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Abstract. In this paper we investigate the growth of solutions of the differential equation f .k/C
Ak�1 .´/f

.k�1/C�� �CA1 .´/f
0
CA0 .´/f D 0; where A0 .´/ ; : : : ; Ak�1 .´/ are entire func-

tions with 0 < � .A0/ � 1=2: We will show that if there exists a real constant ˇ < � .A0/ and a
set Eˇ � .1;C1/ with log densEˇ D 1; such that for all r 2Eˇ ; we have minj´jDr jAj .´/ j �

exp.rˇ / .j D 1;2; : : : ;k�1/ ; then every solution f 6� 0 of the above differential equation is
of infinite order with hyper-order �2 .f / � � .A0/. The paper extends previous results by the
author and Hamani.
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1. INTRODUCTION AND STATEMENT OF MAIN RESULT

For k � 2 we consider the linear differential equation

f .k/CAk�1 .´/f
.k�1/

C�� �CA1 .´/f
0

CA0 .´/f D 0; (1.1)

where A0 .´/ ; : : : ; Ak�1 .´/ are entire functions with A0 .´/ 6� 0. It is well-known
that all solutions of equation (1.1) are entire functions and if some of the coefficients
of (1.1) are transcendental, then (1.1) has at least one solution with order � .f / D
C1:

Recently, the growth theory of complex differential equations has been an active
research area, and the growth problems of linear differential equations have an im-
portant aspect in this area. By defining the hyper-order [9, 11], the growth of infi-
nite order solutions of differential equations has been more precisely estimated (see
[3, 4, 9]). Our starting point for this paper is a result by Kwon in [9]:

Theorem A ([9, p. 489]). Let A.´/ and B .´/ be entire functions where 0 <
� .B/ < 1=2; and let there exist a real constant ˇ < � .B/ and a set Eˇ � Œ0;C1/
with densEˇ D 1 such that for all r 2Eˇ ; we have

min
j´jDr
jA.´/j � exp

�
rˇ
�
: (1.2)
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Then every solution f 6� 0 of the linear differential equation

f
00

CA.´/f
0

CB .´/f D 0 (1.3)

is of infinite order with hyper-order

�2 .f /D lim
r!C1

log logT .r;f /
logr

� � .B/: (1.4)

Here the order � .f / of an entire function f is defined by

� .f /D lim
r!C1

logT .r;f /
logr

D lim
r!C1

log log M .r; f /

logr
; (1.5)

where T .r;f / is the Nevanlinna characteristic function of f .see Œ7�/, andM .r;f /D

maxj´jDr jf .´/j :
This result has been recently generalized to a higher order case (1.1) by the author

and Hamani as follows (see [4]):

Theorem B ([4]). Let A0 .´/ ; : : : ; Ak�1 .´/ be entire functions with 0 < � .A0/ <
1=2, and let there exist a real constant ˇ < � .A0/ and a set Eˇ � Œ0;C1/ with
densEˇ D 1 such that for all r 2Eˇ ; we have

min
j´jDr

ˇ̌
Aj .´/

ˇ̌
� exp

�
rˇ
�

.j D 1;2; : : : ;k�1/ : (1.6)

Then every solution f 6� 0 of (1.1) is of infinite order with hyper-order

�2 .f /D lim
r!C1

log logT .r;f /
logr

� � .A0/ : (1.7)

In this paper, we extend Theorem B by proving:

Theorem 1.1. Let A0 .´/ ; : : : ; Ak�1 .´/ be entire functions where 0 < � .A0/ �
1=2; and let there exist a real constant ˇ < � .A0/ and a set Eˇ � .1;C1/ with
log densEˇ D 1 such that for all r 2Eˇ ; we have

min
j´jDr

ˇ̌
Aj .´/

ˇ̌
� exp

�
rˇ
�

.j D 1;2; : : : ;k�1/ : (1.8)

Then every solution f 6� 0 of (1.1) is of infinite order with hyper-order

�2 .f /D lim
r!C1

log logT .r;f /
logr

� � .A0/ : (1.9)

Thus our contribution is to treat the case � .A0/ D 1
2
: The method used in this

paper will be quite different from that in the proof of Theorem B (see [4]). The main
ingredient in the proof is Lemma 2.2, based on a special case of a theorem of Drasin
and Shea [5, Theorem 8.1].
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Remark 1.1. The conclusions of Theorem 1.1 are also held under the hypothesis
0 < �.A0/� 1=2; where �.f / is the lower order of f defined by

�.f /D lim
r!C1

logT .r;f /
logr

D lim
r!C1

log logM .r;f /

logr
: (1.10)

To ease the exposition we treat in detail only Theorem 1.1 and in Section 2 we
confine ourselves to highlighting the modifications of our proof necessary to obtain
the lower order result.

2. PRELIMINARY LEMMAS

Our proofs depend mainly upon the following lemmas. Before starting these
Lemmas, we recall the concepts of density and logarithmic density of subsets of
.1;C1/: For E � .1;C1/; we define the linear measure of a set E by m.E/ DRC1
1 �E .t/dt; where �E is the characteristic function of E; and define the logarith-

mic measure of a set E by lm.E/D
RC1
1

�E.t/
t
dt . The upper density and the upper

logarithmic density of E are defined by the formulae

densE D lim
r!C1

m.E\ Œ1;r�/
r �1

; log densE D lim
r!C1

lm.E\ Œ1;r�/
logr

: (2.1)

The lower density and the lower logarithmic density, densE and log densE, are de-
fined similarly with the limit superior replaced by the limit inferior. It is easy to verify
[10, p. 121] that

0� densE � log densE � log densE � densE � 1 (2.2)

for any E � .1;C1/ :
For entire f; let L.r;f /Dminj´jDr jf .´/j : The method of Denjoy–Kjellberg [8,

pp. 193–196] shows for entire f with f .0/ D 1 and for 0 < � < 1 that there exist
positive constants k1 .�/ and k2 .�/ such thatZ R

r

.logL.t;f /� .cos��/ logM .t;f //
dt

t1C�

� k1 .�/
logM .r;f /

r�
�k2 .�/

logM .4R;f /

R�
(2.3)

valid for 0 < r < R.
If �.f / < � .f / � 1=2, let ˇ and ˛ satisfy �.f / < ˇ < ˛ < � < � .f / � 1=2.

Let us choose rm ! C1 with Rm > rm satisfying r�m D o.logM .rm;f // and
logM .4Rm;f /D o

�
R�m

�
to conclude thatZ Rm

rm

logL.t;f /
t1C�

dt !1
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as m!1 . Thus there exists sm!1 with

logL.sm;f / > s˛m: (2.4)

If �.f / D � .f / < 1=2 and ˇ < � .f /, the classical cos�� theorem (contained in
(2.3)) yields sm!1 satisfying (2.4). In both of the above cases results of Barry (see
[1, p. 294] and [2, Theorem 4]) also imply the existence of unbounded sm satisfying
(2.4).

If ˇ < �.f /D � .f /D 1
2

, then either there exists sm!1 satisfying

logL.sm;f / > " logM .sm;f / (2.5)

for some " > 0 and hence also satisfying (2.4), or

logL.r;f /D o.logM .r;f // : (2.6)

Lemma 2.1 ([6]). Let f .´/ be a nonconstant entire function, and let ˛ > 1 and
" > 0 be given constants. Then the following two statements hold:

(i) There exist a constant c > 0 and a set E1 � Œ0;1/ having a finite linear
measure such that for all ´ satisfying j´j D r …E1;we haveˇ̌̌̌

ˇf .k/ .´/f .´/

ˇ̌̌̌
ˇ� c �T .˛r; f /r" logT .˛r; f /

�k
.k 2N/ : (2.7)

(ii) There exist a constant c > 0 and a set E2 � Œ0;2�/ that has linear measure
zero, such that if 0 2 Œ0;2�/nE2, then there is a constantR0DR0 . 0/ > 1
such that for all ´ satisfying arg´D  0 and j´j D r �R0; we haveˇ̌̌̌

ˇf .k/ .´/f .´/

ˇ̌̌̌
ˇ� c ŒT .˛r; f / logT .˛r; f /�k .k 2N/ . (2.8)

Lemma 2.2 ([5,7]). Suppose that f .´/ is entire with � .f /� 1=2 and � < � .f /.
Then either there exists frmg such that rm!1 and

min
j´jDrm

log jf .´/j> r�m; (2.9)

or, if

Kr .�/DKr D
n
� 2 Œ0;2�� W log

ˇ̌
f .rei� /

ˇ̌
< r�

o
; (2.10)

there exists a setE .1/� Œ1;C1/ with log densE .1/D 1 such that for all r 2E .1/ ;
Kr satisfies

m.Kr/! 0 as rm!1: (2.11)
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3. PROOF AND EXAMPLE

Proof of Theorem 1.1. Let f 6� 0 be a solution of (1.1). It follows from (1.1) that

jA0 .´/j �

ˇ̌̌̌
ˇf .k/f

ˇ̌̌̌
ˇCjAk�1 .´/j

ˇ̌̌̌
ˇf .k�1/f

ˇ̌̌̌
ˇC�� �C jA1 .´/j

ˇ̌̌̌
ˇf
0

f

ˇ̌̌̌
ˇ : (3.1)

Let ˇ < � .A0/ and suppose that ˇ <˛ < � .A0/ and that there is a setEˇ � .1;C1/
of lower logarithmic density 1 satisfying .1:8/ : Set

E D
n
´ W j´j D r 2Eˇ

and
ˇ̌
Aj .´/

ˇ̌
D min
j´jDr

ˇ̌
Aj .´/

ˇ̌
.j D 1;2; : : : ;k�1/

o
: (3.2)

Then log densfj´j W ´ 2Eg D 1 andˇ̌
Aj .´/

ˇ̌
� exp

�
rˇ
�
. j D 1;2; : : : ;k�1/ (3.3)

for all ´ 2E:
The proof is divided into two cases depending on the behavior of the minimum

modulus of A0 .´/ on j´j D r by Lemma 2.2. First, we assume that there exists rm
such that rm!1 and

log
ˇ̌
A0
�
rme

i�
�ˇ̌
> r˛m (3.4)

for all � 2 Œ0;2�� ; and for any positive real number ˛ < � .A0/ : Furthermore, by
Lemma 2.1 (ii), there exists �0 2 Œˇ1;ˇ2� such that if ´D rei�0 ;ˇ̌̌̌

ˇf .j / .´/f .´/

ˇ̌̌̌
ˇ� ŒT .2r;f /�kC1 .j D 1; : : : ;k/ (3.5)

for all sufficiently large r: Hence from (3.1), .3:3/ ; (3.4) and (3.5), we have

exp
�
r˛m
�
�

�
1C .k�1/exp

�
rˇm
��
ŒT .2rm;f /�

kC1 ; (3.6)

for all sufficiently large rm: Therefore f has infinite order and

�2 .f /D lim
rm!C1

log logT .rm;f /
logrm

� ˛: (3.7)

Thus the result of Theorem 1.1 follows since ˛ is arbitrary. Theorem 1.1 is proved in
the first case.

Now, we assume that there is a set E .1/ with log densE .1/D 1 such that for all
r 2E .1/ ; we have

m.Kr/! 0; as r!1; (3.8)

where
Kr DKr .˛/D

n
� W log

ˇ̌
A0
�
rei�

�ˇ̌
< r˛

o
: (3.9)
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By Lemma 2.1 (i) and (3.8), we have a setE1 �E .1/ with log densE1D 1 such that
if ´D rei� ˇ̌̌̌

ˇf .j / .´/f .´/

ˇ̌̌̌
ˇ� r ŒT .2r;f /�kC1 .j D 1; : : : ;k/ (3.10)

holds for all r 2 E1; and for all � 2 Œ0;2�� : Therefore it follows from (3.1), (3.3),
(3.9) and (3.10) that

exp.r˛/�
�
1C .k�1/exp.rˇ /

�
r ŒT .2r;f /�kC1 ; (3.11)

for all r 2E1\E; and for all � 2 Œ0;2��nKr : Since Œ0;2��nKr is nonempty for all
sufficiently large r 2E1\E by (3.8), we conclude that f has infinite order and

�2 .f /D lim
r!C1

log logT .r;f /
logr

� ˛: (3.12)

Thus the result of Theorem 1.1 follows since ˛ is arbitrary. Hence the proof of
Theorem 1.1 is now complete. �

Next, we give an example which illustrates Theorem 1.1.
Example. Let P1 .´/ ; : : : ;Pk�1 .´/ be nonconstant polynomials, and let h1 .´/,

: : : ;hk�1 .´/ be entire functions satisfying �
�
hj
�
< degPj .j D 1; : : : ;k�1/. Then,

by Theorem 1.1, every solution f 6� 0 of the equation

f
.k/

Chk�1 .´/e
Pk�1.´/f

.k�1/

C�� �Ch1 .´/e
P1.´/f

0

C
sin
p
´

p
´
f D 0 (3.13)

is of infinite order with �2 .f /� �
�

sin
p
´

p
´

�
D

1
2

since

min
j´jDr

ˇ̌
hj .´/e

Pj .´/
ˇ̌
! 0 .j D 1; : : : ;k�1/

as r!C1:
Remark 3.1. The conclusions of our theorem are also held under the hypothesis

0 < �.A0/� 1=2: For ˇ < �.A0/ ; we first establish as before that either (2.4) holds
for some sequence sm !1 or (2.11) holds for a set E .1/ of lower logarithmic
density 1. If�.A0/ < 1=2, we conclude from Kjellberg’s lower order extension [8] of
the cos�� theorem (essentially (2.3)) that for each ˇ < �.A0/ there exists sm!1
satisfying (2.4). Thus we suppose�.A0/D 1=2. Either (2.5) holds for some sm!1
and hence (2.4) also holds, or alternatively (2.6) holds. By the remarks following
Theorem 8.1 in [5, p. 283], (2.6) implies the set Kr defined in (2.10) satisfies (2.11)
for all r in some set E .1/ of lower logarithmic density 1.
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