
Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 15 (2014), No 2, pp. 603-614 DOI: 10.18514/MMN.2014.1074

Controllability of nonautonomous boundary

integrodi�erential Cauchy problems

Mohammed Moussi



Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 15 (2014), No. 2, pp. 603–614

CONTROLLABILITY OF NONAUTONOMOUS BOUNDARY
INTEGRODIFFERENTIAL CAUCHY PROBLEMS

M. MOUSSI

Received 05 December, 2013
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1. INTRODUCTION

We consider in the present paper the following nonlinear boundary integrodiffer-
ential Cauchy problem:8̂̂̂<̂

ˆ̂:
d
dt
x.t/D Amax.t/x.t/; 0� � � t � T;

L.t/x.t/D f

�
t;x.t/;

Z t

�

g.t;�;x.�//d�

�
; 0� � � t � T;

x.�/D x0;

(1.1)

where Amax.t/ are closed operators on a Banach space X endowed with a maximal
domain D.Amax.t//, L.t/ WD.Amax.t//! @X with a ‘boundary Banach space’ @X ,
a function f W RC�X �X ! @X and a function g W RC�RC�X !X .

In recent years, such abstract integrodifferential equations have attracted the in-
terest of many authors. Questions as existence of solutions, perturbations, control-
lability and the asymptotic behavior are the subject of many works. We cite among
others [1, 3, 4, 6–8, 10–12, 14–17, 20–23] and the references therein.

Our aim is to study the wellposedness of (1.1) and to present a controllability
result.

In [2] we have studied the boundary Cauchy problem in the case that the second
equation in (1.1) is replaced by an equation L.t/x.t/D f .t/. For this type of equa-
tion we established mild solutions given by a variation of constants formula. In this
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work, we firstly extend this to a variation of constants formula for problem (1.1) using
the contraction fixed point theorem, see Section 2.

In Section 3 we present sufficient conditions to obtain exact controllability of the
following boundary integrodifferential control system:8̂̂̂<̂
ˆ̂:

d
dt
x.t/D Amax.t/x.t/; t 2 Œ0;T �;

L.t/x.t/D f

�
t;x.t/;

Z t

�

g.t;�;x.�//d�

�
CB.t/u.t/ t 2 Œ0;T �;

x.0/D x0:

(1.2)

Here the input function u.�/ takes values in a Banach space U (the control space)
and the nonautonomous control operator B.t/; t 2 Œ0;T �; are bounded from U into
@X .

To illustrate these assumptions and our results, we present in Section 4 a popula-
tion equation as an example.

2. MILD SOLUTION OF NONLINEAR BOUNDARY INTEGRODIFFERENTIAL
EQUATION

Consider the following nonlinear integrodifferential boundary Cauchy problem8̂̂̂<̂
ˆ̂:

d
dt
x.t/D Amax.t/x.t/; 0� � � t � T;

L.t/x.t/D f

�
t;x.t/;

Z t

�

g.t;�;x.�//d�

�
; � � t � T;

x.�/D x0 2X;

(2.1)

where X is a Banach space, the operators Amax.t/ 2L.D;X/ and L.t/ 2L.D;@X/

for t � 0; with D and @X Banach spaces such that D is dense and continuously
embedded in X .

The operators Amax.t/ and L.t/ are supposed to satisfy the following hypotheses:
(H1) There are positive constants C1; C2 such that

C1kxkD � kxkCkAmax.t/xk � C2kxkD

for all x 2D and t � 0;
(H2) for each x 2D, the mapping RC 3 t 7!Amax.t/x 2X is continuously differ-

entiable;
(H3) the operators L.t/ WD! @X;t � 0; are surjective;
(H4) for each x 2D, the mapping RC 3 t 7! L.t/x 2 @X is continuously differ-

entiable;
(H5) there exist constants  > 0 and ! 2 R such that

jjL.t/xjj@X � 
�1.��!/jjxjjX ;

for x 2 ker.��Amax.t//;� > ! and t � 0;
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(H6) the family of operators .A.t//0�t�T , with A.t/ WD Amax.t/jkerL.t/, is stable,
that is, there are constantsM � 1 and ! 2 R such that .!;1/� �.A.t// (the
resolvent set of A.t/) 8 0� t � T and kY

iD1

R.�;A.ti //
�M.��!/�k

for � > ! and any finite sequence 0� t1 � � � � � tk � T , and
R.�;A.t// WD .��A.t//�1.

In the following lemma we cite consequences of the above assumptions from [9,
Lemma 1.2] which will be needed below.

Lemma 1. The restriction L.t/jker.��Amax.t// is an isomorphism from
ker.��Amax.t// into @X and its inverse L�;t WD ŒL.t/jker.��Amax.t//�

�1
W @X !

ker.��Amax.t// satisfies

kL�;tk � .��!/
�1 for � > !:

Recall that in case f � 0 the problem (2.1) is reduced to the linear boundary
Cauchy problem 8̂<̂

:
d
dt
x.t/D Amax.t/x.t/; � � t � T;

L.t/x.t/D 0; � � t � T;

x.�/D x0

(2.2)

which was studied by Kellermann [13] and Nguyen Lan [18]. In particular, the au-
thors proved that under assumptions (H1)–(H6) the problem (2.2) has a unique solu-
tion given by an evolution family .U.t;�//��t�T satisfying

kU.t;�/k �Me!.t��/; 8 � � t � T; (2.3)

where M and ! are the stability constants of A.t/.
In this section we study the existence of mild solutions of the nonlinear problem

(2.1) and assume for the nonlinear part:
(H7) The nonlinear function f W Œ0;T ��X �X ! @X is continuous and there

exists a positive constant f̀ such that one has the following global Lipschitz estimate

kf .t;x;y/�f .t; Nx; Ny/k � f̀ .kx� NxkCky� Nyk/

for all x;y; Nx; Ny 2X and t 2 Œ0;T �;
(H8) the nonlinear function g W �T �X ! X is continuous and there exists a

positive constant `g such that one has the global Lipschitz estimate

kg.t; s;x/�g.t; s; Nx/k � `gkx� Nxk

for all x; Nx 2X and .t; s/ 2�T : Here �T is defined by:

�T WD f.t; s/ W 0� s � t � T g :
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Under the assumptions (H1)–(H8) and using the usual contraction argument we
shall show the existence of a unique mild solution given by the following definition.

Definition 1. A continuous function x.�/ W Œ�;T �! X is called mild solution of
the problem (2.1) if it satisfies the variation of constants formula

x.t/D U.t;�/x0C lim
�!1

Z t

�

U.t;�/�L�f

�
�;x.�/;

Z �

�

g.�;˛;x.˛//d˛

�
d�

(2.4)
for all � � t � T .

Remark 1. The limit in equation (2.4) is well-defined, for details we refer the
reader to [2].

In the following theorem we prove the existence of a mild solution.

Theorem 1. Let the assumptions (H1)-(H8) be satisfied. Then for every x0 2 X
and � � 0 the boundary integrodifferential equation (2.1) has a unique mild solution
on Œ�;T �.

Proof. Let x0 2 X be fixed. Let Y WD C.Œ0;T �;X/ be the Banach space of all
continuous functions from Œ0;T � into X . Define an operator

.˚v/.t/ WDU.t;�/x0C lim
�!1

Z t

�

U.t;�/�L�;�f

�
�;v.�/;

Z �

�

g.�;˛;v.˛//d˛

�
d�

for all � � t � T and v 2 Y . It is clear that ˚ maps Y into itself.
Now for v1;v2 in Y we have

k.˚v1/.t/� .˚v2/.t/k

�

 lim
�!1

Z t

�

U.t;�/�L�;�f

�
�;v1.�/;

Z �

�

g.�;˛;v1.˛//d˛

�
� f

�
�;v2.�/;

Z �

�

g.�;˛;v2.˛//d˛

�
d�

 :
Using (2.3), assumption (H7) and assumption (H8) we obtain

k.˚v1/.t/� .˚v2/.t/k �

Z t

�

Me!.t��/ f̀

�
kv1.�/�v2.�/k

C

Z �

�

g.�;˛;v1.˛//�g.�;˛;v2.˛//d˛

� d�
�

Z t

�

Me!.t��/ f̀
�
kv1�v2kC`g.� � �/kv1�v2k

�
d�

� e!.t��/M.t � �/ f̀
�
kv1�v2kC`g.t � �/kv1�v2k

�
� e!.t��/M f̀ .t � �/.1C`gT /kv1�v2k:
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� e!T M f̀ T .1C`gT /kv1�v2k:

By induction, one obtains

k˚nv1�˚
nv2k � e

!T .M f̀ T .1C`gT //
n

nŠ
kv1�v2k

which implies that, for n sufficiently large, ˚n is a contraction map on the Banach
space Y . Hence by the Banach fixed point theorem there exists a unique function
v 2 Y satisfying ˚v D v which is the mild solution of the problem (2.1). �

3. BOUNDARY INTERGRODIFFERENTIAL CONTROLLED SYSTEM

In this section we consider the following boundary control system8̂̂̂<̂
ˆ̂:

d
dt
x.t/D Amax.t/x.t/; t 2 Œ0;T �;

L.t/x.t/D f

�
t;x.t/;

Z t

0

g.t;�;x.�//d�

�
CB.t/u.t/ t 2 Œ0;T �;

x.0/D x0:

(3.1)

Here Amax.t/;L.t/;f .t; �; �/;g.t; �; �/ satisfy the hypotheses (H1)-H(8), the control
function u.�/ takes values in a Banach space U and B.t/ are bounded operators from
U into @X . As in the previous section, one can show that the control system (3.1)
admits a unique mild solution x.�/ given by

x.t/D U.t;0/x0C lim
�!1

Z t

0

U.t;�/�L� (3.2)

�

�
f

�
�;x.�/;

Z �

0

g.�;˛;x.˛//d˛

�
CB.�/u.�/

�
d�

for t � 0 and x0 2X .
Our aim in this section is to present sufficient conditions to obtain the exact con-

trollability of the controlled system (3.1). We first recall the following definition.

Definition 2. The control system (3.1) is said to be exactly controllable on the
interval Œ0;T � for some T > 0, if for all x0, y 2 X , there exists a control u 2
L2.Œ0;T �;U / such that the mild solution x.t/ of (3.1) corresponding to u satisfies
x.T /D y.

In order to reach the goal of this section, we further assume the following addi-
tional hypothesis.

(H9) The operator W W L2.Œ0;T �;U / �!X defined by

Wu WD lim
�!1

Z T

0

U.t;�/�L�B.�/u.�/ d� (3.3)
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has a pseudo inverse operatorW �1 which takes values inL2.Œ0;T �;U /=ker.W / and
there exist positive constants k1;k2 such that

kB.�/k � k1 and kW �1k � k2: (3.4)

Here, ker.W / denotes the kernel of the operator W .

Remark 2. For the construction of W and W �1 we refer to the paper [19].

Our overall approach is the usual fixed point method. Therefore, define the oper-
ator F W C.Œ0;T �;X/ �! C.Œ0;T �;X/ by

.F x/.t/ WD U.t;0/x0C lim
�!1

Z t

0

U.t;�/�L� (3.5)

�

�
f

�
�;x.�/;

Z �

0

g.�;˛;x.˛//d˛

�
CB.�/u.�/

�
d�:

Here the control u.�/ is chosen for x.�/ 2 C.Œ0;T �;X/ and y 2X as

u.t/ WDW �1

"
y�U.T;0/x0� lim

�!1

Z T

0

U.t;�/�L� (3.6)

� f

�
�;x.�/;

Z �

0

g.�;˛;x.˛//d˛

�
d�

�
.t/:

We have the following proposition.

Proposition 1. The mappingF is a contraction from the Banach spaceC.Œ0;T �;X/
into itself provided that .1CT `g/.MT f̀ C

2M 2k1k2 f̀ T / < 1.

Proof. Let x1;x2 2 C.Œ0;T �;X/ and choose control functions u1;u2 respectively.
We have

.F x1/.t/� .F x2/.t/D lim
�!1

Z t

0

U.t;�/�L�

�
f

�
�;x1.�/;

Z �

0

g.�;˛;x1.˛//d˛

�
�f

�
�;x2.�/;

Z �

0

g.�;˛;x2.˛//d˛

�
CB.�/.u1.�/�u2.�//

�
d�:

For simplicity, we putM WD sup
.t;s/2�T

U.t;s/. Then using assumptions (H7), (H8) and

(H9) we obtain

k.F x1/.t/� .F x2/.t/k � M

Z t

0

f ��;x1.�/;Z �

0

g.�;˛;x1.˛//d˛

�
� f

�
�;x2.�/;

Z �

0

g.�;˛;x2.˛//d˛

� d�
CMkB.�/kkW �1kM
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�

Z T

0

f �˛;x1.˛/;Z ˛

0

g.˛;�;x1.�//d�

�
�f

�
˛;x2.˛/;

Z ˛

0

g.˛;�;x2.�//d�

�
d˛


� M

Z t

0
f̀

�
kx1.�/�x2.�/k

C

Z �

0

g.�;�;x1.�//�g.�;�;x2.˛//d�

�d�
CMkB.�/kkW �1kM

Z T

0
f̀

 
kx1.˛/�x2.˛/k

C

Z ˛

0

g.˛;�;x1.�//�g.˛;�;x2.˛//d�

� d˛
� MT f̀

�
kx1.�/�x2.�/kCT `gkx1.�/�x2.�/k

�
CMkB.�/kkW �1kMT f̀ .kx1.�/�x2.�/k/

CMkB.�/kkW �1kMT f̀

�
T `gkx1.�/�x2.�/k

�
� MT f̀ .1CT `g/kx1.�/�x2.�/k

C2M 2k1k2 f̀ T .1CT `g/kx1.�/�x2.�/k

D .1CT `g/.MT f̀ C
2M 2k1k2 f̀ T /kx1.�/�x2.�/k:

Since, by hypotheses, .1CT `g/.MT f̀ C 
2M 2k1k2 f̀ T / < 1, then F is a con-

traction mapping. �

We are now ready to state the main result of this section.

Theorem 2. Assume that the hypotheses (H1)-(H9) are satisfied and suppose that
.1C T `g/.MT f̀ C 

2M 2k1k2 f̀ T / < 1 for some T > 0. Then the boundary
integrodifferential control system (3.1) is exactly controllable on the interval Œ0;T �.

Proof. Let x0;y 2 X . From the above proposition we obtain that the operator F
defined in (3.5) has a fixed point x.�/ which is a mild solution of the system (3.1).
Furthermore, for x.�/ choose a control u.�/ as in (3.6). Then one can see that x.�/
satisfies x.T /D y, giving the exact controllability. �

4. APPLICATION

To illustrate the previous general assumptions and abstract results we consider in
this section the following controlled population equation.
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8̂̂̂̂
<̂
ˆ̂̂:

@
@t
v.t;a/D�

@

@a
v.t;a/��.t;a/v.t;a/; t 2 Œ0;T �;a � 0;

v.t;0/D

Z t

0

Z 1
0

K.t;�;v.t;a/ dad�C

Z 1
0

ˇ.t;a;v.t;a// daCb.t/u.t/;

u.0;a/D '.a/; a � 0:
(4.1)

Here the function v.t;a/ represents the density of individuals of the population of
age a at time t . The functions � and ˇ correspond to the aging and the birth rates,
respectively. We note that this equation is a special case of the general population
equation investigated in [5].

We impose the following conditions:
(i) �2C 1.Œ0;T �;L1.RC// and there exists a constant �> 0 such that�.t;a/ >
� for all t � 0 and a:e:a 2 RC.

(ii) ˇ is a positive and continuous function defined on Œ0;T ��RC�R. Moreover,
there exists a constant ˛ > 0 such that

jˇ.t;a;x/�ˇ.t;a; Nx/j � ˛jx� Nxj (4.2)

for all t 2 Œ0;T �I x; Nx 2 R and a.e. a 2 RC:
(iii) b.�/ 2 L2.0;T / and ' 2 L1.RC/.
(iv) K is a continuous function from �T �R into R and there exists a constant

k > 0 such that

jK.t;�;x/�K.t;�; Nx/j � kjx� Nxj (4.3)

for all .t; �/ 2�T and x; Nx 2 R:

We first write the system (4.1) as a boundary integrodifferential controlled system
of the form (3.1) satisfying the hypotheses (H1)-(H6). For this purpose, we define
the Banach spaces X WD L1.RC/, U D @X WD R and D WDW 1;1.RC/.

For each t � 0 we define the operator Amax.t/ WX !X by

.Amax.t/'/.a/D�
@

@a
'.a/��.t;a/'.a/ (4.4)

with domain D.Amax.t//DD equipped with the norm

k'kD WD k'kX Ck'
0

kX

and the operator L.t/ WD �! @X by

L.t/' D '.0/ (4.5)

for all ' 2D.
The functions g and f are given by

g W�T �X �!X;

g.t;�;'/.a/DK.t;�;'.a// (4.6)
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for all .t; �/ 2�T and ' 2X ;

f W Œ0;T ��X �X �! @X

f .t;'1;'2/D

Z 1
0

'2.a/da C

Z 1
0

ˇ.t;a;'1.a//da (4.7)

for all t 2 Œ0;T � and '1;'2 2X .

Remark 3. Using the Fubini’s theorem, one can see that

f

�
t;';

Z t

0

g.t;�;'/d�

�
D

Z t

0

Z 1
0

K.t;�;'.a/ dad�C

Z 1
0

ˇ.t;a;'.a//da

for all ' 2X .

The system (4.1) is then a concrete case of the abstract boundary integrodifferential
system (3.1).

Let us now check the assumptions (H1)–(H6).
Verification of (H1): Set �1 WD sup

t2Œ0;T �

k�.t; �/k1 and let ' 2 D be arbitrary.

From the definition of k � kD , we have

k'kD D

Z 1
0

j'.a/jdaC

Z 1
0

j'0.a/jda

�

Z 1
0

j'.a/jdaC

Z 1
0

j'0.a/��.t;a/'.a/jdaC

Z 1
0

j�.t;a/'.a/jda

� k'kX CkAmax.t/'kX C

Z C1
0

j�.t;a/'.a/jda

� .1C�1/.k'kX CkAmax.t/'kX /:

On the other hand,

k'kX CkAmax.t/'kX D k'kX Ck'
0

��.t; �/'kX

� .1C�1/k'kD:

This shows the assumption (H1) with C1 D .1C�1/�1 and C2 D .1C�1/:
Verification of (H2): From (4.4) and the assumptions on �, we derive that the map

t 7! Amax.t/' is continuously differentiable for each fixed ' 2D.
Verification of (H3): Since '.0/D

RC1
0

@
@a
'.a/da for all ' 2D, it follows that

jL.t/'j D j'.0/j

�

Z C1
0

ˇ̌̌̌
@

@a
'.a/

ˇ̌̌̌
da

� k'kD:
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This shows the boundedness of L.t/. To prove the surjectivity of L.t/, let x 2 @X be
arbitrary. Define

'.a/ WD e�ax for all a 2 RC:

We have ' 2D. Furthermore, one can easily see that L.t/' D x and therefore L.t/
is surjective.

Verification of (H4): From (4.5), we see that L.t/ is independent of t . Hence the
mapping from Œ0;T �! @X;t 7! L.t/' is continuously differentiable for each fixed
' in D.

Verification of (H5): Let � > ��; and ' 2 ker.��Amax.t//, i.e,

�'.�/C
@

@a
'.�/C�.t; �/'.�/D 0:

We have

jL.t/'j D j'.0/j

D

Z C1
0

ˇ̌̌̌
@

@a
'.a/

ˇ̌̌̌
da

D

Z C1
0

.�C�.t;a//j'.a/jda:

� .�C�/j'jX :

Then (H5) is satisfied with ! D�� and  D 1.
Verification of (H6): Let � > 0. One can show that the resolvent operator of

A.t/ WD Amax.t/jkerL.t/ is given by

R.�;A.t//' D

Z �
0

e�
R �
� �C�.t;�/d�'.�/d� 8' 2X:

Then for � > �� we have

kR.�;A.t//'k D

Z C1
0

j.R.�;A.t//'/.a/jda

D

Z C1
0

ˇ̌̌̌Z a

0

e�
R a
� �C�.t;�/d�'.�/d�

ˇ̌̌̌
da

�

Z 1
0

Z a

0

e�
R a
� �C�.t;�/d� j'.�/jd� da

D

Z C1
0

j'.�/j

Z C1
�

e�
R a
� �C�.t;�/d� dad�

�

Z C1
0

j'.�/j

Z C1
�

e�
R a
� .�C�/d� dad�

�
1

�C�

Z C1
0

j'.�/jd�
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D
1

�C�
k'k:

Hence, we obtain that .A.t//t2Œ0;T � is stable with stability constants M D 1 and
! D��. �

We conclude this section by the following controllability result of the controlled
population equation (4.1).

Proposition 2. Under the above assumptions and if we assume that

.1CT k/.T .1C˛/Ckb.�/kkW �1k.1C˛/T / < 1;

then the controlled population problem (4.1) is exactly controllable.

Proof. From (4.7) and (4.2) one can verify that the function f satisfies (H7) with
constant .1C˛/. Using (4.6) and (4.3), one can also verify that the function g satisfies
(H8) with constant k. The result is then a direct application of Theorem 2. �
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