Miskolc Mathematical Notes
HU e-ISSN 1787-2413
Vol. 15 (2014), No 2, pp. 327-332

A new result on the quasi power increasing sequences

Hüseyin Bor, Dansheng Yu, and Ping Zhou

A NEW RESULT ON THE QUASI POWER INCREASING SEQUENCES

HÜSEYIN BOR, DANSHENG YU, AND PING ZHOU
Received 14 November, 2013

Abstract

In this paper, we prove a general theorem dealing with generalized absolute convolution Cesàro mean summability factors under weaker conditions by using a general class of increasing sequences instead of an almost increasing sequence. Some new results have also been obtained.

2010 Mathematics Subject Classification: 26D15; 40D15; 40F05; 40G99
Keywords: convolution Cesàro mean, power increasing sequences, summability factors, Hölder inequality, Minkowski inequality, infinite series

1. Introduction

A positive sequence $\left(b_{n}\right)$ is said to be an almost increasing sequence if there exists a positive increasing sequence $\left(c_{n}\right)$ and two positive constants M and N such that $M c_{n} \leq b_{n} \leq N c_{n}$ (see [1]). A positive sequence $X=\left(X_{n}\right)$ is said to be a quasi-σ-power increasing sequence if there exists a constant $K=K(\sigma, X) \geq 1$ such that $K n^{\sigma} X_{n} \geq m^{\sigma} X_{m}$ for all $n \geq m \geq 1$ and $0<\sigma<1$. Every almost increasing sequence is quasi $-\sigma$-power increasing sequence for any nonnegative σ, but the converse is not true for $\sigma>0$ (see[9]). Let $\sum a_{n}$ be a given infinite series. We denote by $t_{n}^{\alpha * \beta}$ the nth convolution Cesàro mean of order $(\alpha * \beta)$, with $\alpha+\beta>-1$, of the sequence ($n a_{n}$), that is (see [5])

$$
\begin{equation*}
t_{n}^{\alpha * \beta}=\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v} \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{n}^{\alpha}=\frac{(\alpha+1)(\alpha+2) \ldots(\alpha+n)}{n!}=O\left(n^{\alpha}\right), \quad A_{-n}^{\alpha}=0 \quad \text { for } \quad n>0 \tag{1.2}
\end{equation*}
$$

[^0]Let $\left(\theta_{n}^{\alpha * \beta}\right)$ be a sequence defined by

$$
\theta_{n}^{\alpha * \beta}=\left\{\begin{array}{cc}
\left|t_{n}^{\alpha * \beta}\right|, & \alpha=1, \beta>-1 \tag{1.3}\\
\max _{1 \leq v \leq n}\left|t_{v}^{\alpha * \beta}\right|, & 0<\alpha<1, \beta>-1
\end{array}\right.
$$

The series $\sum a_{n}$ is said to be summable $|C, \alpha * \beta ; \delta|_{k}, k \geq 1$ and $\delta \geq 0$, if (see [4])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{\delta k-1}\left|t_{n}^{\alpha * \beta}\right|^{k}<\infty \tag{1.4}
\end{equation*}
$$

If we take $\delta=0$, then $|C, \alpha * \beta ; \delta|_{k}$ summability reduces to $|C, \alpha * \beta|_{k}$ summability (see [6]). Also, if we take $\beta=0$ and $\delta=0$, then $|C, \alpha * \beta ; \delta|_{k}$ summability reduces to $|C, \alpha|_{k}$ summability (see [7]). If we set $\beta=0$, then we get $|C, \alpha ; \delta|_{k}$ summability (see [8]).

2. The known result

Theorem 1 ([4]). Let (X_{n}) be an almost increasing sequence and let there be sequences $\left(\eta_{n}\right)$ and $\left(\lambda_{n}\right)$ such that

$$
\begin{gather*}
\left|\Delta \lambda_{n}\right| \leq \eta_{n}, \tag{2.1}\\
\eta_{n} \rightarrow 0 \quad \text { as } n \rightarrow \infty, \tag{2.2}\\
\sum_{n=1}^{\infty} n\left|\Delta \eta_{n}\right| X_{n}<\infty, \tag{2.3}\\
\left|\lambda_{n}\right| X_{n}=O(1) \text { as } n \rightarrow \infty . \tag{2.4}
\end{gather*}
$$

If the condition

$$
\begin{equation*}
\sum_{n=1}^{m} n^{\delta k} \frac{\left(\theta_{n}^{\alpha * \beta}\right)^{k}}{n}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty \tag{2.5}
\end{equation*}
$$

satisfies, then the series $\sum a_{n} \lambda_{n}$ is summable $|C, \alpha * \beta ; \delta|_{k}, 0<\alpha \leq 1, \beta>-1$, $k \geq 1, \delta \geq 0$ and $(\alpha+\beta-\delta)>0$.

It should be noted that if we take $\beta=0$, then we get the result of Bor (see [2]).

3. The main result

The aim of this paper is to generalize Theorem 1 under weaker conditions to the $|C, \alpha * \beta ; \delta|_{k}$ summability by using a quasi- σ-power increasing sequence, which is a wider class of sequences, instead of an almost increasing sequence.
We shall prove the following main theorem.

Theorem 2. Let $\left(X_{n}\right)$ be a quasi- σ-power increasing sequence for some $\sigma(0<$ $\sigma<1)$ and let there be sequences $\left(\eta_{n}\right)$ and $\left(\lambda_{n}\right)$ such that conditions (2.1)-(2.4) of Theorem A are satisfied. If the condition

$$
\begin{equation*}
\sum_{n=1}^{m} n^{\delta k} \frac{\left(\theta_{n}^{\alpha * \beta}\right)^{k}}{n X_{n}^{k-1}}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty \tag{3.1}
\end{equation*}
$$

is satisfies, then the series $\sum a_{n} \lambda_{n}$ is summable $|C, \alpha * \beta ; \delta|_{k}$ for $0<\alpha \leq 1, \delta \geq 0$, $\beta>-1, k \geq 1$ and $(\alpha+\beta-\delta-1)>0$.

Remark 1. It should also be noted that condition (3.1) is the same as condition (2.5) when $\mathrm{k}=1$. When $k>1$, condition (3.1) is weaker than condition (2.5) but the converse is not true. As in [10] we can show that if (2.5) is satisfied, then we get that

$$
\sum_{n=1}^{m} n^{\delta k} \frac{\left(\theta_{n}^{\alpha * \beta}\right)^{k}}{n X_{n}^{k-1}}=O\left(\frac{1}{X_{1}^{k-1}}\right) \sum_{n=1}^{m} n^{\delta k} \frac{\left(\theta_{n}^{\alpha * \beta}\right)^{k}}{n}=O\left(X_{m}\right)
$$

Also if (3.1) is satisfied, then for $k>1$ we obtain that

$$
\begin{gathered}
\sum_{n=1}^{m} n^{\delta k} \frac{\left(\theta_{n}^{\alpha * \beta}\right)^{k}}{n}=\sum_{n=1}^{m} \frac{\left(\theta_{n}^{\alpha * \beta}\right)^{k}}{n X_{n}^{k-1}} X_{n}^{k-1}=O\left(X_{m}^{k-1}\right) \sum_{n=1}^{m} n^{\delta k} \frac{\left(\theta_{n}^{\alpha * \beta}\right)^{k}}{n X_{n}^{k-1}} \\
=O\left(X_{m}^{k}\right) \neq O\left(X_{m}\right)
\end{gathered}
$$

We need the following lemmas for the proof of our theorem.
Lemma 1 ([3]). If $0<\alpha \leq 1, \beta>-1$ and $1 \leq v \leq n$, then

$$
\begin{equation*}
\left|\sum_{p=0}^{v} A_{n-p}^{\alpha-1} A_{p}^{\beta} a_{p}\right| \leq \max _{1 \leq m \leq v}\left|\sum_{p=0}^{m} A_{m-p}^{\alpha-1} A_{p}^{\beta} a_{p}\right| \tag{3.2}
\end{equation*}
$$

Lemma 2 ([9])). Under the conditions on $\left(X_{n}\right),\left(\eta_{n}\right)$ and $\left(\lambda_{n}\right)$ as expressed in the statement of the theorem, we have the following ;

$$
\begin{align*}
& n X_{n} \eta_{n}=O(1) \tag{3.3}\\
& \sum_{n=1}^{\infty} \eta_{n} X_{n}<\infty \tag{3.4}
\end{align*}
$$

4. PROOF OF THE THEOREM

Let $\left(T_{n}^{\alpha * \beta}\right)$ be the nth $(C, \alpha * \beta)$ mean of the sequence $\left(n a_{n} \lambda_{n}\right)$. Then, by (1.1), we have

$$
T_{n}^{\alpha * \beta}=\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v} \lambda_{v}
$$

Applying Abel's transformation first and then using Lemma 1, we have that

$$
T_{n}^{\alpha * \beta}=\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1} \Delta \lambda_{v} \sum_{p=1}^{v} A_{n-p}^{\alpha-1} A_{p}^{\beta} p a_{p}+\frac{\lambda_{n}}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v}
$$

thus,

$$
\begin{aligned}
\left|T_{n}^{\alpha * \beta}\right| & \leq \frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1}\left|\Delta \lambda_{v}\right|\left|\sum_{p=1}^{v} A_{n-p}^{\alpha-1} A_{p}^{\beta} p a_{p}\right|+\frac{\left|\lambda_{n}\right|}{A_{n}^{\alpha+\beta}}\left|\sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v}\right| \\
& \leq \frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1} A_{v}^{(\alpha+\beta)} \theta_{v}^{\alpha * \beta}\left|\Delta \lambda_{v}\right|+\left|\lambda_{n}\right| \theta_{n}^{\alpha * \beta} \\
& =T_{n, 1}^{\alpha * \beta}+T_{n, 2}^{\alpha * \beta} .
\end{aligned}
$$

To complete the proof of the theorem, by Minkowski's inequality, it is sufficient to show that

$$
\sum_{n=1}^{\infty} n^{\delta k-1}\left|T_{n, r}^{\alpha * \beta}\right|^{k}<\infty, \quad \text { for } \quad r=1,2
$$

Whenever $k>1$, we can apply Hölder's inequality with indices k and k^{\prime}, where $\frac{1}{k}+\frac{1}{k^{\prime}}=1$, we get that

$$
\begin{aligned}
& \sum_{n=2}^{m+1} n^{\delta k-1}\left|T_{n, 1}^{\alpha * \beta}\right|^{k} \\
\leq & \sum_{n=2}^{m+1} n^{\delta k-1}\left(A_{n}^{\alpha+\beta}\right)^{-k}\left\{\sum_{v=1}^{n-1}\left(A_{v}^{\alpha+\beta}\right)^{k}\left(\theta_{v}^{\alpha * \beta}\right)^{k}\left|\Delta \lambda_{v}\right|^{k}\right\} \times\left\{\sum_{v=1}^{n-1} 1\right\}^{k-1} \\
= & O(1) \sum_{n=2}^{m+1} n^{\delta k-2+k-(\alpha+\beta) k}\left\{\sum_{v=1}^{n-1} v^{(\alpha+\beta) k}\left(\theta_{v}^{\alpha * \beta}\right)^{k} \eta_{v}^{k}\right\} \\
= & O(1) \sum_{v=1}^{m} v^{(\alpha+\beta) k}\left(\theta_{v}^{\alpha * \beta}\right)^{k} \eta_{v}^{k} \sum_{n=v+1}^{m+1} \frac{1}{n^{2+(\alpha+\beta-\delta-1) k}} \\
= & O(1) \sum_{v=1}^{m} v^{(\alpha+\beta) k}\left(\theta_{v}^{\alpha * \beta}\right)^{k} \eta_{v}^{k} \int_{v}^{\infty} \frac{d x}{x^{2+(\alpha+\beta-\delta-1) k}} \\
= & O(1) \sum_{v=1}^{m}\left(\theta_{v}^{\alpha * \beta}\right)^{k} \eta_{v} \eta_{v}^{k-1} v^{\delta k+k-1} \\
= & O(1) \sum_{v=1}^{m}\left(\theta_{v}^{\alpha * \beta}\right)^{k} \eta_{v}\left(\frac{1}{v X_{v}}\right)^{k-1} v^{\delta k+k-1}
\end{aligned}
$$

$$
\begin{aligned}
& =O(1) \sum_{v=1}^{m-1} \Delta\left(v \eta_{v}\right) \sum_{r=1}^{v} r^{\delta k} \frac{\left(\theta_{r}^{\alpha * \beta}\right)^{k}}{r X_{r}^{k-1}}+O(1) m \eta_{m} \sum_{v=1}^{m} v^{\delta k} \frac{\left(\theta_{v}^{\alpha * \beta}\right)^{k}}{v X_{v}^{k-1}} \\
& =O(1) \sum_{v=1}^{m-1}\left|\Delta\left(v \eta_{v}\right)\right| X_{v}+O(1) m \eta_{m} X_{m} \\
& =O(1) \sum_{v=1}^{m-1} v\left|\Delta \eta_{v}\right| X_{v}+O(1) \sum_{v=1}^{m-1} \eta_{v} X_{v}+O(1) m \eta_{m} X_{m} \\
& =O(1) \text { as } m \rightarrow \infty,
\end{aligned}
$$

by virtue of the hypotheses of the theorem and Lemma 2. Finally, we have that

$$
\begin{aligned}
\sum_{n=1}^{m} n^{\delta k-1}\left|T_{n, 2}^{\alpha * \beta}\right|^{k} & =\sum_{n=1}^{m}\left|\lambda_{n}\right|^{k-1}\left|\lambda_{n}\right| n^{\delta k} \frac{\left(\theta_{n}^{\alpha * \beta}\right)^{k}}{n} \\
& =O(1) \sum_{n=1}^{m-1} \Delta\left|\lambda_{n}\right| \sum_{v=1}^{n} v^{\delta k} \frac{\left(\theta_{v}^{\alpha * \beta}\right)^{k}}{v X_{v}^{k-1}} \\
& +O(1)\left|\lambda_{m}\right| \sum_{n=1}^{m} n^{\delta k} \frac{\left(\theta_{n}^{\alpha * \beta}\right)^{k}}{n X_{n}^{k-1}} \\
& =O(1) \sum_{n=1}^{m-1} \eta_{n} X_{n}+O(1)\left|\lambda_{m}\right| X_{m}=O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses of the theorem and Lemma 2. This completes the proof of the theorem.

Remark 2. If we take (X_{n}) as an almost increasing sequence, $\beta=0$ and $\delta=0$, then we obtain a theorem dealing with the $|C, \alpha|_{k}$ summability factors. Also, if we take $\delta=0$, then we get a new result concerning the $|C, \alpha * \beta|_{k}$ summability factors of infinite series.

Acknowledgement

The authors express their thanks to the referee for his/her valuable comments and suggestions.

References

[1] N. K. Bari and S. B. Stečkin, "Best approximation and differential properties of two conjugate functions," Trudy. Moskov. Mat. Obšč., vol. 5, no. 1, pp. 483-522, 1956.
[2] H. Bor, "An application of almost increasing sequences," Math. Inequal. Appl., vol. 5, no. 1, pp. 79-83, 2002.
[3] H. Bor, "On a new application of quasi power increasing sequences," Proc. Est. Acad. Sci., vol. 57, no. 4, pp. 205-209, 2008.
[4] H. Bor, "An application of almost increasing sequences," Appl. Math. Lett., vol. 24, no. 3, pp. 298-301, 2011.
[5] D. Borwein, "Theorems on some methods of summability"" Quart. J. Math. Oxford Ser.(2), vol. 9, no. 1, pp. 310-316, 1958.
[6] G. Das, "A tauberian theorem for absolute summability," Proc. Camb. Phil. Soc., vol. 67, no. 2, pp. 321-326, 1970.
[7] T. M. Flett, "On an extension of absolute summability and some theorems of littlewood and paley," Proc. London Math. Soc., vol. 7, no. 1, pp. 113-141, 1957.
[8] T. M. Flett, "Some more theorems concerning the absolute summability of fourier series," Proc. London Math. Soc., vol. 8, no. 3, pp. 357-387, 1958.
[9] L. Leindler, "A new application of quasi power increasing sequences," Publ. Math. Debrecen, vol. 58, no. 4, pp. 791-796, 2001.
[10] W. T. Sulaiman, "A note on $|\mathrm{A}|_{k}$ summability factors of infinite series," Appl. Math. Comput., vol. 216, no. 9, pp. 2645-2648, 2010.

Authors' addresses

Hüseyin Bor

P. O. Box 121, 06502 Bahçelievler, Ankara Turkey

E-mail address: hbor33@gmail.com

Dansheng Yu

Department of Mathematics, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
E-mail address: dsyu_math@163.com

Ping Zhou

Department of Mathematics, Statistics and Computer Science, St. Francis Xavier University, Antigonish, Nova Scotia, B2G 2W5, Canada

E-mail address: pzhou@stfx.ca

[^0]: The second author is supported by NSF of China (10901044), and Program for Excellent Young Teachers in HZNU.

 The third author is supported by NSERC of Canada.

