Miskolc Mathematical Notes
HU e-ISSN 1787-2413
Vol. 15 (2014), No 2, pp. 481-488

Natural density of relative coprime polynomials in $\mathbb{F}_{q}[x]$

Xiangqian Guo, Fengdan Hou, and Xuewen Liu

NATURAL DENSITY OF RELATIVE COPRIME POLYNOMIALS IN $\mathbb{F}_{q}[x]$

XIANGQIAN GUO, FENGDAN HOU, AND XUEWEN LIU
Received 06 December, 2013

Abstract

Let $\mathbb{F}_{q}[x]$ be the polynomial ring over the finite field \mathbb{F}_{q} containing q elements. We compute the probability that n polynomials in $\mathbb{F}_{q}[x]$ are k-wise relatively coprime, using the concept of natural density. As a special case, we get the probability that n polynomials in $\mathbb{F}_{q}[x]$ are pairwise coprime.

2010 Mathematics Subject Classification: 11B05; 11T06; 11C08; 60B15.
Keywords: natural density, k-wise relatively coprime, irreducible polynomial, q-zeta function

1. Introduction and main results

Let \mathbb{N} be the set of all positive integers. Dirichlet [2] first discovered an interesting result that relates the probability that two randomly chosen integers are relative prime to the Riemann's zeta function, and the probability turns out to be

$$
\lim _{N \rightarrow \infty} \frac{\left|\left\{(m, n) \in \mathbb{N}^{2} \mid 1 \leq m, n \leq N, \operatorname{gcd}(m, n)=1\right\}\right|}{N^{2}}=\zeta^{-1}(2)=\frac{6}{\pi^{2}}
$$

where $\operatorname{gcd}(m, n)$ denotes the greatest common divisor of m and n, and $\zeta(s)$ is the Riemann's zeta function. This result was generalized to the case of several integers, that is, the probability of n randomly chosen integers to be coprime is given by

$$
\begin{align*}
\lim _{N \rightarrow \infty} \frac{\left|\left\{\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{N}^{n} \mid 1 \leq m_{1}, \ldots, m_{n} \leq N, \operatorname{gcd}\left(m_{1}, \ldots, m_{n}\right)=1\right\}\right|}{N^{n}} \\
=\zeta^{-1}(n) . \tag{1.1}
\end{align*}
$$

In [7], Kubota and Sugita gave a rigorous probabilistic interpretation to Dirichlet's theorem. Other probability problems over integers were also considered: L. Tóth [12] obtained that the probability of n positive integers to be pairwise coprime is $\prod_{p}(1-$ $\left.\frac{1}{p}\right)^{n-1}\left(1+\frac{n-1}{p}\right)$, where p is a prime number; Hu [4] showed that the probability of n positive integers to be k-wise relatively prime is $\prod_{p}\left(\sum_{m=0}^{k-1}\binom{n}{m}\left(\frac{1}{p}\right)^{m}\left(1-\frac{1}{p}\right)^{n-m}\right)$. For deeper links between probability theory and number theory, please refer to Tenenbaum [11], Kubilius [6] and Kac [5].

This notation of probability with respect to the uniform distribution over infinite sets $\mathbb{N}^{n}, n \in \mathbb{N}$, is also known as natural density, which can be defined for any subset A as

$$
D(A)=\lim _{N \rightarrow \infty} \frac{\left|A \cap\{1,2, \cdots, N\}^{n}\right|}{N^{n}}
$$

provided the limit exists, where $|\cdot|$ denotes the cardinality of the corresponding set. In [8], Maze, Rosenthal and Wagner computed the natural density of the set of $k \times n$ unimodular integer matrices for any positive integers $k \leq n$, where a $k \times n$ integer matrix is called unimodular if it can be extended to an invertible $n \times n$ matrix over the integers. Recently, Guo and Yang [3] generalized this result to the matrices of polynomials over finite fields.

Let \mathbb{F}_{q} be the finite field consisting of q elements, and $\mathbb{F}_{q}[x]$ be the polynomial ring over \mathbb{F}_{q}, where q is a prime power. To define the concept of natural density for certain subsets, we need to enumerate polynomials in $\mathbb{F}_{q}[x]$. For convenience, denote the elements in \mathbb{F}_{q} by $a_{0}=0, a_{1}, \cdots, a_{q-1}$. Let Σ be the set of all vectors $\alpha=\left(a_{m_{0}}, a_{m_{1}}, \cdots\right)$ with $m_{i} \in\{0,1, \cdots, q-1\}$ and $m_{i}=0$ for sufficiently large i. Then there is a one-to-one map

$$
\chi: \Sigma \rightarrow \mathbb{Z}_{+}=\mathbb{N} \cup\{0\}, \quad \chi\left(a_{m_{0}}, a_{m_{1}}, \cdots\right)=\sum_{j=0}^{\infty} m_{i} q^{i}
$$

For all $j \in \mathbb{Z}_{+}$, we set

$$
f_{j}(x)=\sum_{i=0}^{\infty} a_{m_{i}} x^{i}, \text { with } \chi\left(a_{m_{0}}, a_{m_{1}}, \cdots\right)=j
$$

Then $\mathbb{F}_{q}[x]=\left\{f_{j}(x) \mid j \in \mathbb{Z}_{+}\right\}$.
From now on, we fix a prime power q and a positive integer $n \geq 2$. Denote $\mathcal{M}=$ $\left(\mathbb{F}_{q}[x]\right)^{n}$ for convenience and let \mathcal{M}_{N} be the subset of \mathcal{M} consisting of vectors with entries taken from $\left\{f_{0}, f_{1}, \cdots, f_{N}\right\}$. For any subset $S \subseteq \mathcal{M}$, we define the natural density of S in \mathcal{M} as

$$
D(S)=\lim _{N \rightarrow \infty} \frac{\left|S \cap \mathcal{M}_{N}\right|}{\left|\mathcal{M}_{N}\right|}
$$

Using a probabilistic method, Sugita and Takanobu [10] determined the probability of two polynomials over \mathbb{F}_{p} to be coprime for a prime p. Recently, Morrison [9], Benjamin and Bennett [1] computed the probability that n polynomials over \mathbb{F}_{q} are coprime, which is $1-q^{1-n}$. They used natural density methods and Euclidean algorithm respectively. Then it is natural to consider the questions: what is the probability that n polynomials in $\mathbb{E}_{q}[x]$ are pairwise coprime? Generally, what is the probability that n polynomials in $\mathbb{F}_{q}[x]$ are k-wise relatively coprime?

Our main purpose in this paper is to compute the probabilities mentioned above. More precisely, we determined the natural density of the set of n-dimensional vectors
over $\mathbb{F}_{q}[x]$ whose entries are k-pairwise coprime, for any positive integer $k \leq n$. Our methods are conceptional and the main idea comes from [8] and [3].

Theorem 1. Let k be a positive integer and $k \leq n$. Denote

$$
G=\left\{\left(g_{1}, \cdots, g_{n}\right) \in \mathcal{M} \mid \operatorname{gcd}\left(g_{i_{1}}, \cdots, g_{i_{k}}\right)=1, \forall 1 \leq i_{1}<\cdots<i_{k} \leq n\right\}
$$

Then the natural density of G is

$$
\begin{equation*}
\prod_{m=1}^{\infty}\left(\sum_{i=0}^{k-1}\binom{n}{i}\left(\frac{1}{q^{m}}\right)^{i}\left(1-\frac{1}{q^{m}}\right)^{n-i}\right)^{\phi(m)} \tag{1.2}
\end{equation*}
$$

where $\phi(m)$ is the number of monic irreducible polynomials with degree m in $\mathbb{F}_{q}[x]$.
Remark 1. The result of Theorem 1 can be understood as follows: the probability that n polynomials in $\mathbb{F}_{q}[x]$ are k-wise relatively coprime is

$$
\prod_{m=1}^{\infty}\left(\sum_{i=0}^{k-1}\binom{n}{i}\left(\frac{1}{q^{m}}\right)^{i}\left(1-\frac{1}{q^{m}}\right)^{n-i}\right)^{\phi(m)}
$$

Take $k=n$, we get that the probability of n polynomials in $\mathbb{F}_{q}[x]$ being coprime is the $\prod_{m=1}^{\infty}\left(1-\frac{1}{q^{m n}}\right)^{\phi(m)}$. To see what this means, we introduce the following q-zeta function

$$
\begin{equation*}
\zeta_{q}(n):=\prod_{f}\left(1-\frac{1}{q^{n \operatorname{deg}(f)}}\right)^{-1}=\prod_{m=1}^{\infty}\left(1-\frac{1}{q^{n m}}\right)^{-\phi(m)} \tag{1.3}
\end{equation*}
$$

where f goes through all monic irreducible polynomials (not including the constant polynomials, as usual) in $\mathbb{F}_{q}[x]$. Recall the following interesting equation

$$
\begin{equation*}
\prod_{f}\left(1-t^{\operatorname{deg}(f)}\right)^{-1}=\sum_{l=0}^{\infty} q^{l} t^{l}=\frac{1}{1-q t} \tag{1.4}
\end{equation*}
$$

For more details, see [9] and [3]. Putting $t=q^{-n}$ in (1.4), we get

$$
\begin{equation*}
\zeta_{q}^{-1}(n)=1-\frac{1}{q^{n-1}} \tag{1.5}
\end{equation*}
$$

Combining the equations (1.3) and (1.5), we get that the probability of n polynomials in $\mathbb{F}_{q}[x]$ being coprime is $\zeta_{q}^{-1}(n)=1-\frac{1}{q^{n-1}}$, which is just one of the main results of [9]. In particular, when $n=2$, the probability that 2 polynomials in $\mathbb{F}_{q}[x]$ are coprime is $1-\frac{1}{q}$, which is one of the main results of [1].

Taking $k=2$ in Theorem 1, we have the following corollary.

Corollary 1. Denote $E=\left\{\left(g_{1}, \cdots, g_{n}\right) \in \mathcal{M} \mid \operatorname{gcd}\left(g_{i}, g_{j}\right)=1, \forall 1 \leq i<j \leq n\right\}$. Then

$$
\begin{equation*}
D(E)=\prod_{m=1}^{\infty}\left(\left(1-\frac{1}{q^{m}}\right)^{n-1}\left(1+\frac{n-1}{q^{m}}\right)\right)^{\phi(m)} \tag{1.6}
\end{equation*}
$$

Similarly, the value in (1.6) can be interpreted as the probability that n polynomials in $\mathbb{F}_{q}[x]$ are pairwise coprime.

2. RESULTS

In this section, we will give the proof of Theorem 1. Before this, we need some preparations.

Fix a positive integer $k \leq n$. Let T be a finite set of monic irreducible polynomials in $\mathbb{F}_{q}[x]$, denote

$$
\begin{gathered}
G_{T}=\left\{\left(g_{1}, \cdots, g_{n}\right) \in \mathcal{M} \mid f \nmid \operatorname{gcd}\left(g_{i_{1}}, \cdots, g_{i_{k}}\right),\right. \\
\left.\forall f \in T, 1 \leq i_{1}<\cdots<i_{k} \leq n\right\}
\end{gathered}
$$

Clearly we have $G=\bigcap_{T} G_{T}$. Denote by $\langle f\rangle$ the ideal generated by $f \in \mathbb{F}_{q}[x]$.
Lemma 1. Let G_{T} be defined as above, then we have

$$
D\left(G_{T}\right)=\prod_{f \in T} \sum_{i=0}^{k-1}\binom{n}{i}\left(\frac{1}{q^{\operatorname{deg}(f)}}\right)^{i}\left(1-\frac{1}{q^{\operatorname{deg}(f)}}\right)^{n-i}
$$

Proof. Denote $f^{(T)}=\prod_{f \in T} f$ and $d_{T}=\operatorname{deg}\left(f^{(T)}\right)$. Given $g \in \mathbb{F}_{q}[x]$ let \bar{g} be its image in $\mathbb{F}_{q}[x] /\left\langle f^{(T)}\right\rangle$. Then for any positive integer N, we have the canonical maps

$$
\pi: \mathcal{M}_{N} \rightarrow\left(\mathbb{F}_{q}[x] /\left\langle f^{(T)}\right\rangle\right)^{n}, \quad\left(g_{1}, \cdots, g_{n}\right) \mapsto\left(\bar{g}_{1}, \cdots, \bar{g}_{n}\right)
$$

and

$$
\varphi:\left(\mathbb{F}_{q}[x] /\left\langle f^{(T)}\right\rangle\right)^{n} \rightarrow\left(\prod_{f \in T} \mathbb{F}_{q}[x] /\langle f\rangle\right)^{n} \rightarrow \prod_{f \in T}\left(\mathbb{F}_{q}[x] /\langle f\rangle\right)^{n}
$$

where the first part of φ is induced from the isomorphism

$$
\mathbb{F}_{q}[x] /\left\langle f^{(T)}\right\rangle \cong \prod_{f \in T} \mathbb{F}_{q}[x] /\langle f\rangle
$$

a consequence of the Chinese Remainder Theorem and the second part of φ is an obvious isomorphism of vector spaces.

First suppose that $N=m q^{d_{T}}-1$ for some $m \in \mathbb{N}$. Then it is easy to see

$$
\left\{f_{l}(x) \mid 0 \leq l \leq N\right\}=\left\{f_{s}(x) x^{d_{T}}+f_{t}(x) \mid 0 \leq s \leq m-1,0 \leq t \leq q^{d_{T}}-1\right\}
$$

For any fixed $0 \leq s \leq m-1$, the following projection is one-to-one:

$$
\left\{f_{s}(x) x^{d_{T}}+f_{t}(x) \mid 0 \leq t \leq q^{d_{T}}-1\right\} \longrightarrow \mathbb{F}_{q}[x] /\left\langle f^{(T)}\right\rangle
$$

and the canonical projection

$$
\left\{f_{l}(x) \mid 0 \leq l \leq N\right\} \longrightarrow \mathbb{F}_{q}[x] /\left\langle f^{(T)}\right\rangle
$$

is m-to-one. Thus the projection map π is m^{n}-to-one.
For any $f \in T$, let φ_{f} be the canonical projection from $\left(\mathbb{F}_{q}[x] /\left\langle f^{(T)}\right\rangle\right)^{n}$ to $\left(\mathbb{F}_{q}[x] /\langle f\rangle\right)^{n}$ via φ. Given any $A \in \mathcal{M}_{N}$, we see that $A \in G_{T}$ if and only if at most $k-1$ entries of $\varphi_{f} \circ \pi(A)$ is zero for all $f \in T$. Noticing that $\left|\mathbb{F}_{q}[x] /\langle f\rangle\right|=q^{\operatorname{deg}(f)}$, it is easy to deduce that

$$
\left|\varphi \circ \pi\left(\mathcal{M}_{N}\right)\right|=\prod_{f \in T} \sum_{i=0}^{k-1}\binom{n}{i}\left(q^{\operatorname{deg}(f)}-1\right)^{n-i}
$$

As a result we have

$$
\begin{gathered}
\left|G_{T} \bigcap \mathcal{M}_{N}\right|=m^{n}\left|\varphi \circ \pi\left(\mathcal{M}_{N}\right)\right| \\
=\left(m q^{d_{T}}\right)^{n} \prod_{f \in T} \sum_{i=0}^{k-1}\binom{n}{i}\left(\frac{1}{q^{\operatorname{deg}(f)}}\right)^{i}\left(1-\frac{1}{q^{\operatorname{deg}(f)}}\right)^{n-i} .
\end{gathered}
$$

Now let N be any positive integer. There exist $m, r \in \mathbb{Z}_{+}$such that $N+1=$ $m q^{d_{T}}+r$, where $0 \leq r<q^{d_{T}}$ and m, r are not both 0 . For convenience, set $\widetilde{N}=$ $m q^{d_{T}}-1$. Then by the definition of the natural density, we have

$$
\begin{aligned}
D\left(G_{T}\right) & =\lim _{N \rightarrow \infty} \frac{\left|G_{T} \cap \mathcal{M}_{N}\right|}{\left|\mathcal{M}_{N}\right|} \\
& =\lim _{N \rightarrow \infty} \frac{\left|G_{T} \cap \mathcal{M}_{\widetilde{N}}\right|+\left|G_{T} \bigcap\left(\mathcal{M}_{N}-\mathcal{M} \widetilde{N}\right)\right|}{\left|\mathcal{M}_{N}\right|}
\end{aligned}
$$

Note that $\left|\mathcal{M}_{N}-\mathcal{M}_{\widetilde{N}}\right| \leq r n(N+1)^{n-1}$, that is

$$
\lim _{N \rightarrow \infty} \frac{\left|G_{T} \bigcap\left(\mathcal{M}_{N}-\mathcal{M}_{\widetilde{N}}\right)\right|}{\left|\mathcal{M}_{N}\right|} \leq \lim _{N \rightarrow \infty} \frac{r n(N+1)^{n-1}}{(N+1)^{n}}=0
$$

So, we obtain

$$
\begin{aligned}
D\left(G_{T}\right) & =\lim _{N \rightarrow \infty} \frac{\left|G_{T} \bigcap \mathcal{M}_{\widetilde{N}}\right|}{(N+1)^{n}} \\
& =\lim _{N \rightarrow \infty} \frac{\left(m q^{d_{T}}\right)^{n} \prod_{f \in T} \sum_{i=0}^{k-1}\binom{n}{i}\left(\frac{1}{q^{\operatorname{deg}(f)}}\right)^{i}\left(1-\frac{1}{q^{\operatorname{deg}(f)}}\right)^{n-i}}{(N+1)^{n}} \\
& =\prod_{f \in T} \sum_{i=0}^{k-1}\binom{n}{i}\left(\frac{1}{q^{\operatorname{deg}(f)}}\right)^{i}\left(1-\frac{1}{q^{\operatorname{deg}(f)}}\right)^{n-i}
\end{aligned}
$$

This completes the proof.
Proof of Theorem 1.1. For any irreducible polynomial $f \in \mathbb{F}_{q}[x]$, denote

$$
K_{f}=\left\{\left(g_{1}, \cdots, g_{n}\right)|f| \operatorname{gcd}\left(g_{i_{1}}, \cdots, g_{i_{k}}\right), 1 \leq i_{1}<\cdots<i_{k} \leq n\right\}
$$

Let $q_{f}=q^{\operatorname{deg}(f)}$, then by Lemma 2.1 we have

$$
\begin{aligned}
D\left(K_{f}\right) & =1-D\left(G_{\{f\}}\right) \\
& =1-\sum_{i=0}^{k-1}\binom{n}{i}\left(\frac{1}{q_{f}}\right)^{i}\left(1-\frac{1}{q_{f}}\right)^{n} \\
& \leq 1-\left(1-\frac{n-1}{q_{f}}\right)\left(1+\frac{n-1}{q_{f}}\right) \\
& =\left(\frac{n-1}{q_{f}}\right)^{2} .
\end{aligned}
$$

Let T_{t} be the set of all monic irreducible polynomials with degree no more than t, and denote \widehat{T} the set of all monic irreducible polynomials in $\mathbb{F}_{q}[x]$. For convenience, we set $G_{t}=G_{T_{t}}$. Since

$$
\left(G_{t} \backslash G\right) \subseteq \bigcup_{f \in \hat{T} \backslash T_{t}} K_{f}
$$

we have

$$
\begin{aligned}
\limsup _{N \rightarrow \infty} \frac{\left|\left(G_{t} \backslash G\right) \bigcap \mathcal{M}_{N}\right|}{\left|\mathcal{M}_{N}\right|} & \leq \limsup _{N \rightarrow \infty} \frac{\left|\left(\bigcup_{f \in \hat{T} \backslash T_{t}} K_{f}\right) \bigcap \mathcal{M}_{N}\right|}{\left|\mathcal{M}_{N}\right|} \\
& \leq \limsup _{N \rightarrow \infty} \frac{\sum_{f \in \hat{T} \backslash T_{t}}\left|K_{f} \bigcap \mathcal{M}_{N}\right|}{\left|\mathcal{M}_{N}\right|} \\
& \leq \sum_{f \in \hat{T} \backslash T_{t}} \limsup _{N \rightarrow \infty} \frac{\left|K_{f} \bigcap \mathcal{M}_{N}\right|}{\left|\mathcal{M}_{N}\right|} \\
& =\sum_{f \in \hat{T} \backslash T_{t}} D\left(K_{f}\right)<\sum_{f \in \hat{T} \backslash T_{t}}\left(\frac{n-1}{q_{f}}\right)^{2} \\
& =\sum_{m=t+1}^{\infty} \frac{(n-1)^{2}}{q^{2 m}} \phi(m),
\end{aligned}
$$

where $\phi(m)$ denotes the number of monic irreducible polynomials with degree m in $\mathbb{F}_{q}[x]$.

Since all irreducible polynomials with degree m can divide $x^{q^{m}}-x$, which has no multiple roots, thus $m \phi(m) \leq q^{m}$ and

$$
\limsup _{N \rightarrow \infty} \frac{\left|\left(G_{t} \backslash G\right) \bigcap \mathcal{M}_{N}\right|}{\left|\mathcal{M}_{N}\right|} \leq \sum_{m=t+1}^{\infty} \frac{(n-1)^{2}}{m q^{m}} \leq \frac{(n-1)^{2}}{q^{t}(q-1)}
$$

Note that $G \bigcap \mathcal{M}_{N} \subseteq G_{t} \bigcap \mathcal{M}_{N}$ and $G \bigcap \mathcal{M}_{N}=G_{t} \bigcap \mathcal{M}_{N}-\left(G_{t} \backslash G\right) \bigcap \mathcal{M}_{N}$, which imply that

$$
\limsup _{N \rightarrow \infty} \frac{\left|G \bigcap \mathcal{M}_{N}\right|}{\left|\mathcal{M}_{N}\right|} \leq \limsup _{N \rightarrow \infty} \frac{\left|G_{t} \bigcap \mathcal{M}_{N}\right|}{\left|\mathcal{M}_{N}\right|} \leq D\left(G_{t}\right)
$$

and

$$
\begin{aligned}
\liminf _{N \rightarrow \infty} \frac{\left|G \bigcap \mathcal{M}_{N}\right|}{\left|\mathcal{M}_{N}\right|} & \geq \liminf _{N \rightarrow \infty} \frac{\left|G_{t} \bigcap \mathcal{M}_{N}\right|}{\left|\mathcal{M}_{N}\right|}-\limsup _{N \rightarrow \infty} \frac{\left(G_{t} \backslash G\right) \bigcap \mathcal{M}_{N}}{\left|\mathcal{M}_{N}\right|} \\
& \geq D\left(G_{t}\right)-\frac{(n-1)^{2}}{q^{t}(q-1)}
\end{aligned}
$$

for all $t \in \mathbb{N}$. Let t tend to ∞, from Lemma 2.1, we can conclude that

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \frac{\left|G \bigcap \mathcal{M}_{N}\right|}{\left|\mathcal{M}_{N}\right|} & =\lim _{t \rightarrow \infty} D\left(G_{t}\right) \\
& =\lim _{t \rightarrow \infty} \prod_{f \in T_{t}} \sum_{i=0}^{k-1}\binom{n}{i}\left(\frac{1}{q_{f}}\right)^{i}\left(1-\frac{1}{q_{f}}\right)^{n-i} \\
& =\lim _{t \rightarrow \infty} \prod_{m=1}^{t} \sum_{i=0}^{k-1}\binom{n}{i}\left(\frac{1}{q^{m}}\right)^{i}\left(1-\frac{1}{q^{m}}\right)^{n-i} \\
& =\prod_{m=1}^{\infty}\left(\sum_{i=0}^{k-1}\binom{n}{i}\left(\frac{1}{q^{m}}\right)^{i}\left(1-\frac{1}{q^{m}}\right)^{n-i}\right)^{\phi(m)}
\end{aligned}
$$

This completes the proof.

ACKNOWLEDGEMENT

This work is partially supported by the NSF of China (Grant No. 11101380, 11471294). The authors would like to express their gratitude to the referees for valuable suggestions.

REFERENCES

[1] A. T. Benjamin and C. D. Bennett, "The probability of relatively prime polynomials," Math. Mag., vol. 80, pp. 196-202, 2007.
[2] G. L. Dirichlet, Über die Bestimmung der mittleren Werthe in der Zahlentheorie. Abhandlungen Königlich Preuss, Akad. Wiss., 1849.
[3] X. Guo and G. Yang, "The probability of rectangular unimodular matrices over $\mathbb{F}_{q}[x]$," Linear Algebra Appl., vol. 438, pp. 2657-2682, 2013.
[4] J. Hu, "The probability that random positive integers are k-wise relatively prime," Int. J. Number Theory, vol. 09, 2013.
[5] M. Kac, Statistical independence in probability, analysis and number theory, ser. The Carus Mathematical Monographs. New York: Mathematical Association of America, John Wiley and Sons, Inc., 1959, vol. 16.
[6] J. Kubilius, "Probabilistic methods in the theory of numbers," Amer. Math. Soc. Transl. (2), vol. 19, pp. 47-85, 1962.
[7] H. Kubota and H. Sugita, "Probabilistic proof of limit theorems in number theory by means of adeles," Kyushu J. Math., vol. 56, pp. 391-404, 2002.
[8] G. Maze, J. Rosenthal, and U. Wagner, "Natural density of rectangular unimodular integer matrices," Linear Algebra Appl., vol. 434, pp. 1319-1324, 2011.
[9] K. E. Morrison, "Random polynomials over finite fields," http://www.calpoly.edu/~kmorriso/Research/RPFF.pdf, 1999.
[10] H. Sugita and S. Takanobu, "The probability of two \mathbb{F}_{q}-polynomials to be coprime," Adv. Stud. Pure Math., vol. 49, pp. 455-478, 2007.
[11] G. Tenenbaum, Introduction to analytic and probabilistic number theory, ser. Cambridge Studies in Advanced Mathematics. Cambridge: Cambridge University Press, 1995, vol. 46.
[12] L. Tóth, "The probability that k positive integers are pairwise relatively prime," Fibonacci Quart., vol. 40, pp. 13-18, 2002.

Authors' addresses

Xiangqian Guo

Zhengzhou University, School of Mathematics and Statistics, 100 Science Road, 450001 Zhengzhou, P. R. China

E-mail address: guoxq@ZZu.edu.cn
Fengdan Hou
Zhengzhou University, School of Mathematics and Statistics, 100 Science Road, 450001 Zhengzhou, P. R. China

E-mail address: houfdezzu.ps.edu.cn

Xuewen Liu

Zhengzhou University, School of Mathematics and Statistics, 100 Science Road, 450001 Zhengzhou, P. R. China

E-mail address: liuxw@zzu.edu.cn

