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1. SIATEMENT OF THE PROBLEM

We consider the singularly perturbedfdrential system

ex=Ax+eA()x+(t), telabl, O<exl, (1.1
IX()=h, he R™, 1.2)

where the coficients of system (1.1) and equation (1.2) satisfy the conditions:

(H1) Ais a constantr{x n) matrix. If 4; are eigenvalues d&, thent; = 0,i = 1k,

k<n, Req <0,i =k+1,n, asp, p <k, linear independent eigenvectors of
matrix A correspond to the zero eigenvalue;

(H2) Aq(t) is an @ x n) matrix, A;(t) € C*[a, b], ¢(t) is ann-dimensional vector-
functiong(t) € C*[a, b];

(H3) I : C[a,b] — R™is anmdimensional linear bounded vector-functional,

| =col(?,...,IM);
(H4) The degenerate (= 0) system (1.1)Ax + ¢(t) = 0, is solvable with respect
to Xo.

We look for ann-dimensional vector-functior(t, €): x(-,€) € Cl[a,b], x(t,-) €
C(0, &), satisfying (1.1), (1.2) and following relation limg x(t, £) = Xo(t),t € (a, b].
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We shall consider the case # nandp < k. We use an asymptotic method of
the boundary functions and construct an asymptotic series for the boundary-value
problem (1.1), (1.2) with de& = O (the critical case [10]).

In the casean = n andp = k an asymptotic solution of the Cauchy problem and
two point boundary-value problem for linear and quasilinear systems is studied in
[10] on the basis of the method of boundary functions. In the non-criticalroase
and defA # 0 the system is studied in [5]. Whem= nandp = k, the problem (1.1),

(1.2) is considered in [8].

The construction of an asymptotic solution of (1.1), (1.2) in this work n, p < k
is represented on the basis of generalized inverse matrices and projectors [1,4,7] and
central canonical form [2, 3].

We denote by, np,...,np (Zip:1 n; = k) the lengths of the Jordan cells. We will
consider the case wherg > - > N, Ng,1 = Ns;2 = --- =Np_1 = Np = 1,i. e, the
matrix A has a block diagonal representation

A=diag@, Ji, J2,..., s, Op_9), (1.3)
whereA is a (( — k) x (n — k)) matrix and has eigenvalues with negative real parts,
Ji,i =18 are @ x n;) Jordan cells, an®p_s is the ((p — s) x (p — 9)) zero matrix.

By A, we denote the unique Moore—Penrose pseudo-invars@) matrix of the
matrix A [4, 7]. Denote byP, andPa: orthoprojector®a : R" — kerA, Pa: : R" —
kerA*, A* = AT. According to (H1) we find ranR = n— p and rankP = rankPa. =
n-(n-p) = p. LetPa, be a (1 x p) matrix with p linear independent columns from
the matrixPa, and letPx; be a ( x n) matrix withkplinear independent rows of the
matrix Pa:.

LetC = Pa;Pa, be an (n x n)-constant matrix.

Lemmal. rankC = p-s.

Proor. The proof is based on the equalitigs, = diag (11,...,1,0) andJ'J
diag(Q1,...,1,1). Keeping in mind the representation

A" = diagA ™, 37, J5,..., 31, 0p9)

and the equalitie®a = E, — ATA, Pa- = E, — AA", we get thatC = Pa:Pa,
diag (QEp-s),i. €., rankC = p-s. O

We consider the degeneratéfdrential system
Cdgtz(t) = B@t)z(t) + I(t), te[ab], (1.4)

whereC is the matrix from Lemma 1.18(t) = Pa; A1(t)Pa, is (p x p) matrix, andl
is a p-dimensional vector-functior(t) € C*[a, b].
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Let the matrixB(t) have the block representation
B1a(t) Ba(t)
B2a(t) Ba2(t))’

where the matriceB;1, B1o, Bo1, andBy, have dimensions f(— s) x (p—9)), ((p -
9) X 9), (sx (p—9)), andsx s, respectively.

Lemma 2. Systen{l.4)takes the central canonical form if and onlydétB;; # O
Yt € [a b].

Proor. The proof of Lemma 2 is based on Lemma 1 and the work [3]. O

In accordance with Lemma 1 under: sand Lemma 2§ x p), matricesP(t) and
Q(t) exist such that substituting(t) = Q(t)y(t) and multiplying byP(t) on the left,
the system (1.4) takes central canonical form

d
(5 %9 ot ws
where0s is the (x s) zero matrix,L(t) is a ((p—s) x (p— s)) matrix, E,_s andEs are

((p—9) x (p-9) and (sx 9) unit matrices, respectively, apdgt) andv(t) are (p— )
ands-dimensional vector-functions such that

Pa() = (1)) 1.6)

Let the (p— s)-dimensional vector-function(t) ands-dimensional vector-function

u(t) are such thag(t) = (l:g))) . Then the system (1.5) takes the form

Gi(t) = LEui(t) + i(t),
0 = v (t) + vi(t).

We denote byd(t) a normal fundamental matrix of the solutions of the system -
L(t)x. Then system (1.7) has a generalized solution

u(t) = OO (O +ut), neRPS,
o(t) = —v(t),
whereu(t) = (1) [} ®~X(u(s)ds
Let the matrixQ(t) be reduced to the block for@(t) = [Qx(t), Q2(t)], where

Qi) is a (p x (p — 9)) matrix andQ-(t) is a (p x s) matrix. Keeping in mind the
substitutionz(t) = Q(t)y(t), wherey(t) = [u(t), o(t)]" , we obtain

Z(t) = Qu(t)u(t) + Qa(t)o(t).
In the last equality we substitute solution (1.8). Thus,
Z(t) = o(t,a)n + Zt), t € [a,b], n € RP3, (2.9)

(1.7)

(1.8)
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where
d_D(t, a) = Q()O()d @) isa (px(p-s) matrix and

Z(t) = Qu(u(t) — Qa(t)(t) (1.10)

The following lemma is needed.

Lemma 3. Let the matrixA satisfy condition(H1), and let the vector-function
f(r) € C[0, +o0) and satisfy the inequalityf (7)|| < c.e7*", wherer > 0, ¢; > 0,
andai > 0. Then there exist positive constantandy such that the systedx/dr =
Ax+ f(r) has a particular solution of the form

K@= [ K 9f(9ds
0
satisfying the inequalityx(r)|| < cexp ~y7), v > 0, where
K(r.9) = X(1)PX1(s) for0<s<7t <o,
T =X@)( -P)XYs) forO< 1< S< oo,
andP is the spectral projector of the matrikto the left semi-plane.

The lemma is proved analogously to a similar lemma in [5].

2. FORMALLY ASYMPTOTIC EXPANSION
We shall seek for a formally asymptotic expansion of the solution of problem (1.1),
(1.2) in the form of the regular and singular series

X(t, £) = i dx®+ (). 7= 2 (2.1)

i—0 €

wherex;(t) andIT;(r) are unknowm vector functions. BYT;(r) (see [10]) we denote
the boundary function in a neighbourhood of the poiata. They will be constructed
so that when & ¢ < gg, the inequalities

T (7)|| < yi exp ai1), (2.2)

wherey; andq; are positive constants fo= 0,1,2,... andr > 0, hold in [a, b].
Formally, by substituting (2.1) in (1.1), (1.2), fe(t) we obtain the systems

Ax(t) = fi(t), te[ab], i=01,..., (2.3)

where

(D) = —p(t) fori =0,
T La(xica(t) fori=1,2,...,
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andL; is the diferential operatoL(x(t)) = % — A1(t)x. The boundary functions
ITi(7) are solutions of the boundary problems

d b-a

@Hi(T) = Alli(7) + ¢i(r), 7€[0,7p], 70 = — (2.4)
D) - h fori=0,
'(”('))’L'(H‘ (()g a)) - {o f?):: -1,2,... (2:5)
where
N 0 fori =0, 26
i) = 20 EAP @I o(r) fori=12..., (2.:6)

We denote the normal fundamental matrix of the solutions of the homogeneous
system$ = Ax, 7 € [0,7p], by X(r) = exp @A). Let Xn_i(7) be an @ x (n - k)
matrix with (n — k) columns from the matriX(r), consisting of exponentially small
functions (see [8]).

2.1. Obtaining the codficients Xxo(t) and IIg(t). Consider systems (2.3)—(2.6)
fori = 0. Then the degenerate system

Axo(t) + ¢(t) =0 (2.7)

is solvable with respect try(t) (according to (H4)) if and only iPa-¢(t) = O for all
t € [a, b], and it has a solution

Xo(t) = Pa,ao(t) — Alg(t), (2.8)

whereaq(t) is an arbitraryp-dimensional vector-function.
The general solution of system (2.4) has the form

Mo(7) = Xn-k(7)Co, Co € R™. (2.9)

We define the vector-functioag(t) by obtaining ofx;(t). Consider the system
Axi(t) = fi(t), wherefy(t) = Li(Xo(t)). The latter system has a solution

x1(t) = Payaa(t) + A'L1(xo(t)) (2.10)

if and only if Pa:L1(Xo(t)) = O for allt € [a, b]. Keeping in mind the representation
Xo(t) from (2.8) and_;, we obtain the dferential system fodrg(t),

CZa0(t) = BlOlao(t) + go(0). t<[a.b] (2.11)

wherego(t) = —Pa;L1(AT¢(t)). System (2.11) coincides with system (1.4) (& =
go(t), t € [a, b]. Then, according to Lemma 2 and the equality (1.9), we obtain

ao(t) = O(t,a)no + ap(t), te[ab], noeRPS, (2.12)
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whereds(t) = Qu(t)do(t) - Qz()vo(t)
t
Go(t) = o) f O (9u(9ods

P00 = (1200).

and®(t,a), Q) = [Q1(t), Q2(t)], and P(t) are the matrices from Section 1. The
vector-functionsig(t) andug(t) are solutions of the following system (see (1.7)):

Uo(t) = L(t)uo(t) + po(t),
0 = vp(t) + vo(t).
We substitute (2.12) into equality (2.8), and #@(t) we obtain
Xo(t) = Pa,®(t, &)n0 + Pa,ao(t) - A'p(t). (2.13)
Finally, for obtaining the functiongg(t) andIIg(t) it is sufficient to determine the
vectorsno € RP~Sandcy € R™. In this connection, we use the boundary condition
(2.5) fori = 0, where we substitute (2.13) and (2.9). We obtain the vegtpasidcy
by the system
DQ(S)CQ + 80170 = ho, (2.14)
whereD(g) = [Xnk(-) is an fn x (n - K)) matrix,Sg = IAp®(,a) isan i x (p—-9))
matrix, ho = h — 1(Apao()) — 1(AT¢(-)) is anm-dimensional vector.
Keeping in mind the expression of the matiy_«(r) and the form of the func-
tional I(x), we assume thddg(g) = Do + O(e3exp (~a/g)), wherea > 0, s€ N, Dg
is a (mx (n—Kk))-constant matrix, an@(sS exp (-a/<)) we denote a matrix consisting
of elements infinitely small with respect to Because the elements of the matrix
Do are continuous for akt € (0, go] and lim,_,o Do(g) = Do, then we determine the

matrix Do(g) for £ = 0, puttingDo(0) = Dg. We neglect the exponentially small
elements in the matriBg(e) and system (2.14) takes the form

M (f;;) = ho, (2.15)

whereM = [50, Solisa (mx (n+ p — k- 9g)) constant matrix.
Let the following condition hold:

(H5) rankM =m=n-k+p-=s.

Then detM # 0 and system (2.15) is always solvable and
co = [M o
no = [M_l] p—Sh07

where M1,y and M~1] ,_s are the firstif — k) and last p — s) rows of the matrix
M~L. We should note that in this case- m=k—-p+s>0,i.e.,n>m.

(2.16)
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We substitute (2.16) into (2.13) and (2.9) and get
Xo(t) = Pa,@(t, &)[M ] p-sho + Xo(t),
To(7) = Xn-k(T)[M Ik ho,
wherexo(t) = Pa,ao(t) — A'g(t).

(2.17)

2.2. Obtaining the codficients x1(t) and II1(r). To obtain the coféicient x(t)
from (2.10), it is sffficient to determine the functiom(t). This will be realized
in terms of the coficient xx(t). System (2.3) under = 2 has a solution(t) =
Pa,a2(t) + A'L1(xy(t)) if and only if

PasL1(xi(t)) =0

for all t € [a,b]. In the last equation we substitutg(t) from (2.10). Keeping in
mind the form of the operatdr;, for determining the functiom(t), we obtain the
degenerate flierential system

CEant) = B + 200, tefab] (2.18)

Wheregl(t) = _PATJ L;|_(AT L1X0(t)).
System (2.18) coincides with system (2.3), (1.4)(Bt= g1(t), t € [a,b] and in
accordance with Lemma 1.2 and equation (1.9), we obtain

ai(t) = o, a)ny + aa(t), tel[ab], n€RPS (2.19)
wherea(t) = Qq(t)us(t) — Qa(t)va(t),

t
G () = o) f O H(pua(9ods

andP(t)g1(t) = (’jig) ) The vector-functionsi; (t) andu;(t) are solutions of system
(1.7), whereu(t) = us(t), v(t) = v1(t).
We substitute (2.19) int® (t) from (2.10) and obtain

X1(t) = Pa,@(t, )71 + Paaa(t) + A'L1(xo(t)). (2.20)
In accordance with Lemma 3, the general solution of the system (2.4 atis
+00
I1(7) = Xpk(r)C1L + f K(r, 9ya(s)ds ¢ e R™ (2.22)
0

We substitute (2.20) and (2.21) into (2.5) at 1. The constant vectorg andcy
are obtained by the system

Do(g)c1 + Son1 = hui(e), (2.22)
where

o) =1 [ k(2 5)ua(9s) @A @) - 1A LsGi0)
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Obviously,
hi(e) = hio + O(e™ exp (- /&),

i. e.,hi(e) is with continuous elements for alle (o] and lim._,0h1(¢) = hio. Then
we determineny(g) for ¢ = 0, puttingh1(0) = hyp. SinceDg(0) = Dy, in system
(2.22) we neglect the exponentially small elements and obtain

M(Cl) - hio, (2.23)
Uit

whereM is the matrix from Section 2.1.
In accordance with condition (H5), the solution of the system (2.23)

c1 = [Mnxhio, 1 =M p-shio,

we substitute into (2.20) and (2.21). Consequently, theficoentsx;(t) andIIy(r)
have the form

x1(t) = Pa,®(t, 8)[M "] p_sh1o + Xa(t),

. _ (2.24)
IT1(7) = Xnk(T)[M™ ]n-kh1o + 1 (7),
wherexq(t) = Pa,a1(t) + A'L1(xo(t)) andITy(s) = [ K(z, sya(s)ds

2.3. Determining the codficients x4(t) and Il4(r), g > 1. The inductive ap-
proach shows that the ceientsxq(t) andIly(r) (q > 1) have the form

Xq(t) = Pa, @(t, A)[M™"p-shgo + Xg(1),

G = (2.25)
Hg(7) = Xn-k(7)[M ™ Tn-khqo + [g(7),
where
heo = lim hg(e).
e - a _
hg(e) = - Kl—. s|q(9ds| — I(Pa,aq()) — (A L1(Xq-1(-))),
i U‘: ( © ) i ) i (2.26)

Xq(t) = Pa,aq(t) + A'L1(Xg-1(t)),
My(7) = fo K(z, 9q(9)ds

Assume that the cdiécientsx;(t) andIli(r) i = 1,g— 1 are determined. System
(2.3) fori = g has a solution

Xq(t) = Paaq(t) + ALy (xg-1(t)) (2.27)

if and only if Pa:L1(Xg-1(t)) = O for allt € [a, b]. However, this equality is fulfilled
because it is used in obtaining the functiap(t). This solutionaq-1(t) participates
in Xg-1(t), which with respect to the induction hypothesis is determined completely.
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The functionaq(t) is obtained from the solvability conditioRa: L1(Xq(t)) = O,
Yt € [a,b] of system (2.3) foii = g+ 1 Axg1(t) = Li(xg(t)). Thus, we obtain the
following differential system (see (1.4)):

d
Cqraa® = Bthaa(®) + go(t). te [a.b].
Wheregq(t) = _PATJ |_;|_(AJr Ll(Xq(t)))
By Lemma 2 and equation (1.9) we find
aq(t) = (t, g + aq(t), telab], ngeRPS (2.28)
whereaq(t) = Qu(t)ug(t) — Qa(t)vg(t),

. t
Ta(t) = () f O H(9ug(ods

andP(t)gq(t) = (460 ).
The vector-functionsig(t) andug(t) are solutions of system (1.7), wheug) =

Uq(t), v(t) = vg(t).
We substitute (2.28) into (2.27) and obtain

Xq(t) = Pa,@(t, a)ng + Pa,aq(t) + A'L1(Xg-1(t)), 1g € RP™S. (2.29)
The general solution of system (2.4) fot qis

(1) = Xn-k(7)Cq + L ) K(r,9)yq(9)ds cqe R"K. (2.30)

We substitute (2.29) and (2.30) in the boundary condition (2.5) foig and get
the system

Do(&)cq + Song = hqg(e),
where

o) =1 [ (2, 5095~ P @) - A Laiq 1)

Since _
Do(g) = Do + O(s°exp (-a /<)),

Do = lim,_0 Do(&), hq(e) = hgo + O(e™ exp (a/¢)), andhg = lim._ohg(e), after
ignoring the exponentially small elements, the last system takes the form

(31

with the solution (see (H5))
Cq = [Mil]n—kth, Mg = [Mil] p—sheo- (2.31)

We substitute (2.31) in (2.29) and (2.30) and obtain the equations (2.25), (2.26).
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All the boundary functiondT;(r) satisfy inequalities (2.2). This follows from
Lemma 3 and the inequality

[Xn-k(DIl < 1 eXp-pa7),
wherec; > 0,81 > 0, andr > 0. After sequential analysis we get
ITo()II < [ Xnk(@IIM ™ n-illlloll < €1 €XP (B17)C2C3 = Yo €XP o),
wherel[[M~] | < ¢z, [Iholl < €30, ¥0 = C1C2C30, @0 = B1, and
T2 < Xk @M n-illlingoll + M)l <
< C1eXP (B17)C2Ca1 + C1 €XP (f17)
< (C1C2C31 + C1) €XP-a17) = y1€XP (~aa7),

wherelhyoll < ca1, ITT1(7)ll < T exp (Bq7), anday = max 31, B1). Finally,

(@ < Xk @M~ Tn-klllingoll + IIﬁq(T)II < B
< €1 €Xp(pB17)C2Caq + Cg €XP (BqT)
< (C1C2C3q + Cq) €XP (aqT) = Yq €XP (~aqT),

wherelhgoll < Caq, ITlg(7)Il < Cq €Xp (Bq7), andaq = max 31, 84). Thus, the follow-
ing theorem is true.

Theorem 1. Let conditions(H1)—(H5) hold and letdetB;1(t) # 0. Then the
boundary-value problemgl.1), (1.2) have a formally asymptotic solution of form
(2.1). The cogicients of the regular and singular series have representat@ris’)
and(2.25)forq =1, 2,.... For the boundary functions, the following estimate holds:

Mg(D)ll < yg€Xp Caqr), 9=0,1,2,...,
whereyq andaq are positive constants. Moreover, the equality
lim x(t, &) = Xo(t)
-0
holds fort € (a, b].
Remarkl. The case whererad = ny < min(mn-k+ p—s) andp = sis of
independent interest.
3. A BOUND OF THE REMAINDER TERM OF THE ASYMPTOTIC SERIES
The solution of the boundary-value problem (1.1), (1.2) we seek in the form
X(t, €) = Xq(t, &) + un(t, &), (3.2)

whereXn(t, &) = XL, &' (x (1) + (7)), 7 = £2, t € [a, b].
We shall prove that, for € [a,b] ande € (0, &g, the functionuy(t, ) satisfies the
inequality|jun(t, &)|| < Ke™*, whereK > 0 and lim._,q X(t, £) = Xo(t).
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Let the smoothness degree of the elements of the mfat(txand the functiorp(t)
isn+ 2.
_If un(t, &) = e™(Xns1(t) + Tns 1) + Unsa(t, €) and we should prove thiitin, 1 (t, £)|| <
Ke™1 K > 0, then there would exist a positive const&nsuch that|u,(t, £)|| <
K8n+1.
Substitutingx(t, €) = Xn:+1(t, €) + Unya(t, €) in problem (1.1), (1.2), for the determi-
nation ofun,1(t, €), we get the boundary-value problem
d t, e
g% = Alna(t, ) + G(t, Uns1, &), (3.2)
|(Un+a(, ) = 0. (3.3)

The functionG(t, un.1, €) has the form

G(t’ Un+1(ta 8)’ 8) = Axn+1(t’ 8) + 8A1(t’ 5)[Xn+1(t’ 8) + Un+l(t, 8)]+

d)<ﬂ+1(t7 8)
+ o(t) - N TR

and satisfies the following conditions:

l. |IG(t, 0, )| < £&€™2, where¢ > 0;
Il. Forallp > 0, a existsy = 6(17) andeg = eo(n) such that ifju’ ;|| < ¢ and

44
lu” Il <6, then

||G(t’ u:-H_]_’ 8) - G(t’ U'/,]/+1, 8)” < T]||uln+1 - u:']/+]_”

fort € [a,b] and O< & < &o.
Let A = diag(A, A), A = diag (, ©p_s) is a k x k) matrix, J = diag (1, .. ., Js) is
a(k-p+ 9 x(k— p+ ) matrix. Then we represent, 1 in the form

Un+1(t7 8) = (wl(t9 8)9 (’-)Z(t’ ‘9)7 w3(t’ ‘9))1— s

wherew(t, €) is a ( — k)-dimensional vectorw(t, €) is a k — p + s)-dimensional
vector, andws(t, ) is a (p — s)-dimensional vector.
We introduce the following notation:

At e)  Awioft, 8))
A t, = )
1(t. ) (Alzl(t, ) Azt €)
whereA11(t, €) is a (( — k) x (n — K)) matrix, Aj12(t, €) is a (( — k) x k) matrix,
A121(t, €) is a K x (n — K)) matrix, Ag2(t, €) is a k x k) matrix;

Auiat) = (Bu() Ba(t), Asaat) =(g§8) Ar2A(!) =(Bi§3 8338)

whereBs(t) is a (( — k) x (k — p + s)) matrix, Bx(t) is a (1 — k) x (p — S)) matrix,
Ci(t)isa (k- p+ 9 x (n—Kk)) matrix,Cy(t) is a ((p — S) x (n — k)) matrix, Dy1(t) is
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a(k-p+9 x(k-p+9) matrix,Dio(t) isa (K— p+ S) x (p— 9)) matrix, Do(t) is
a((p—9s) x (k- p+9) matrix,Dox(t) isa ((p — ) X (p — S)) matrix;

G1(,0,0,0, &)
G(t,0,0,¢) = | G2(t,0,0,0, ) |,
Gs(t,0,0,0, &)

whereG4(t,0,0,0, ¢) is a (1 — k)-dimensional vectoG,(t,0,0,0,¢) isa k— p + S)-
dimensional vectoi3(t, 0,0, 0, &) is a (p — s)-dimensional vector.
System (3.2) takes the form

dw1

e~ = Awr+ eAu(lwr + eBi(f)wz + eBp(f)ws + G1(1.0.0.0.).  (3.4)
8% = (J + eD11(t)) w2 + eD12(t)ws + eCa(t)wr + Ga(t, 0,0,0, &), (3.5)
8% = eDo1(t)wz + eD2o(t)ws + eCo(t)wr + G3(t,0, 0,0, &). (3.6)
Obviously, the inequalitielGi(t, 0,0,0, £)|| < c;ie™?, ¢ > 0,i = 1,2,3, hold on

[a, b].

LetW(t, s, &) andV(t, s) be the fundamental matrices for the homogeneous systems
eX = AxandX = Doox. Here,W(s, s &) = Enkx andV(s,s) = Ep_s are the unit
matrices.

Let the Cauchy problem for the homogeneous syst&m: (J + eD11(t))x have
only a trivial solution, and system (3.4) has the particular solution

b
walt, &) = f K (t, 8 &) [eD12(ws + £C1(Jw1 + Ga(s 0,0,0,8)] st [a,b],

where
IX(te)X(se), tiig<s<t,
0, Ti.1 <t<s

K(t,s,s):{

if the eigenvalues of the matrikx+ £D14(t) are purely imaginary and

Xt o) PX (s e), T <S<t,
K(t,se¢) = B B
-IX(te) (I -P)X(se), Tii<t<s

if the eigenvalues are with a positive or negative real part. The matisxa spectral
projector of the matrixJ + £D1;(t) on the left half-plane, an&(t, ) is a normal
fundamental matrix for the systesx = (J + eD11(t)x.

Obviously, [*[IK (t, s )llds < &1, & > 0, fort € [a,b], & € (0, sq].
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Lemma 4 ([6, 10]). For the matrixW(t, s,&), whena< s<t <b,0< ¢ < &g, the
exponential estimate

W, s &)l Sﬁexp(—a(t‘Ts)), a<s<t<h,

is fulfilled, wherex > 0, 8 > 0.
Itis clear that|V (t, s, &)|| < 81, wherea< s<t<b, g1 >0.
Lemma 5. Any continuous solution of syst¢&4)-3.6)is a solution of the system
of integral equations
or0) = WG o)+ [ X [eAuSn(s )+
+eB1(Swa(s, &) + eBa(Sws(s, ) + G1(s,0,0,0,£)]ds  (3.7)

b
walt,e) = f K (t, S, £) [eD12(wa(s &) + £Co(Swa(s &)
+Gy(s,0,0,0,£)] ds (3.8)

t
wnlt.0) = Vit Aon(ae) + [ VL 97 [eDatwa(s. o)+
+eD22(S) w3z + eCo(S)wi(s €) + G3(s,0,0,0,¢)] ds (3.9)
We substitutein,1(t, €) = (w1(t, £), wa(t, &), wa(t, €))" into the boundary condition
(3.3) and obtain
Lwi((), &) + Lwa((), &) + l3wa((). &) = 0,
whereﬂ, i = 1,2, 3 are lineam-dimensional bounded functionals. After transforma-
tions using (3.7)—(3.9), we obtain
wi(t &) = Wit & e)wi(a &) + Vi(t, a, e)ws(a, &) + Si(t, w1, wz, a.6),  (3.10)
i = 1,23 whereWi(t,a,&) = W(t,a,¢), andW,, i = 1,2, V;, S;,i = 1,2,3, are
functions such that, for atle [a, b] ande < (0, &,
IWit,a,e)ll < ek, k>0,i=12
IVi(t,a,e) <edi, d>01=12,
IVa(t,a, &)l < B2+ eds, B2>0,d3>0,
ISi(t.0,0,0,a, &)l < Ge™, ¢ >0,i=1,23,

(3.11)

and

ISi(t, w3, w3, & &) — Si(t, 0, w3, &, &)l <

< or: 2 1 2 1 12
_sr.trer[%(||w1(t,s) Wit oIl + Wit &) - w3t o)), (3.12)
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wherer; > 0,1 = 1,2, 3. It follows from relation (3.10) that the vectas(a, &) =
(w1(a, €), wa(a, €)' is determined by the equation
R(e)w(a, &) = q(&, w1, w3), (3.13)

whereR(e) = [Ri(e) Ra(e)] is an (mx (n+ p—k—9)) matrix,Ry(e) = Ewl((-), a,ée)+
Wa((-), & €) +_13Ws((-), & £) is an n x (n — K)) matrix, Ry(e) = 11Vi(().a ) +
1Vo((4), &, €) + 13Va((1), a, &) is an fnx (p — s)) matrix, and

q(e w1, w3) = —11S1 (-, w1, w3, &, &) — 1,52 (-, w1, w3, 8 ) — 1383 (-, W1, w3, 8, €)
is anm-dimensional vector. Also, one hig(e, 0, 0)|| < cse™?, ¢4 > 0, and

2 2 1 1 2 1 2 1
lo(e. w3 @3) - ole. w, w3l < efa Max (Ilw? - will + llw - w3l)

wherer4 > 0. Since
R(e) = Ry + O(exp(—g)),
E
whereRy is a constant matrix, then the following condition is fulfilled:
(H6) m=n+ p-k—s; detR(e) # 0Ve € [0, &q].
System (3.13) is always solvable and
wi(@ &) = [RYn-k (e, w1, ws),
w3(a,e) = [R_l] p-sd(e, w1, w3).

We shall substitute (3.14) into (3.7)—(3.9) and obtain a system which will be solved
by the method of successive approximations. Let

(3.14)

0
wi(t,e) =0,
Wt &) = Wi(t, & )[R -k (e, 3, w3)+ (3.15)
+Vi(t, & &)[R p-sq(e, 5, ) + Si(t, w5, i, a,e), =123,

be the Picard successive approximations.

Theorem 2. Let the conditions of Theorem 1 and assump(idf) be fulfilled. If
IR7Y| < cgr, then there exists a positive constahsuch that the asymptotic solution
of the boundary-value probleifi.1), (1.2) has representatioii3.1), whereun(t, &)
satisfies the inequality

lunt, &)II < K&™*.
Moreover,X(t, €) approaches the generating system when 0 andt € (a, b].
Proor. By virtue of (3.10), (3.11), and (3.12), for the first approximation, we have

max lwi(t, &) — w(t, )ll < Kiz, Kiz > 0,
te[a,b]

where the constar;;c"! is determined by the constarts, k;, d;, ¢, andr;.
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Let K = max (K1) andK1e™?! = . For the last approximation we have

rr[maxllwz(t &) — wi(t, &)l < eKizd, Ki2>0,i=1,23

Leteo = 3 mini(1/Kiz). Then

1 1
2 1
trr[h’:lxllcu (t,e) = (o)l < 26 = §26

Inductively we obtain

1
k+1 k
tr?ag](”w (te) —wi(t o)l < 2k+125'

This reveals that in the segmeat b], whene is suficiently small, the successive
approximations (3.15) are absolutely and uniformly convergent. In addition, we have

k+1

i . 1 1
kel i -1
lwf(t, &)l < jZ:;Hwi(t,s)—wi ol < (1+ St g)és
1 1 1

Let
lim wk(t, €) = wilt, &)
satisfy (3.10) identically. Then, on the interval b], for £ — 0, the inequality
llwi(t, &)l < 26

is fulfilled. Consequently, system (3.10) has an unique continuous solution, which
does not escape from the dom@inw) | a<t < b, ||w|| < 26}. Then, for allt € [a, b]
ande € (0, &q],

3
lunea(t, )l < D llwi(t 2)Il < 65 = 6Ke™,
i=1
i. e., there exists a positive constahsuch that the inequality
lun(t, )ll < Ke™*
is fulfilled and
lim x(t, &) = Xo(t)
-0

forallt € [a, b]. O
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