaceT(M̄2(n−r)

h,τ ) is endowed with the
standard almost complex structure

J : T(M̄2(n−r)
h,τ )→ T(M̄2(n−r)

h,τ ), J2 = −1, (6.2)

such that the 2-formω(K̃) := Imω(K̃�) ∈ Λ2(M̄2(n−r)
h,τ ) induced from the above

metric onT(�M̄n−r
h,τ ) is closed, that isdω(K̃) = 0. If this is the case, the almost

complex structure on the manifoldT(M̄2(n−r)
h,τ ) is said to be integrable. Define the

proper complex manifold�M̄n−r
h,τ , on which one can then define global vector fields

F̃ j ∈ K (G) /K (Gh) , j = 1,n− r , which are being sought for the involutive algebra
Gτ of invariants onM2n to be integrable by quadratures via the abelian Liouville–
Arnold theorem. Thus the following theorem can be obtained.

Theorem 16. A nonabelian setG of invariants on the symplectic spaceM2n '
T∗(�n), satisfying the Mishchenko–Fomenko condition(2.9), admits algebraic-ana-
lytical integration by quadratures for the integral submanifold imbeddingπh : Mr

h→
M2n if the corresponding complexified reduced manifold�M̄n−r

h,τ ' M̄2(n−r)
h,τ = Mk−r

h,τ /Gh

of the differential systemK� (G) /K� (Gh) is Kählerian with respect to the stan-
dard almost complex structure(5.1)and the nondegenerate complex metricω(K̃�) :
T(M̄2(n−r)

h,τ )� × T(M̄2(n−r)
h,τ )� → � induced by the symplectic structureω(2) ∈ Λ2(M2n)

is integrable, that isd Imω(K̃�) = 0.

Theorem 16 shows, in particular, that nonabelian Liouville–Arnold integrability by
quadratures does not in general imply integrability via the abelian Liouville–Arnold
theorem; it actually depends on certain topological obstructions associated with the
Lie algebra structure of invariantsG on the phase spaceM2n. We hope to explore this
intriguing problem in another place.

7. S

In this section we consider some examples of investigation of integral submanifold
imbedding mappings for abelian Liouville–Arnold integrable Hamiltonian systems
onT∗(�2).

7.1. The Henon–Heiles system.This flow is governed by the Hamiltonian

H1 =
1
2

p2
1 +

1
2

p2
2 + q1q2

2 +
1
3

q3
1 (7.1)
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on the canonically symplectic phase spaceM4 = T∗(�2) with the symplectic struc-
ture

ω(2) =

2∑

j=1

dpj ∧ dqj. (7.2)

As is well known, there exists the following additional invariant that commutes with
(7.1):

H2 = p1p2 + 1/3q3
2 + q2

1q2, (7.3)

that is{H1,H2} = 0 on the entire spaceM4.

Take a regular elementh ∈ G := {H j : M4 → �, j = 1,2}, with fixed values
h(H j) = h j ∈ �, j = 1, 2. Then the integral submanifold

M2
h :=

{
(q, p) ∈ M4 : h(H j) = h j ∈ �, j = 1, 2

}
, (7.4)

if compact and connected, is diffeomorphic to the standard torus�2 ' �1× �1 owing
to the Liouville–Arnold theorem, and one can find cyclic (separable) coordinates
µ j ∈ �1, j = 1,2, on the torus such that the symplectic structure (7.2) will take the
form:

ω(2) =

2∑

j=1

dw j ∧ dµ j , (7.5)

where the conjugate variablesw j ∈ T∗(�1), j = 1,2, on M2
h depend only on the

corresponding variablesµ j ∈ �1
j , j = 1,2. In this case it is evident that the evolution

alongM2
h will be separable and representable by means of quasi-periodic functions

of the evolution parameters.
To show this, recall that the fundamental determining equations (3.34) based on

the 1-formsh̄(1)
j ∈ Λ(M2

h), j = 1, 2, satisfy the identity

2∑

j=1

dH j ∧ j h̄(1)
j =

2∑

j=1

dpj ∧ dqj . (7.6)

Here

h̄(1)
j =

2∑

k=1

h̄ jk (q, p) dqk, (7.7)

where j = 1, 2. Substituting (7.7) into (7.6), one obtains

h̄(1)
1 =

p1dq1

p2
1 − p2

2

+
p2dq2

p2
1 − p2

2

, h̄(1)
2 =

p2dq1

p2
21− p2

1

+
p1dq2

p2
1 − p2

2

. (7.8)

On the other hand, the following implication holds onM2
h ⊂ M4:

α(1)
h =

2∑

j=1

w j(µ j ; h)dµ j =⇒
2∑

j=1

p jdqj := α(1), (7.9)
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where we have assumed that the integral submanifoldM2
hadmits the local coordinates

in the base manifold�2 endowed with the canonical 1-formα(1)
h ∈ Λ(M2

h) as given
in (7.9). Thus, making use of the imbeddingπh : M2

h → T∗(�2) in the form

q j = q j (µ; h) , p j = p j (µ; h) , (7.10)

j = 1,2, one readily finds that the equalities

p j =

2∑

k=1

wk (µk; h) ∂µk/∂q j (7.11)

hold for j = 1,2 on the entire integral submanifoldM2
h.

Substituting (7.11) into (7.8) and using the characteristic relationships (3.34), one
obtains after simple but cumbersome calculations the following differential-algebraic
expressions:

∂q1/∂µ1 − ∂q2/∂µ1 = 0, ∂q1/∂µ2 + ∂q2/∂µ2 = 0, (7.12)

whose simplest solutions are

q1 = (µ1 + µ2) /2, q2 = (µ1 − µ2) /2. (7.13)

Using expressions (7.11) one finds that

p1 = w1 + w2, p2 = w1 − w2, (7.14)

where

w1 =

√
h1 + h2 − 4/3µ3

1, w2 =

√
h1 − h2 − 4/3µ3

2. (7.15)

Consequently, one obtains the separable [15] Hamiltonian functions (7.1) and (7.3)
in the vicinity of the cotangent spaceT∗(M2

h) :

h1 =
1
2
w2

1 +
1
2
w2

2 +
2
3

(
µ3

1 + µ3
2

)
, h2 =

1
2
w2

1 −
1
2
w2

2 +
2
3

(
µ3

1 − µ3
2

)
, (7.16)

which generate the following separable motions onM2
h ⊂ T∗(�2):

dµ1/dt := ∂h1/∂w1 =

√
h1 + h2 − 4/3µ3

1,

dµ2/dt := ∂h1/∂w2 =

√
h1 − h2 − 4/3µ3

2

(7.17)

for the Hamiltonian (7.1), and

dµ1/dx := ∂h2/∂w1 =

√
h1 + h2 − 4/3µ3

1,

dµ2/dt := ∂h1/∂w2 = −
√

h1 − h2 − 4/3µ3
2

(7.18)

for the Hamiltonian (7.3), wherex, t ∈ � are the corresponding evolution parameters.
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Analogously, one can show that there exists [28,29] a similar to (7.13) and (7.14)
integral submanifold imbedding for the following integrable modified Henon–Heiles
involutive system:

H1 =
1
2

p2
1 +

1
2

p2
2 + q1q2

2 +
16
3

q3
1,

H2 = 9p4
2 + 36q1p2

2q2
2 − 12p1p2q3

2 − 2q4
2

(
q2

2 + 6q2
1

)
,

(7.19)

where{H1,H1} = 0 on the entire phase spaceM4 = T∗(�2).
Based on considerations similar to the above, one can deduce the following [29]

expressions:

q1 = −1
4

(µ1 + µ2) − 3
8

(
w1 + w2

µ1 − µ2

)2

,

q2
2 = −2

√
h2/ (µ1 − µ2) , w1 =

√
2/3µ3

1 − 4/3
√

h2 − 8h1,

p1 =
1

2
√−6(µ1 + µ2 + 4q)

[−2
√

h2

µ1 − µ2
− µ1µ2 + 4(µ1 + µ2) q1 + 32q2

1

]
,

p2 =
√

h2 (µ1+µ2 + 4q1) / (3(µ1−µ2)) , w2 =

√
2/3µ3

2 + 4/3
√

h2 − 8h1,

(7.20)

thereby solving explicitly the problem of finding the corresponding integral subman-
ifold imbeddingπh : M2

h → T∗(�2) that generates separable flows in the variables
(µ, w) ∈ T∗(M2

h).

7.2. A truncated 4-dimensional Focker–Plank Hamiltonian system onT∗(�2)
and its integrability by quadratures. Consider the following dynamical system on
the canonically symplectic phase spaceT∗(�2) :

dq1/dt = p1 + α (q1 + p2) (q2 + p1) , dq2/dt = p2,

dp1/dt = − (q1 + p2) − α
[
q2p1 + 1/2

(
p2

1 + p2
2 + q2

2

)]
,

dp2/dt = − (q2 + p1) ,


= K1 (q, p) , (7.21)

whereK1 : T∗(�2) → T(T∗(�2)) is the corresponding vector field onT∗(�2) 3
(q, p) , t ∈ � is an evolution parameter, called a truncated four-dimensional Focker–
Plank flow. It is easy to verify that functionsH j : T∗(�2)→ �, j = 1,2, where

H1 = 1/2
(
p2

1 + p2
2 + q2

1

)
+ q1p2 + α (q1 + p2)

[
q2p1 + 1/2

(
p2

1 + p2
2 + q2

2

)]
(7.22)

and
H2 = 1/2

(
p2

1 + p2
2 + q2

2

)
+ q2p1 (7.23)

are functionally independent invariants with respect to the flow (7.21). Moreover, the
invariant (7.22) is the Hamiltonian function for (7.21), that is the relationship

iK1ω
(2) = −dH1 (7.24)
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holds onT∗(�2), where the symplectic structureω(2) ∈ Λ2(T∗(�2)) is given as fol-
lows:

ω(2) := d (pr∗ α(1)) =

2∑

j=1

dpj ∧ dqj , (7.25)

with α(1) ∈ Λ1(�2) to be the canonical Liouville form on�2 :

α(1) (q; p) =

2∑

j=1

p j dqj (7.26)

for any(q, p) ∈ T∗(�2) ' Λ1(�2).
The invariants (7.22) and (7.23) commute evidently with each other subject to the

associated Poisson bracket onT∗(�2), i. e., {H1,H2} = 0. Thereby, owing to the
abelian Liouville–Arnold theorem [1, 2], the dynamical system (7.21) is completely
integrable by quadratures onT∗(�2), and we can apply the scheme devised in Section
2 to the commuting invariants (7.22) and (7.23) subject to the symplectic structure
(7.25). One easily calculates that

ω(2) =

2∑

i=1

dHi ∧ h(1)
i , (7.27)

where the corresponding 1-formsπ∗hh(1)
i := h̄(1)

i ∈ Λ1(M2
h), i = 1, 2, are given as

h̄(1)
1 =

p2dq1 − (p1 + q2) dq2

p1p2 − (p1 + q2) (q1 + p2) − αh2 (p1 + q2)
,

h̄(1)
2 =

− [
(q1 + p2) (1 + αp2) + αh2

]
dq1 +

(
p1 + α

[
h2 + (q2 + p1) (q1 + p2)

])
dq2

p1p2 − (q2 + p1) (αh2 + q1 + p2)
,

and an invariant submanifoldM2
h ⊂ T∗(�2) is defined as

M2
h :=

{
(q, p) ∈ T∗(�2) : Hi (q, p) = hi ∈ �, i = 1,2

}
(7.28)

for some parametersh ∈ �2 and based now on expressions (7.28), and (3.38) one
can easily construct functions̄Pi j (w; h) , i, j = 1, 2, in (3.53), defined onT∗(M2

h) '
T∗

(
⊗2

j=1�
1
j

)
subject to the integral submanifold imbedding mappingπh : M2

h →
T∗(�2) in coordinatesµ ∈ ⊗2

j=1�
1
j ⊂ ⊗2

j=1Γ
( j)
h , which we do not write in detail due to

their long and cumbersome form. Having applied then the criterion (3.55), we arrive
at the following compatibility relations subject to the mappingsq :

(
⊗2

j=1�
1
j

)
×�2→
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�2 andp :
(
⊗2

j=1�
1
j

)
×�2→ T∗q(�2) :

∂q1/∂µ1 − ∂q2/∂µ2 = 0, w1∂Lµ/∂w1 − w2∂Lµ/∂w2 = 0,

∂2q1/∂µ2∂h2 + ∂2w2/∂µ2∂h2 = 0,

∂w1/∂h1 (∂q1/∂h1) = ∂w2/∂h1 (∂q2/∂h1) ,

w1∂w1/∂h1 − w2∂w2/∂h2 = 0,

∂ (w1∂w1/∂h2) /∂h2 − α2∂q1/∂µ1 = 0, . . .

(7.29)

and so on, subject to variablesµ ∈ ⊗2
j=1�

1
j andh ∈ �2. Solving equations like (7.29),

one can find right away that the expressions

p1 = w1, p2 = w2,

q1 = c1 + µ1 − w2 (µ2; h) , q2 = c2 + µ2 − w1 (µ1; h) ,

Lµ (h) = −w1w2,

(7.30)

wherec j (h1,h2) ∈ �1, j = 1,2, are constant, hold onT∗(M2
h), giving rise to the

following Picard- Fuchs type equations in the form (3.56):

∂w1 (µ1; h) /∂h1 = 1/w1, ∂w1 (µ1; h) /∂h2 = α2h2/w1,

∂w2 (µ2; h) /∂h1 = 0, ∂w2 (µ2; h) /∂h2 = 1/w2.
(7.31)

The Picard–Fuchs equations (7.31) can be easily integrated by quadratures as follows:

w2
1 + k1 (µ1) − α2h2 − 2h1 = 0, w2

2 + k2 (µ2) − 2h2 = 0, (7.32)

wherek j : �1
j → �, j = 1, 2, are still unknown functions. For them to be determined

explicitly, it is necessarily to substitute (7.30) into expressions (7.22) and (7.23),
making use of (7.32), which amounts to the following results:

k1 = µ2
1, k2 = µ2

2 (7.33)

under the condition thatc1 = −αh2, c2 = 0. Thereby, we have constructed, owing to
(7.32), the corresponding algebraic curvesΓ

( j)
h , j = 1.2, (3.41) in the explicit form:

Γ
(1)
h :=

{
(λ, w1) : w2

1 + λ2 − α2h2
2 − 2h1 = 0

}
,

Γ
(2)
h :=

{
(λ, w2) : w2

2 + λ2 − 2h2 = 0
}
,

(7.34)

where (λ, w j) ∈ �, j = 1,2, and h ∈ �2 are arbitrary parameters. Making use
now of expressions (7.35) and (7.30), one can construct in explicit form the integral
submanifold imbedding mappingπh : M2

h → T∗(�2) for the flow (7.21):

q1 = µ1 −
√

2h2 − µ2
2 − αh2

2, p1 = w1 (µ1; h) ,

q2 = µ2 −
√

2h1 − α2h2
2 − µ2

1, p2 = w2 (µ2; h) ,
(7.35)
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where(µ, w) ∈ ⊗2
j=1Γ

( j)
h . As mentioned before in Section 2, formulas (7.35) together

with explicit expressions (3.40) make it possible right away to find solutions to the
truncated Focker–Plank flow (7.21) by quadratures, thereby completing its integra-
bility.
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