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Abstract. In this paper, we deal with the quasilinearization for Riemann-Liouville fractional
differential equations with two point boundary condition. By establishing a new comparison
principle we get a monotone sequence which converges quadratically to the unique solution of
the fractional differential equations.
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1. INTRODUCTION

Recently, the theory of fractional differential equations become a hot topic in
many fields. It is known that many physical system can be represented more ac-
curately through fractional derivative formulation. There are many fields of applic-
ations where we can use the fractional calculus as the mathematical model of sys-
tems and processes in the fields of physics, chemistry, aerodynamics, electrodynam-
ics of complex medium, viscoelasticity, heat conduction, electricity mechanics, con-
trol theory, and so forth. For more details on the topics one can see for instance,
[7–9, 11–13, 15, 16, 20] and the reference therein..

Many authors have studied fractional differential equations from two aspects, one
is the theoretical aspects of the existence and uniqueness of solutions [1, 5, 6, 22, 23],
the other is the development of analytic and numerical methods for finding solutions.
The numerical-analytical technique based on successive approximations leads us the
approximate solutions to differential equations. Now, it has been studied widely in
the theory of integer differential equations, see for instance [17–19].
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It is well known that the method of quasilinearization [10] offers an approach for
obtaining approximate solutions to differential equations. This method not only ap-
plies to integer differential equations, but also applies to the fractional differential
equations, which combining with the lower and upper solution method enables us to
get a monotone sequence which converge quadratically to the solution of the differ-
ential equations(cf. [2–4, 14, 21]).

In [2,4], the authors studied the following Caputo fractional differential equations
by using the quasilinearization method:(

cD
q
0Cx.t/D f .t;x.t//; t 2 J D Œt0;T �;

x.t0/D x0;

where 0 < q � 1; f 2 C.J �R; R/:
Later on, in [3], Vasundhara Devi and Radhika developed the quasilinearization

method for the Caputo fractional impulsive differential systems as:8̂<̂
:
cD

q
0Cx.t/D f .t;x.t///; t ¤ tk;

x.tC
k
/D Ik.x.tk//; k D 1;2; � � �n�1;

x.t0/D x0;

where 0 < q � 1; f 2 PC.Œt0;T ��R; R/; Ik W R! R: The comparison theorem
they used is developed from differential equation.

Motivated by the works mentioned above, we investigate the following nonlin-
ear two point boundary value problem for Riemann-Liouville fractional differential
equations: (

D
q
0Cx.t/D f .t;x.t//; t 2 .0;T �;

Qx.0/D g. Qx.T //;
(1.1)

where J 2 Œ0;T �; 1
2
< q � 1; f 2 C.J �R; R/; g 2 C.R;R/ and

Qx.0/D t1�qx.t/ jtD0, Qx.T /D t1�qx.t/ jtDT . We develop a new comparison prin-
ciple and the method of quasilinearization for Riemann-Liouville fractional differen-
tial equations.

Significant progresses have been made to the quasilinearization of the Caputo frac-
tional differential equations (cf.[2–4]). However, to our best knowledge, the quasilin-
earization for Riemann-Liouville fractional differential equations is still an untreated
topics in the literature and this fact is the motivation of the present work. Our aim
in this paper is to provide some suitable sufficient conditions for the existence and
uniqueness of solutions and approximate results for Riemann-Liouville fractional dif-
ferential equations.

This paper is organized as follows. In Section 2, we provide some definitions,
lemmas and establish a new comparison principle by integral equations. In Section
3, The lower and upper solutions method and quasilinearization method are used to
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construct a monotone sequence which converge uniformly and quadratically to the
unique solution of (1.1).

2. PRELIMINARIES

In this section, we introduce some notations, definitions and preliminary facts
which are used throughout this paper.

Let C1�˛.J;R/D fx 2 C.0;T � W t1�˛x.t/ 2 C Œ0;T �g with the norm k x kC1�˛
D

maxt2J jt
1�˛x.t/j. Obviously, the space C1�˛.J;R/ is a Banach space. The fol-

lowing definitions can be found from [8, 16]:

Definition 1. The integral

I˛0Cf .t/D
1

� .˛/

Z t

0

f .s/

.t � s/1�˛
dt; ˛ > 0;

is called Riemann-Liouville fractional integral of order ˛, where � is the gamma
function.

Definition 2. For a function f .t/, the Riemann-Liouville derivative of order ˛ can
be written as

D˛0Cf .t/D .
d

dt
/n.In�˛0C f .t//D

1

� .n�˛/

dn

dtn

Z t

0

.t � s/n�˛�1f .s/ds;

where n�1 < ˛ � n.

Lemma 1 ([8]). Let n�1 < ˛ � n and let fn�˛.t/D In�˛0C f .t/ be the fractional
integral of order n�˛: If f .t/ 2L.0;T / and fn�˛.t/ 2AC nŒ0;T �; then we have the
following equality

I˛0CD
˛
0Cf .t/D f .t/�

nX
iD1

f
.n�i/
n�˛ .0/

� .˛� iC1/
t˛�i :

Lemma 2. Let � 2 C1�q.J;R/. x 2 C1�q.J;R/ is a solution of the following
linear initial value problem:�

D
q
0Cx.t/DMx.t/C�.t/; t 2 .0;T �;0 < q � 1;

Qx.0/DN Qx.T /C r; r 2R;
(2.1)

if and only if x.t/ is a solution of the following integral equation:

x.t/D .N Qx.T /C r/tq�1C
1

� .q/

Z t

0

.t � s/q�1.�.s/CMx.s//ds; (2.2)

where M; N are constants.
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Proof. Assume x.t/ satisfies (2.1). From the first equation of (2.1) and Lemma 1,
we have

x.t/D
I
1�q
0C x.t/jtD0t

q�1

� .q/
CI

q
0C.�.t/CMx.t//

D .N Qx.T /C r/tq�1C
1

� .q/

Z t

0

.t � s/q�1.�.s/CMx.s//ds:

Conversely, assume that x.t/ satisfies (2.2). It is easy to check that x.t/2C1�q.J;R/:
Applying the operator Dq0C to both sides of (2.2), we have

D
q
0Cx.t/DMx.t/C�.t/:

In addition, by simple calculation, we conclude Qx.0/ D t1�qx.t/jtD0 D N Qx.T /C
r . �

Lemma 3. Assume that M; N � 0 are constants and the following inequality
holds

N C
MT q� .q/

� .2q/
< 1; (2.3)

then (1.1) has a unique solution.

Proof. We firstly define an operator F W C1�q.J;R/! C1�q.J;R/ by

.F x/.t/D .N Qx.T /C r/tq�1C
1

� .q/

Z t

0

.t � s/q�1.�.s/CMx.s//ds:

It is easy to check that t1�q.F x/.t/ 2C.J;R/. Hence the operator F is well defined
on C1�q.J;R/.
For any x;y 2 C1�q.J;R/, we have

k Fx�Fy kC1�q

Dmax
t2J
jt1�qŒ.F x/.t/� .Fy/.t/�j

�max
t2J
jN. Qx.T /� Qy.T //jCmax

t2J

t1�q

� .q/

Z t

0

.t � s/q�1Msq�1s1�qjx.s/�y.s/jds

�N k x�y kC1�q
Cmax
t2J

Mt1�q

� .q/

Z t

0

.t � s/q�1sq�1ds k x�y kC1�q

�

�
N C

MT q� .q/

� .2q/

�
k x�y kC1�q

:

According to (2.3) and the Banach fixed point theorem, (1.1) has a unique solution.
�
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Definition 3. A function ˛0 2 C1�q.J;R/ is called a lower(
D
q
0C˛0 � Q̨0.0/t

q�1C
1

� .q/

R t
0 .t � s/

q�1f .s;˛0.s//ds;

Q̨0.0/� g. Q̨0.T //:

Analogously, ˇ0 2 C1�q.J;R/ is called an upper solution of (1.1) if(
D
q
0Cˇ0 �

Q̌
0.0/t

q�1C
1

� .q/

R t
0 .t � s/

q�1f .s;ˇ0.s//ds;

Q̌
0.0/� g. Q̌0.T //:

In what follows, we assume that

˛0.t/� ˇ0.t/; t 2 .0;T �; Q̨0.0/� Q̌0.0/:

Let Œ˛0;ˇ0�D fx 2C1�q.J;R/ W ˛0.t/� x.t/� ˇ0.t/;8t 2 .0;T �; Q̨0.0/� Qx0.0/�
Q̌
0.0/g.

Lemma 4. Suppose that there are two constants M;N � 0 such that

0� fx.t;�.t//�M; 0� g
0. Q�.T //�N;8� 2 Œ˛0;ˇ0�:

If (2.3) holds and p.t/ 2 C1�q.J;R/ satisfies(
p.t/� Qp.0/tq�1C 1

� .q/

R t
0 .t � s/

q�1fx.s;�.s//p.s/ds;

Qp.0/� g0. Q�.T // QP .T /;

then p.t/� 0 for all t 2 .0;T � and Qp.0/� 0.

Proof. Suppose that the inequality p.t/� 0;8t 2 .0;T � is not true. So there exists
at least a t� 2 .0;T � such that t1�q� p.t�/ > 0: Without loss of generality, we assume
that t1�q� p.t�/Dmaxft1�qp.t/ W t 2 .0;T �g D � > 0:
Then we have that

t1�qp.t/� Qp.0/C
t1�q

� .q/

Z t

0

.t � s/q�1fx.s;�.s//p.s/ds

� g0. Q�.T // QP .T /C
t1�q

� .q/

Z t

0

.t � s/q�1fx.s;�.s//p.s/ds

�N�C
t1�q

� .q/

Z t

0

.t � s/q�1sq�1fx.s;�.s//s
1�qp.s/ds:

Let t D t�, we have

� �

�
N C

MT q� .q/

� .2q/

�
�:

So

N C
MT q� .q/

� .2q/
� 1:
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Which contradicts (2.3). Hence p.t/� 0 for all t 2 .0;T �.
For t D 0; Qp.T /� 0, we have that

Qp.0/� g0. Q�.T // QP .T /� 0:

�

3. QUASILINEARIZATION

In this section, we use the method of quasilinearization to construct a monotone
sequence which converge quadratically to the solution of fractional differential equa-
tions with two point boundary condition.

Theorem 1. Let ˛0; ˇ0 be a lower and upper solutions of (1.1),respectively. As-
sume that (2.3) holds and that

(1) 0� g0. Q�.T //�N , 0� g0.x/�g0.y/� L1.x�y/,
(2) 0� fx.t;�.t//�M , 0� fx.t;x/�fx.t;y/�L2.x�y/ , whereL1; L2� 0,

� 2 Œ˛0;ˇ0� and ˛0 � y � x � ˇ0;
(3) 1�� .q/Eq;q.MT q/N > 0:

Then there exist two monotone sequences f˛ng,fˇng � Œ˛0;ˇ0� both of which con-
verge uniformly to the unique solution of (1.1) and the convergence is quadratic.

Proof. For any � 2 Œ˛0;ˇ0�, consider the following linear fractional differential
equation: (

D
q
0Cx.t/D f .t;�.t//Cfx.t;�.t//.x.t/��.t//;

Qx.0/D g. Q�.T //Cg0. Q�.T //. Qx.T /� Q�.T //:

Obviously, by Lemma 3, the problem above has a unique solution which satisfies(
x.t/D Qx.0/tq�1C 1

� .q/

R t
0 .t � s/

q�1Œf .s;�.s//Cfx.s;�.s//.x.s/��.s//�ds;

Qx.0/D g. Q�.T //Cg0. Q�.T //. Qx.T /� Q�.T //:

Replacing �; x by ˛0; ˛1,respectively, we obtain8̂<̂
:
˛1.t/ D Q̨1.0/t

q�1

C
1

� .q/

R t
0 .t � s/

q�1Œf .s;˛0.s//Cfx.s;˛0.s//.˛1.s/�˛0.s//�ds;

Q̨1.0/ D g. Q̨0.T //Cg
0. Q̨0.T //. Q̨1.T /� Q̨0.T //:

Setting p.t/D ˛0.t/�˛1.t/, we obtain that

p.t/D ˛0.t/�˛1.t/

� Q̨0.0/t
q�1
C

1

� .q/

Z t

0

.t � s/q�1f .s;˛0.s//ds� Q̨1.0/t
q�1

�
1

� .q/

Z t

0

.t � s/q�1Œf .s;˛0.s//Cfx.s;˛0.s//.˛1.s/�˛0.s//�ds
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� Qp.0/tq�1C
1

� .q/

Z t

0

.t � s/q�1fx.s;˛0.s//p.s/ds:

And we have that

Qp.0/D Q̨0.0/� Q̨1.0/

� g. Q̨0.T //�g. Q̨0.T //�g
0. Q̨0.T //. Q̨1.T /� Q̨0.T //

D g0. Q̨0.T // Qp.T /:

By Lemma 4, we know p.t/ � 0 for all t 2 .0;T � and Qp.0/ � 0. So t1�q˛0.t/ �
t1�q˛1.t/ for all t 2 J:
Now replacing �; x by ˇ0; ˇ1; we have that8̂<̂
:
ˇ1.t/D Q̌

1.0/t
q�1

C
1

� .q/

R t
0 .t � s/

q�1Œf .s;ˇ0.s//Cfx.s;˛0.s//.ˇ1.s/�ˇ0.s//�ds;

Q̌
1.0/D g. Q̌0.T //Cg

0. Q̨0.T //. Q̌1.T /� Q̌0.T //:

Similarly, we can get t1�qˇ1.t/� t1�qˇ0.t/ for all t 2 J:
Next we set p.t/D ˛1.t/�ˇ1.t/, we can obtain

p.t/D ˛1.t/�ˇ1.t/

D Q̨1.0/t
q�1
C

1

� .q/

Z t

0

.t � s/q�1Œf .s;˛0.s//Cfx.s;˛0.s//.˛1.s/�˛0.s//ds�

� Q̌1.0/t
q�1
�

1

� .q/

Z t

0

.t � s/q�1Œf .s;ˇ0.s//Cfx.s;˛0.s//.ˇ1.s/�ˇ0.s//�ds

� Qp.0/tq�1C
1

� .q/

Z t

0

.t � s/q�1fx.s;˛0.s//p.s/ds:

And we have that

Qp.0/D Q̨1.0/� Q̌1.0/

D g. Q̨0.T //�g. Q̌0.T //Cg
0. Q̨0.T //Œ Q̨1.T /� Q̨0.T /� Q̌1.T /C Q̌0.T /�

� g0. Q̨0.T // Qp.T /:

By Lemma 4, we know p.t/ � 0 for all t 2 .0;T � and Qp.0/ � 0. So t1�q˛1.t/ �
t1�qˇ1.t/ for all t 2 J:
Hence, we have t1�q˛0.t/� t1�q˛1.t/� t1�qˇ1.t/� t1�qˇ0.t/ for all t 2 J .

Now suppose that

t1�q˛0.t/� t
1�q˛k�1.t/� t

1�q˛k.t/� t
1�qˇk.t/� t

1�qˇk�1.t/� t
1�qˇ0.t/:
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To show t1�q˛k.t/� t
1�q˛kC1.t/� t

1�qˇkC1.t/� t
1�qˇk.t/.

It’s easy to get that ˛k.t/ is the lower solution of (1.1) and ˛kC1.t/ satisfies8̂<̂
:
˛kC1.t/ D Q˛kC1.0/t

1�q

C
1

� .q/

R t
0 .t � s/

q�1Œf .s;˛k.s//Cfx.s;˛k.s//.˛kC1.s/�˛k.s//�ds;

Q˛kC1.0/ D g. Q̨k.T //Cg
0. Q̨k.T //. Q˛kC1.T /� Q̨k.T //:

So using the above method we can obtain t1�q˛k.t/� t1�q˛kC1.t/.
Similarly, ˇk.t/ is the upper solution of (1.1) and ˇkC1.t/ satisfies8̂<̂
:
ˇkC1.t/ D QˇkC1.0/t

q�1

C
1

� .q/

R t
0 .t � s/

q�1Œf .s;ˇk.s//Cfx.s;˛k.s//.ˇkC1.s/�ˇk.s//�ds;

QˇkC1.0/ D g. Q̌k.T //Cg
0. Q̨k.T //. QˇkC1.T /� Q̌k.T //:

Hence t1�qˇkC1.t/� t1�qˇk.t/.
To show t1�q˛kC1.t/� t

1�qˇkC1.t/, we set p.t/D ˛kC1.t/�ˇkC1.t/.

p.t/D ˛kC1.t/�ˇkC1.t/

D Q˛kC1.0/t
q�1

C
1

� .q/

Z t

0

.t � s/q�1Œf .s;˛k.s//Cfx.s;˛k.s//.˛kC1.s/�˛k.s//ds�

� QˇkC1.0/t
q�1

�
1

� .q/

Z t

0

.t � s/q�1Œf .s;ˇk.s//Cfx.s;˛k.s//.ˇkC1.s/�ˇk.s//�ds

� Qp.0/tq�1C
1

� .q/

Z t

0

.t � s/q�1fx.s;˛k.s//p.s/ds:

Then we have that

Qp.0/D Q˛kC1.0/� QˇkC1.0/

D g. Q̨k.T //�g. Q̌k.T //Cg
0. Q̨k.T //Œ Q˛kC1.T /� Q̨k.T /� QˇkC1.T /C Q̌k.T /�

� g0. Q̨k.T // Qp.T /:

By Lemma 4, we know t1�q˛kC1.t/� t
1�qˇkC1.t/.

By induction, we easily get ft1�q˛ng; ft1�qˇng which satisfy the relation

t1�q˛0 � t
1�q˛1 � � � � � t

1�q˛n � � � � � t
1�qˇn � � � � � t

1�qˇ1 � t
1�qˇ0:

Obviously, the sequences ft1�q˛ng; ft1�qˇng are uniformly bounded and equicon-
tinuous. Hence by the Ascoli-Arzela Theorem that the sequences ft1�q˛ng; ft1�qˇng
converge uniformly on J with

lim
n!1

t1�q˛n D t
1�q˛; lim

n!1
t1�qˇn D t

1�qˇ:
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Then we can easily show that ˛ and ˇ are the solutions of (1.1) in Œ˛0;ˇ0�.
To prove quadratic convergence of ft1�q˛ng; ft1�qˇng to the solution, we con-

sider
pkC1 D x�˛kC1; rkC1 D ˇkC1�x:

We can obtain

QpkC1.0/D Qx.0/� Q˛kC1.0/

D g. Qx.T //�g. Q̨k.T //�g
0. Q̨k.T //. Q˛kC1.T /� Q̨k.T //

D g0. Q�.T // Qpk.T /�g
0. Q̨k.T //. Qpk.T /� QpkC1.T //

� L1j Q�.T /� Q̨k.T /j Qpk.T /Cg
0. Q̨k.T // QpkC1.T /

� L1 k pk.t/ k
2
C1�q

CN k pkC1.t/ kC1�q
:

Then we have that

pkC1.t/D x.t/�˛kC1.t/

D QpkC1.0/t
q�1
C

1

� .q/

Z t

0

.t � s/q�1Œf .s;x.s//�f .s;˛k.s//

�fx.s;˛k.s//.˛kC1.s/�˛k.s//�ds

D QpkC1.0/t
q�1
C

1

� .q/

Z t

0

.t � s/q�1Œfx.s;�.s//pk.s/�fx.s;˛k.s//pk.s/

Cfx.s;˛k.s//pkC1.s//�ds

� QpkC1.0/t
q�1
C

1

� .q/

Z t

0

.t � s/q�1ŒL2.�.s/�˛k.s//pk.s/CMpkC1.s/�ds

� QpkC1.0/t
q�1
C

1

� .q/

Z t

0

.t � s/q�1ŒL2.x.s/�˛k.s//pk.s/CMpkC1.s/�ds

� QpkC1.0/t
q�1
C

1

� .q/

Z t

0

.t � s/q�1.L2s
2q�2

k pk.t/ k
2
C1�q

CMpkC1.s//ds:

Then using the method of successive approximations we get that

pkC1.t/ (3.1)

� � .q/ QpkC1.0/t
q�1Eq;q.Mtq/ (3.2)

CL2 k pk.t/ k
2
C1�q

Z t

0

.t � s/q�1s2q�2Eq;q.M.t � s/
q/ds

� � .q/Eq;q.MT q/ QpkC1.0/t
q�1 (3.3)

CL2 k pk.t/ k
2
C1�q

Eq;q.M.T /
q/
� .q/� .2q�1/

� .3q�1/
t3q�2:

t1�qpkC1.t/� � .q/ QpkC1.0/Eq;q.MT q/ (3.4)
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CL2 k pk.t/ k
2
C1�q

Eq;q.M.T /
q/
� .q/� .2q�1/

� .3q�1/
T 2q�1

� .L1 k pk.t/ k
2
C1�q

CN k pkC1.t/ kC1�q
/� .q/Eq;q.MT q/

CL2 k pk.t/ k
2
C1�q

Eq;q.M.T /
q/
� .q/� .2q�1/

� .3q�1/
T 2q�1

D

�
L1� .q/CL2

� .q/� .2q�1/

� .3q�1/
T 2q�1

�
Eq;q.MT q/ k pk.t/ k

2
C1�q

C� .q/Eq;q.MT q/N k pkC1.t/ kC1�q
;

where Eq.t/D
P1
kD0

tk

� .qkC1/
; Eq;q.t/D

P1
kD0

tk

� .qkCq/
:

Thus we have the estimate

k pkC1.t/ kC1�q
�˝ k pk.t/ k

2
C1�q

where

˝ D

�
L1� .q/CL2

� .q/� .2q�1/
� .3q�1/

T 2q�1
�
Eq;q.MT q/

1�� .q/Eq;q.MT q/N
:

Similarly
k rkC1.t/ kC1�q

�˝ k rk.t/ k
2
C1�q

:

�
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