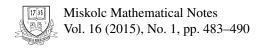


Power subgroups of the extended Hecke groups

 ${\rm HU~e\text{-}ISSN~1787\text{-}2413}$

DOI: 10.18514/MMN.2015.1214

Zehra Sarigedik, Sebahattin Ikikardes, and Recep Sahin



POWER SUBGROUPS OF THE EXTENDED HECKE GROUPS

ZEHRA SARIGEDIK, SEBAHATTIN İKIKARDES, AND RECEP SAHIN

Received 22 April, 2014

Abstract. We consider the extended Hecke groups $\overline{H}(\lambda_q)$ generated by T(z)=-1/z, $S(z)=-1/(z+\lambda_q)$ and $R(z)=1/\overline{z}$ with $\lambda_q=2\cos(\pi/q)$ for $q\geq 3$ integer. In this article, we study the abstract group structures of the power subgroups $\overline{H}^m(\lambda_q)$ of $\overline{H}(\lambda_q)$ for each positive integer m. Then, we give the relations between commutator subgroups and power subgroups.

2010 Mathematics Subject Classification: 20H10; 11F06 Keywords: extended Hecke groups, power subgroups

1. Introduction

In [4], Erich Hecke introduced the groups $H(\lambda)$ generated by two linear fractional transformations

$$T(z) = -\frac{1}{z}$$
 and $S(z) = -\frac{1}{z+\lambda}$,

where λ is a fixed positive real number.

E. Hecke showed that $H(\lambda)$ is discrete if and only if $\lambda = \lambda_q = 2\cos\frac{\pi}{q}$, $q \ge 3$ integer, or $\lambda \ge 2$. We will focus on the discrete case with $\lambda < 2$, i.e., those with $\lambda = \lambda_q$, q an integer ≥ 3 . These groups have come to be known as the *Hecke Groups*, and we will denote them $H(\lambda_q)$ for $q \ge 3$. The Hecke group $H(\lambda_q)$ is isomorphic to the free product of two finite cyclic groups of orders 2 and q and it has a presentation

$$H(\lambda_q) = < T, S \mid T^2 = S^q = I > \cong C_2 * C_q.$$

Also $H(\lambda_q)$ has the signature $(0;2,q,\infty)$, that is, all the groups $H(\lambda_q)$ are triangle groups. The first several of these groups are $H(\lambda_3) = \Gamma = PSL(2,\mathbb{Z})$ (the modular group), $H(\lambda_4) = H(\sqrt{2})$, $H(\lambda_5) = H(\frac{1+\sqrt{5}}{2})$, and $H(\lambda_6) = H(\sqrt{3})$. It is clear that $H(\lambda_q) \subset PSL(2,\mathbb{Z}[\lambda_q])$, for $q \geq 4$. The groups $H(\sqrt{2})$ and $H(\sqrt{3})$ are of particular interest, since they are the only Hecke groups, aside from the modular group, whose elements are completely known.

The extended Hecke group, denoted by $\overline{H}(\lambda_q)$, has been defined by adding the reflection $R(z) = 1/\overline{z}$ to the generators of the Hecke group $H(\lambda_q)$, for $q \ge 3$ integer,

in [9, 10] and [6]. Thus, the extended Hecke group $\overline{H}(\lambda_q)$ has a presentation,

$$\overline{H}(\lambda_q) = \langle T, S, R \mid T^2 = S^q = R^2 = I, RT = TR, RS = S^{q-1}R \rangle \cong D_2 *_{C_2} D_q.$$
(1.1)

The Hecke group $H(\lambda_q)$ is a subgroup of index 2 in $\overline{H}(\lambda_q)$.

Now we give some information about the power subgroups of $\overline{H}(\lambda_q)$.

Let m be a positive integer. Let us define $\overline{H}^m(\lambda_q)$ to be the subgroup generated by the m^{th} powers of all elements of $\overline{H}(\lambda_q)$. The subgroup $\overline{H}^m(\lambda_q)$ is called the m-th power subgroup of $\overline{H}(\lambda_q)$. As fully invariant subgroups, they are normal in $\overline{H}(\lambda_q)$.

From the definition one can easily deduce that

$$\overline{H}^{mk}(\lambda_q) \le \overline{H}^m(\lambda_q)$$

and

$$\overline{H}^{mk}(\lambda_q) \leq \left(\overline{H}^m(\lambda_q)\right)^k$$
.

Using the last two inequalities imply that $\overline{H}^m(\lambda_q).\overline{H}^k(\lambda_q) = \overline{H}^{(m,k)}(\lambda_q)$ where (m,k) denotes the greatest common diviser of m and k.

The power subgroups of the Hecke groups $H(\lambda_q)$ have been studied and classified in [2,3] and [5]. For $q \ge 3$ prime, the power subgroups of the extended Hecke groups $\overline{H}(\lambda_q)$ were studied by Sahin, Ikikardes and Koruoğlu in [11,12] and [13].

The aim of this paper is to study the power subgroups $\overline{H}^m(\lambda_q)$ of the extended Hecke groups $\overline{H}(\lambda_q)$, $q \geq 3$ integer. For each positive integer m, we determine the abstract group structures and generators of $\overline{H}^m(\lambda_q)$. Also, we give the signatures of $\overline{H}^m(\lambda_q)$. To get all these results, we use the techniques of combinatorial group theory (Reidemeister-Schreier method, permutation method and Riemann-Hurwitz formula). Finally, we give the relations between commutator subgroups and power subgroups.

2. The group structure of power subgroups of $\overline{H}\left(\lambda_{q}\right)$

Now we consider the presentation of the extended Hecke group $\overline{H}(\lambda_q)$ given in (1.1):

$$\overline{H}(\lambda_q) = < T, S, R \mid T^2 = S^q = R^2 = I, TR = RT, RS = S^{-1}R > T$$

Firstly, we find a presentation for the quotient $\overline{H}(\lambda_q)/\overline{H}^m(\lambda_q)$ by adding the relation $X^m = I$ for all $X \in \overline{H}(\lambda_q)$ to the presentation of $\overline{H}(\lambda_q)$. The order of $\overline{H}(\lambda_q)/\overline{H}^m(\lambda_q)$ gives us the index. We have,

$$\overline{H}(\lambda_q)/\overline{H}^m(\lambda_q) < T, S, R \mid T^2 = S^q = R^2 = (TR)^2 = (RS)^2 = T^m = S^m$$

$$= R^m = (TS)^m = (RS)^m = (TR)^m = \dots = I > . \tag{2.1}$$

Thus we use the Reidemeister-Schreier process to find the generators and the presentations of the power subgroups $\overline{H}^m(\lambda_q)$, $q \ge 3$ integer (for the method, please see [2] and [5]).

Firstly, we now discuss the group theoretical structure of these subgroups for $q \ge 3$ odd integer. We start with the case m = 2.

Theorem 1. 1) If $q \ge 3$ is an odd integer, then $\overline{H}^2(\lambda_q)$ is the free product of two finite cyclic groups of order q, i.e.,

$$\overline{H}^2(\lambda_q) = \langle S, TST \mid S^q = (TST)^q = I \rangle \cong C_q * C_q.$$

2) If q > 3 is an even integer, then $\overline{H}^2(\lambda_q)$ is the free product of the infinite cyclic group and two finite cyclic groups of order q/2, i.e.,

$$\overline{H}^{2}(\lambda_{q}) = \left\langle S^{2}, TS^{2}T, TSTS^{-1} \mid (S^{2})^{q/2} = \left(TS^{2}T\right)^{q/2} = (TSTS^{-1})^{\infty} = I\right\rangle,$$

$$\cong C_{q/2} * C_{q/2} * \mathbb{Z}.$$

Proof. 1) By (2.1), we have

$$\overline{H}(\lambda_q)/\overline{H}^2(\lambda_q) \cong \langle T, R \mid T^2 = R^2 = (TR)^2 = I \rangle \cong C_2 \times C_2,$$

since $S^2 = S^q = I$ and (2,q) = 1. Now we can choose $\{I, T, R, TR\}$ as a Schreier transversal for $\overline{H}^2(\lambda_q)$. According to the Reidemeister-Schreier method (see [8]), we get the generators of $\overline{H}^2(\lambda_q)$ as the followings:

$$\begin{split} I.T.(T)^{-1} &= I, & I.S.(I)^{-1} &= S, & I.R.(R)^{-1} &= I, \\ T.T.(I)^{-1} &= I, & T.S.(T)^{-1} &= TST^{-1}, & T.R.(TR)^{-1} &= I, \\ R.T.(TR)^{-1} &= RTRT, & R.S.(R)^{-1} &= RSR^{-1}, & R.R.(I)^{-1} &= I, \\ TR.T.(R)^{-1} &= TRTR, & TR.S.(TR)^{-1} &= TRSR^{-1}T^{-1}, & TR.R.(T)^{-1} &= I. \end{split}$$

Since TRTR = RTRT = I, $RSR^{-1} = S^{-1}$ and $TRSR^{-1}T^{-1} = (TST)^{-1}$, the generators of $\overline{H}^2(\lambda_q)$ are S and TST. Thus $\overline{H}^2(\lambda_q)$ has a presentation

$$\overline{H}^2(\lambda_q) = \langle S, TST \mid S^q = (TST)^q = I \rangle \cong C_q * C_q.$$

Also, using the permutation method (see [14]) and the Riemann-Hurwitz formula, we get the signature of $\overline{H}^2(\lambda_q)$ as $(0;q,q,\infty)=(0;q^{(2)},\infty)$.

2) By 2.1, the quotient group $\overline{H}(\lambda_q)/\overline{H}^2(\lambda_q)$ is

$$\overline{H}(\lambda_q)/\overline{H}^2(\lambda_q) \cong \langle T, S, R \mid T^2 = S^2 = R^2 = (TR)^2 = (RS)^2 = (TS)^2 = I \rangle$$

$$\cong C_2 \times C_2 \times C_2.$$

since $S^2 = S^q = I$. Now we can choose Schreier transversal as $\{I, T, S, R, TS, TR, SR, TSR\}$. According to the Reidemeister-Schreier method, all possible products are

$$\begin{split} I.T.(T)^{-1} &= I, & TS.T.(S)^{-1} &= TSTS^{-1}, \\ T.T.(I)^{-1} &= I, & TR.T.(R)^{-1} &= I, \\ S.T.(TS)^{-1} &= STS^{-1}T, & SR.T.(TSR)^{-1} &= SRTRS^{-1}T, \\ R.T.(TR)^{-1} &= I, & TSR.T.(SR)^{-1} &= TSRTRS^{-1}, \\ I.S.(S)^{-1} &= I, & TS.S.(T)^{-1} &= TS^2T, \\ T.S.(TS)^{-1} &= I, & TR.S.(TSR)^{-1} &= I, \\ S.S.(I)^{-1} &= S^2, & SR.S.(R)^{-1} &= I, \\ R.S.(SR)^{-1} &= RSRS^{-1}, & TSR.S.(TR)^{-1} &= TSRSRT, \\ I.R.(R)^{-1} &= I, & TS.R.(TSR)^{-1} &= I, \\ T.R.(TR)^{-1} &= I, & SR.R.(S)^{-1} &= I, \\ S.R.(SR)^{-1} &= I, & SR.R.(S)^{-1} &= I, \\ R.R.(I)^{-1} &= I, & TSR.R.(TS)^{-1} &= I, \\ TSR.R.(TS)^{-1} &= I, & TSR.R.(TS)^{-1} &= I, \end{split}$$

Since $SRTRS^{-1}T = STS^{-1}T$, $TSRTRS^{-1} = TSTS^{-1}$, $TSTS^{-1} = (STS^{-1}T)^{-1}$, $RSRS^{-1} = S^{-2}$ and TSRSRT = I, the generators of $\overline{H}^2(\lambda_q)$ are S^2, TS^2T and $TSTS^{-1}$. Thus $\overline{H}^2(\lambda_q)$ has a presentation

$$\overline{H}^2(\lambda_q) = \left\langle S^2, TS^2T, TSTS^{-1} \mid (S^2)^{q/2} = \left(TS^2T\right)^{q/2} = (TSTS^{-1})^{\infty} = I \right\rangle.$$
Therefore $\overline{H}^2(\lambda_q)$ has the signature $\left(0; (q/2)^{(2)}, \infty^{(2)}\right)$.

Corollary 1. 1) If $q \ge 3$ is an odd integer and if m is a positive even integer such that (m,q) = 1, then $\overline{H}^m(\lambda_q) = \overline{H}^2(\lambda_q)$.

2) If $q \ge 3$ is an integer and if m is a positive odd integer, then $\overline{H}^m(\lambda_q) = \overline{H}(\lambda_q)$.

Proof. 1) If $q \ge 3$ is an odd integer and if m is a positive even integer such that (m,q)=1, then by (2.1), we get

$$\overline{H}(\lambda_q)/\overline{H}^m(\lambda_q) \cong \langle T, R \mid T^2 = R^2 = (TR)^2 = I \rangle \cong D_2,$$

from the relations

$$R^2 = R^m = I$$
, $S^q = S^m = I$ and $T^2 = T^m = I$.

Since $\overline{H}^2(\lambda_q)$ is the only normal subgroup of index 4, we have $\overline{H}^m(\lambda_q) = \overline{H}^2(\lambda_q)$. 2) If $q \ge 3$ is an integer and if m is a positive odd integer, then by (2.1), we obtain

$$\overline{H}^m(\lambda_q) = \overline{H}(\lambda_q),$$

from the relations

$$R^2 = R^m = I$$
, $T^2 = T^m = I$ and $(RS)^2 = (RS)^m = I$.

Theorem 2. Let q > 3 be an even integer and let m be a positive even integer such that (m,q) = 2. The normal subgroup $\overline{H}^m(\lambda_q)$ is the free product of finite cyclic groups m of order q/2 and the infinite cyclic group \mathbb{Z} , i.e.,

$$\overline{H}^{m}(\lambda_{q}) = \langle \underbrace{(TS)(TS)...(TS)}_{(m-1) \text{ times}} TS^{-1} \rangle * \langle S^{2} \rangle * \langle TS^{2}T \rangle *$$

$$\langle TSTS^{2}TS^{-1}T \rangle * ... * \langle \underbrace{(TS)(TS)...(TS)}_{(m-2) \text{ times}} TS^{2}T\underbrace{(S^{-1}T)(S^{-1}T)...(S^{-1}T)}_{(m-2) \text{ times}} \rangle .$$

Proof. By (2.1), we have

$$\overline{H}(\lambda_q)/\overline{H}^m(\lambda_q) \cong \langle T, S, R \mid T^2 = S^2 = R^2 = (TR)^2 = (RS)^2 = (TS)^m = I \rangle,$$

$$\cong C_2 \times D_m,$$

since
$$S^q = S^m = I$$
. Now we can choose $\{I, T, S, TS, TST, TSTS, ..., \underbrace{(TS)(TS)...(TS)}_{(m-1) \text{ times}}, R, TR, SR, TSR, TSTR, TSTSR, ..., \underbrace{(TS)(TS)...(TS)}_{(m-1) \text{ times}}R\}$ as

a Schreier transversal for $\overline{H}^m(\lambda_q)$. According to the Reidemeister-Schreier method, we find the generators generators of $\overline{H}^m(\lambda_q)$ as

$$a_{1} = \underbrace{(TS)(TS)...(TS)}_{(m-1) \text{ times}} TS^{-1}, \ a_{2} = S^{2}, \ a_{3} = TS^{2}T, \ a_{4} = TSTS^{2}TS^{-1}T, ...,$$

$$a_{m+1} = \underbrace{(TS)(TS)...(TS)}_{(m-2) \text{ times}} TS^{2}T\underbrace{(S^{-1}T)(S^{-1}T)...(S^{-1}T)}_{(m-2) \text{ times}}.$$

Thus $\overline{H}^m(\lambda_a)$ has a presentation $\overline{H}^m(\lambda_a) =$

$$\langle a_1, a_2, a_3, a_4, ..., a_{m+1} \mid (a_2)^{q/2} = (a_3)^{q/2} = (a_4)^{q/2} = \cdots = (a_{m+1})^{q/2} = I \rangle.$$

Also the signature of
$$\overline{H}^m(\lambda_q)$$
 is $(0; (q/2)^{(m)}, \infty^{(2)})$.

We are only left to consider the case where (m,2)=2 and (m,q)=d>2. In this case, the above techniques do not say much about $\overline{H}^m(\lambda_q)$. But, we can say something about $\overline{H}^m(\lambda_q)$ some special cases of q. To do these, we need the following results about the commutator subgroups of $\overline{H}(\lambda_q)$ in [9] and [10].

Lemma 1. 1) For an odd number $q \ge 3$:

$$\overline{H}'(\lambda_q) = \langle S, TST \mid S^q = (TST)^q = I \rangle \cong C_q * C_q.$$

2)
$$\overline{H}'(\lambda_q)/\overline{H}''(\lambda_q) = \langle S, TST \mid S^q = (TST)^q = (S.TST)^q = I \rangle \cong C_q \times C_q$$
.

3) For an even integer q > 3:

$$\overline{H}'(\lambda_q) = \langle S^2, TS^2T, TSTS^{-1} | (S^2)^{q/2} = (TS^2T)^{q/2} = (TSTS^{-1})^{\infty} = I \rangle$$

$$\cong C_{q/2} * C_{q/2} * \mathbb{Z}.$$

By using Lemma 1 and Theorem 1 we get the following

Corollary 2. Let $q \geq 3$ be an integer. Then $\overline{H}'(\lambda_q) \cong \overline{H}^2(\lambda_q)$.

Theorem 3. Let $q \ge 3$ be an odd integer and let m be a positive integer. The groups $\overline{H}^{2q}(\lambda_q)$ are the subgroups of the second commutator subgroup $\overline{H}''(\lambda_q)$.

Proof. Since $\overline{H}'(\lambda_q) = \overline{H}^2(\lambda_q)$, we get $\left(\overline{H}^2(\lambda_q)\right)^q \leq \overline{H}^2(\lambda_q)$ and $\left(\overline{H}'(\lambda_q)\right)^q \leq \overline{H}'(\lambda_q)$. Also we know that

$$\overline{H}'(\lambda_q)/\left(\overline{H}'(\lambda_q)\right)^q = \langle S, TST \mid S^q = (TST)^q = (S.TST)^q = \cdots = I \rangle.$$

Therefore the index $\left|\overline{H}'(\lambda_q):\left(\overline{H}'(\lambda_q)\right)^q\right|$ is greater than or equal to the index $\left|\overline{H}'(\lambda_q):\overline{H}''(\lambda_q)\right|=q^2$. Thus we have

$$\overline{H}^{2q}(\lambda_q) \subset \overline{H}''(\lambda_q).$$

By means of this results, we are going to be able to investigate the subgroups $\overline{H}^{2qm}(\lambda_q)$. We have by Schreier's theorem the following theorem:

Theorem 4. Let $q \ge 3$ be an odd integer. The groups $\overline{H}^{2qm}(\lambda_q)$ are free.

Finally, we can only say something the case q = 4. This Hecke group is very important and studied by many authors, see [1] and [7].

Theorem 5. i)
$$\left| \overline{H}^2(\lambda_4) : (\overline{H}^2)^2(\lambda_4) \right| = 8.$$

ii) The group $(\overline{H}^2)^2(\lambda_4)$ is a free group of rank 9.

Proof. i) If we take $k_1 = S^2$, $k_2 = TS^2T$ and $k_3 = TSTS^3$, then the quotient group $\overline{H}^2(\lambda_4)/(\overline{H}^2)^2(\lambda_4)$ is the group obtained by adding the relation $k_i^2 = I$ to the relations of $(\overline{H}^2)^2(\lambda_4)$, for $i \in \{1, 2, 3\}$. Thus we have

$$\overline{H}^2(\lambda_4)/(\overline{H}^2)^2(\lambda_4) \cong C_2 \times C_2 \times C_2.$$

Therefore, we obtain $\left| \overline{H}^2(\lambda_4) : (\overline{H}^2)^2(\lambda_4) \right| = 8$.

ii) Let $\Sigma = \{I, k_1, k_2, k_3, k_1k_2, k_1k_3, k_2k_3, k_1k_2k_3\}$ be a Schreier transversal for $(\overline{H}^2)^2(\lambda_4)$. Using the Reidemeister-Schreier method, we obtain the generators of $(\overline{H}^2)^2(\lambda_4)$ as follows:

$$\begin{array}{lll} I.k_{1}.(k_{1})^{-1} = I, & I.k_{2}.(k_{2})^{-1} = I, \\ k_{1}.k_{1}.(I)^{-1} = I, & k_{1}.k_{2}.(k_{1}k_{2})^{-1} = I, \\ k_{2}.k_{1}.(k_{1}k_{2})^{-1} = k_{2}k_{1}k_{2}k_{1}, & k_{2}.k_{2}.(I)^{-1} = I, \\ k_{3}.k_{1}.(k_{1}k_{3})^{-1} = k_{3}k_{1}k_{3}^{-1}k_{1}, & k_{3}.k_{2}.(k_{2}k_{3})^{-1} = k_{3}k_{2}k_{3}^{-1}k_{2}, \\ k_{1}k_{2}.k_{1}.(k_{2})^{-1} = k_{1}k_{2}k_{1}k_{2}, & k_{1}k_{2}.k_{2}.(k_{1})^{-1} = I, \\ k_{1}k_{3}.k_{1}.(k_{3})^{-1} = k_{1}k_{3}k_{1}k_{3}^{-1}, & k_{1}k_{3}.k_{2}.(k_{1}k_{2}k_{3})^{-1} = k_{1}k_{3}k_{2}k_{3}^{-1}k_{2}k_{1}, \\ k_{2}k_{3}.k_{1}.(k_{1}k_{2}k_{3})^{-1} = k_{1}k_{2}k_{3}k_{1}k_{3}^{-1}k_{2}k_{1}, & k_{2}k_{3}.k_{2}.(k_{1}k_{3})^{-1} = k_{1}k_{3}k_{2}k_{3}^{-1}k_{2}k_{1}, \\ k_{1}k_{2}k_{3}.k_{1}.(k_{2}k_{3})^{-1} = k_{1}k_{2}k_{3}k_{1}k_{3}^{-1}k_{2}, & k_{1}k_{2}k_{3}.k_{2}.(k_{1}k_{3})^{-1} = k_{1}k_{2}k_{3}k_{2}k_{3}^{-1}k_{1}, \\ I.k_{3}.(k_{3})^{-1} = I, & k_{1}k_{3}.(k_{1}k_{3})^{-1} = I, \\ k_{1}k_{3}.(k_{1}k_{3})^{-1} = I, & k_{1}k_{2}k_{3}.(k_{1}k_{2}k_{3})^{-1} = I, \\ k_{2}k_{3}.(k_{2}k_{3})^{-1} = k_{1}k_{2}k_{3}^{2}k_{1}, & k_{2}k_{3}.(k_{1}k_{2}k_{3})^{-1} = k_{1}k_{2}k_{3}^{2}k_{2}, \\ k_{1}k_{2}k_{3}.k_{3}.(k_{1})^{-1} = k_{1}k_{2}^{2}k_{3}^{2}k_{2}, & k_{1}k_{2}k_{3}.k_{3}.(k_{1}k_{2})^{-1} = k_{1}k_{2}k_{3}^{2}k_{2}k_{1}. \end{array}$$

After some calculations, we get the generators of $(\overline{H}^2)^2(\lambda_4)$ as

Also, we find the signature of
$$(\overline{H}^2)^2(\lambda_4)$$
 as $(1; \underbrace{\infty, \infty, \cdots, \infty}_{8 \text{ times}}) = (1; \infty^{(8)})$.

Notice that the group $(\overline{H}^2)^2(\lambda_4)=(H^2)^2(\lambda_4)$ is the principal congruence sub-

group $H_4(\lambda_4)$ of $H(\lambda_4)$. Since $\overline{H}^{4k}(\lambda_4) \leq \overline{H}^4(\lambda_4) \leq (\overline{H}^2)^2(\lambda_4)$, we are going to be able to investigate the subgroups $\overline{H}^{4k}(\lambda_4)$. We have by Schreier's theorem the following theorem:

Corollary 3. The groups $\overline{H}^{4k}(\lambda_4)$ are free.

REFERENCES

- [1] R. Abe and I. R. Aitchison, "Geometry and Markoff's spectrum for $\mathbb{Q}(i)$," I. Trans. Amer. Math. Soc., vol. 365, no. no. 11, pp. 6065-6102, 2013.
- [2] I. N. Cangül, R. Sahin, S. Ikikardes, and O. Koruoğlu, "Power subgroups of some Hecke groups. II." Houston J. Math., vol. 33, no. no. 1, pp. 33–42, 2007.
- [3] I. N. Cangül and D. Singerman, "Normal subgroups of Hecke groups and regular maps," Math. Proc. Camb. Phil. Soc., vol. 123, pp. 59-74, 1998.
- [4] E. Hecke, "Über die bestimmung dirichletscher reichen durch ihre funktionalgleichungen," Math. Ann., vol. 112, pp. 664–699, 1936.
- [5] S. Ikikardes, O. Koruoglu, and R. Sahin, "Power subgroups groups of some Hecke groups," Rocky Mountain Journal of Mathematics, no. No. 2, 2006.

- [6] S. Ikikardes, R. Sahin, and I. N. Cangul, "Principal congruence subgroups of the Hecke groups and related results," *Bull. Braz. Math. Soc.* (*N.S.*), vol. 40, no. No. 4, pp. 479–494, 2009.
- [7] M. L. Lang, "Normalizers of the congruence subgroups of the Hecke groups G_4 and G_6 ," J. Number Theory, vol. 90, no. no. 1, pp. 31–43, 2001.
- [8] W. Magnus, A. Karrass, and D. Solitar, Combinatorial Group Theory. New York: Dover Publications, 1976.
- [9] R. Sahin and O. Bizim, "Some subgroups of the extended Hecke groups $\overline{H}(\lambda_q)$," *Acta Math. Sci., Ser. B, Engl. Ed.*, vol. 23, no. No.4, pp. 497–502, 2003.
- [10] R. Sahin, O. Bizim, and I. N. Cangul, "Commutator subgroups of the extended Hecke groups $\overline{H}(\lambda_q)$," *Czechoslovak Math. J.*, vol. 54(129), no. no. 1, pp. 253–259, 2004.
- [11] R. Sahin, S. Ikikardes, and O. Koruoğlu, "On the power subgroups of the extended modular group $\overline{\Gamma}$," *Tr. J. of Math.*, vol. 29, pp. 143–151, 2004.
- [12] R. Sahin, S. Ikikardes, and O. Koruoğlu, "Some normal subgroups of the extended Hecke groups $\overline{H}(\lambda_D)$," *Rocky Mountain J. Math.*, vol. 36, no. no. 3, pp. 1033–1048, 2006.
- [13] R. Sahin, O. Koruoğlu, and S. Ikikardes, "On the extended Hecke groups $\overline{H}(\lambda_5)$," *Algebra Colloq.*, vol. 13, no. no. 1, pp. 17–23, 2006.
- [14] D. Singerman, "Subgroups of Fuschian groups and finite permutation groups," *Bull. London Math. Soc.*, vol. 2, no. 319–323, 1970.

Authors' addresses

Zehra Sarıgedik

Celal Bayar Üniversitesi, Köprübasi Meslek Yüksek Okulu 45930 Manisa, Turkey *E-mail address:* zehra.sarigedik@cbu.edu.tr

Sebahattin İkikardes

Balıkesir Üniversitesi, Fen-Edebiyat Fakültesi, Matematik Bölümü, 10145 Balıkesir, Turkey *E-mail address:* skardes@balikesir.edu.tr

Recep Sahin

Balıkesir Üniversitesi, Fen-Edebiyat Fakültesi, Matematik Bölümü, 10145 Balıkesir, Turkey *E-mail address:* rsahin@balikesir.edu.tr