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Abstract. In this paper, a one-sided condition is given to recover (C,«) summability of a se-
quence from its (4)(C,« + 1) summability. Our result extends and generalizes the well known
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1. INTRODUCTION

Let > 2, an be an infinite series of real numbers with partial sums s, = Yy _o d-
For all nonnegative integers m, we define

(nA)msn =nA((nA)m—15n),

where (nA)os, = s, and (nA)1s, = nAsy.
The backward difference Asj, of s, is defined to be As,, = s, —sp—1, 1 > 1, with
AS() = 350-
Let A% be defined by generating function (1 —x)"~1 =" /4%x" (|x| < 1),
where
4o — af@+1)---(a+n) _ I'n+a+1)
" n! 'n+ DI (a+1)

o __
0_0’

for a > —1.
A sequence (s,) is said to be summable by the Cesaro mean of order «, or (C,«)
summable to s, where o > —1, and we write s, — s (C,®) if

n

¥ = Spo_ L ALy s
nT oo T ga n—k>k
n n k=0

as n — oo.
We write 7, = nay and denote the (C, o) mean of (z,) by 7. Borwein [4] showed
that if a sequence is (C,«) summable to s for any o > —1, it is (C, 8) summable to
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s for any B > «. It is also well known that the (C, ) summability method is regular
(see [3]). Note that (C,0) summability reduces to the ordinary convergence.

A sequence (s5) is said to be Abel summable to s, and we write s, — s (A) if the
series Y~ oanx" is convergent for 0 < x < 1 and tends to s as x — 1. It is well
known that if a sequence is (C,«) summable to s for any o > —1, then it is Abel
summable to s (see [2]).

A sequence (s,) is said to be (A)(C,a) summable to s, and we write s, —
s (A)(C,a) if the series Y oo (s¥ —s%_)x", with s%; = 0, is convergent for 0 <
x < 1 and tends to s as x — 1. Note that (4)(C, ) summability reduces to the Abel
summability when o = 0.

The identity s, —s} = 7} is known as the Kronecker identity and it will be used
in the proof of the main result. Throughout this paper we use the symbols s, = o(1)
and s, = O(1) to mean that s,, — 0 as n — oo and (s,) is bounded for large enough
n.

2. PRELIMINARY RESULTS

A theorem due to Abel [1] states that if (s,) converges to s, then it is Abel sum-
mable to s. The converse Abel’s theorem is not necessarily true. For example the
series Y 2 o(—1)" is not convergent, but it is Abel summable to 1/2. However,
the converse of Abel’s theorem may be valid under some condition which we call
Tauberian condition. Any theorem stating that convergence follows from a sum-
mability method and a Tauberian condition is called a Tauberian theorem.

By imposing some restriction on a,, Tauber [17] obtained the first partial con-
verses of Abel’s theorem.

Theorem 1. If (s,) is Abel summable to s and t, = o(l), then (s,)
converges to s.

Theorem 2. If (s,) is Abel summable to s and Tt} o(1), then (sp)
converges to s.

Littlewood [12] replaced the condition 7, = o(1) by 7, = O(1) and later Hardy
and Littlewood [9] obtained the following one-sided Tauberian theorem.

Theorem 3. If (sy,) is Abel summable to s and t, > —H for some nonnegative
constant H, then (s,) converges to s.

A generalization of Theorem 3 was given by Szdsz [16].

Theorem 4. If (s,) is Abel summable to s and 1:,} > —H for some nonnegative
constant H, then (s,) is (C, 1) summable to s.

Pati [14] have recently obtained more general Tauberian theorems generalizing the
classical results for the product of the Abel and (C,«) summability methods.
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Theorem 5. If (s,) is (A)(C,«) summable to s, where o > 0, and vy > —H for
some nonnegative constant H, then (s,) is (C,o) summable to s.

Theorem 6. The necessary and sufficient condition that the (A)(C,a + 1) sum-
mability of (sy) to s, where o > —1, implies the (C,a) summability of (sy) to s, is
that T2+ = o(1).

Tauberian theorems in the sense of Pati were generalized by Canak et al. [6],
Canak and Erdem [5] and Erdem and Canak [7]. Canak et al. [6] proved that if
(sn) is (A)(C,a) summable to s and (nA),,T¢T™ = o(1) for m = 1,2, then (sp) is
convergent to s. Later, Erdem and Canak [7] proved the main result in Canak et al. [6]
for all integers m > 1. Recently, Canak and Erdem [5] have recovered convergence,
(C,a) convergence, and (C,«) slow oscillation of (s,) depending on the conditions
given in terms of (7A),, 7% for some special cases of m.

In this paper, we recover (C,«) convergence of (s) from its (A)(C,a + 1) sum-
mability under the one-sided boundedness of ((nA),t™™), where m > 1 and
o> —1.

3. MAIN RESULT

Our result is based on Theorem 1 and Theorem 3.

Theorem 7. If (s,) is (A)(C,a + 1), where a > —1, summable to s, and for some
integer m > 0,
(nA)pt2t" > —H (3.1)
then (sy) is (C, o) summable to s.

From Theorem 7, we deduce the following corollary:

Corollary 1. If (sy) is (A)(C,a + 1), where o > —1, summable to s, and for some
integer m > 0,
(nA)mty' > —H (3.2)

then (s, ) converges to s.

4. AUXILIARY RESULTS
We need the following lemmas for the proof of Theorem 7.
Lemma 1 ([10,11]). Fora > —1, 7 = nAsy = n(sy —sy_1)-
Lemma 2 ([8, 1 1]). Fora > —1, 12! = (0 + 1)(s¥ —s2t1).

Lemma 3 ([6]). Fora > —1, nAt®t! = (a4 1)(z% — 2 11).

Lemma 4 ([13]). For—1 <a < B, (4)(C,a) C (A)(C,B).
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Lemma S ([7]). Let @ > —1. For any integer m > 2,

m
(nA)p 21" = Z(—l)jHAS,{)(oz)nAr,EaJrj),

j=1

where . . .

AP @) =af V@ +aP@). aP@) =0
and
. m
aP@)= [] @+k 3 (@+1)(@+12) ... (@+1j1)
k=j+1 JH1<t1,t2,..t;_1=<m

r<s=t, <ty

where j =1,2,3,...,m.
Lemma 6 ([7]). Let « > —1. For any integer m > 2,
@+ NAY D@+ D)+ @+ j + DA @+ 1) = AL (@),

where Ag,{)(ot) is as in Lemma 5.
1 1
Lemma 7 ([15]). Fora > —1, 0,(s%) = a—Hs,‘f“ + (1 — a—H) on(s®tY).

Lemma 8. i) For all A > 1 and large enough n, that is, when [An] > n,

Sa_sa—i—l .« |:[/\n]+1 (U[;m](sa_i_l)_an(sa—'—l))+(Un(sa+1)_sz+1)i|

P a1 [ [An]-n
1 [An] +1 L,
a+1 a+1 o o
a[An]—n (S[M] S on >_ An]—n kZ (5% —sn) 4.1
=n+1

ii) For all 0 < A < 1 and large enough n, that is, when n > [An],

o An]+1
S,‘f —s;‘l“i‘l — _a+1 |:’[1 _][/\n] (Gn(sa—i_l)—(f[xn](sa—i_l)) + (Gn(sa+1)_sg+1)i|
1 [)Ln] + 1 a+1 a+1 1 n . .
= (Sn _S[An])——n_[;m] Do (n-st), @2
k=[An]+1

where [An] denotes the integer part of the product An.

[An]
1
Proof. Let ‘L’:’[ an] = Tl = Z s - Then we have,
k=n+1

[An]

1
o _ oo+l _ o _ o+l
Tn,lan] ~ 5n _[)Ln]—n Z Sk —Sn
k=n+1




A ONE-SIDED THEOREM FOR THE PRODUCT METHODS 105

[An]
(Zsk Zsk syt
k=0

B [An]+1 - « n+1 ¢ o a+l
S Tl D 2= T e

= [)m]l_n (((An]+ Dopn(s*) — (n + 1)on(s*)) 5o+l

By lemma 7, we have

1 1
o == = D] = (([ ]+1)(L0[An]( oty —— o ff,;]l)

1
Gn(sa+1)+ o g+1))_sg+l

_(n+1)(oz+1

1 a([An]+ 1)
] (

n+1la n+1
SO ey - +1,‘:+1 @n-msg ™).

at1y , An]+1 o+l
P OIS R ey g 7Y

or

o o+l _ o o o a+1
S, — S, =5, —tn,[)m] 4+ rn’[)m] -5,

1 a([An]+1) [An]+1
= Sz —T;f’[kn] + [An] — ( o+ 1 U[An](Sa+1) + a+1 &—;]1
_(n + l)aon(s‘”l)— a[An]—an+[An]+1 a+1)

Sn
a—+1 oa—+1
| [An]

A
=5 - [An]—n 2. st+ [/\n]l—n (O‘([ o 1)‘T[Jtn](SOhLl)

k=n+1 a+1

[An]+1 44y a+1) at1y  @An]—an+[An]+1 4,
S/l Un(s ) Sn
a+1 "[An o—+1 o—+1

We finally have

@ _ o+l _ 1 (a([kn]—i— I)UA Js@+Y) + [An]+1 ga+l

S T AN e a1 B

1 An]— A 1
_a(n—i— )On(sa+1)_0‘[ n|—an+[An] + S;:+1)
a+1 a+1

A
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1 [An]
Sl ) > sg—(An]—n)sy

106

=n+1
a(n—+1
( ) n(Sa+1)

B 1 a([An]+1) atl
N [)Ln]—n( a+1 Oan (770 a+1
a([An]+1) a+1 a([An]+1) a+1
“art 0T )
Pl +1 gry_ aldn]—an+Rn]+1 o,
a+1 1A o+ 1 "

1 [An] [An]
NE RO IR
k

=n+1 k=n+1

: [“(”’” T 0 ) — 0 (%*)

An]l—-n| a+1
- aLJrl ((n+ Do (s*TH) = ([(An] + Don (s°T1))
Anl+1 441 oAn]—an+RAn]l+1 444
a+1 S[An]_ a+1 Sn :|
1 [An]
_[)Ln]—nk:%;'_l(sk_sn)
1 A 1
" Dnl=n [a([aﬂ—li_ )(0["”]“““)—%(6“”“))
_am—[An]) o ayry Al opy @ —[An]) oq4
o on(s“77) + w1 S T
[An]
P41 gpn] 1 ¢
BT } [)m]_nk;rl(sk Sn)
A 1
- aj—l H}ﬂtn (opan] (s —0n(s*T1))
o o 1[An]+1 / o
+(on(s H)_Snﬂ)]‘*‘&[)tn]—n (S[Aj;]l_anrl)
1 [An]
_[)Ln]—nk;rl(sk_sn)-

This completes the proof.

The proof for ii) is similar to that of i).
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5. PROOF OF THEOREM 7

By hypothesis, s*T! — 5 (A4). By Lemma 4, we have s*T1 — 5 (4), s%72 —
5 (A),...,s21t™ — 5 (A) where m is any positive integer. Hence, by Lemma 2, we
get

(@+2) (@ —5212) = 212

(o + 3)(s$ll+2 _Sfll+3) — .L.rt:t+3

1 1
(0 +m+ 1)(sg+m _S’(;z+m+ ) — retm+1
Since s2TK — 5 (A) fork = 1,2,...,m + 1, we have
212 5 0 (4) (5.1)

2%3 0 (A)

.L_;;‘i‘f‘m'f‘l =0 (A)
and by Lemma 3,
(@+3)(T2T2 =23 = nA* T3 5 0 (A)

(o + 4)(r,‘1"+3 —r,‘f+4) = nAtfl"|r4 —0(A)

(@ +m+ 1) (@2t —g2tmtly — g Ag2tmHL 5 0 (4).

Since
Aty ™" = —H (5.2)
then
(n At > —H, (5.3)
for j =1,...,m—1, by Lemma 5, we have

m—1
(nA)m_l.C’(11+m+1 — Z(—l)j-HAin_l(a+2)I1A‘E;f+2+j
Jj=1

= Arln—l(“ + 2)”47,?“ — A,Z,,_l(oz + 2)nAr,‘f+4 +...
+ (=)™ A" (o + 2)n AT

For j =1,...,m—1 we have nAr,‘erHj — 0 (A). Hence, we get

(nA) 12T 50 (A4) (5.4)
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It follows from (5.3) that
(nA) 12T = o(1) (5.5)
by Theorem 3. By Lemma 3, we obtain
(@+m~+D)((n2)m—172T" — (A1 12T = (nA) 2T (5.6)

Substituting (5.3) and (5.5) into (5.6), we have

(nA)p—1t2T" > —H,. (5.7
Since
m—2 ) ) )
(nA)m—ZTg—i_m — Z(_1)1+1A;j11—2(a +2)nA.L,;l¥+2+J
Jj=1

= Al S(@+2)nAte3— A2 (@ +2)nAd T4
+ (=D AT (@ + 2)n Ayt

by Lemma 5, we have

(nA)m—at®T™ = 0 (A). (5.8)
From (5.7) and (5.8), we obtain, by Theorem 3,
(nA)m—at®T™ = 0(1). (5.9)
By Lemma 3, we obtain
(@+m)(( A2ty " = (1 D)2ty ) = 1Ay T (5.10)
Substituting (5.7) and (5.9) into (5.10), we have
(At > _Hj. (5.11)

Since
m—3 . ) )
(nA)m—STyo;H_m_l — Z(_l)]+1Ain—3(a+2)nAT:+2+j
Jj=1

= Ay (@ +2)nAdT3 - A2 (@ +2)nAtTH 4
+ (=) 2AP 3 (o + 2)n AT T2

by Lemma 3, we have

(nA)m—3t2 "1 0 (A). (5.12)
From (5.11) and (5.12), we have, by Theorem 3,
(nA)m—3t2 T = o(1). (5.13)

By Lemma 3, we obtain

(@+m—D)((nD)m—3ty 7" = D)3ty T = 1A 2ty T (5.14)
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Substituting (5.11) and (5.13) into (5.14), we have
(nA) 312" 2 > _H,.

Continuing in this way, we obtain

(nA)2t2* — 0 (A).
and

(nA)3te ™ > —Hs.
From (5.16) and (5.17), we have, by Theorem 3,

(nA)2ty ™ = o(1).

By Lemma 3, we obtain

(@+4)((nA)1d T3 — (nA)2tf ™) = (nA)3r T4

Substituting (5.17) and (5.18) into (5.19), we have
(nA),t® 13 > —Hg.
From nAr;'l‘+3 — 0 (A) and (5.20), we have, by Theorem 3,
nAt?t3 =o(1).
By Lemma 3, we obtain
(@+3)(nATET? —n A2 T3) = (nA) 7213,
Substituting (5.20) and (5.21) into (5.22), we have
nAt,‘i‘Jrz > —H;.
It follows from (5.1) and (5.23) by Theorem 1, we get
212 = o(1).
Substituting (5.23) and (5.24) into
(@+2) (g =gy ™) = nAgy ™2
we have
T,?+1 > —Hg.
Since s*T! — s (4) and
2t = p AT > —Hg,
we obtain, by Theorem 3,
setl .

Now we need to show that

o o _
7, =nAs, >—-C

for some constant C.

109

(5.15)

(5.16)

5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)
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From (5.2), by Lemma 5, we have, for j =1,...,m—1,

m—1
(nA) 18T = Z(—1)J’+1A,fn_l(a+ DnAgo I+
j=1

=A@+ DnAt?T2— A2 (a+1D)nA?T3 4.

+ (=)™ A" o+ Dn AT,
We have nAr,‘erHj — 0 (A) for j =1,...,m— 1. Hence, we get
(nA)m_lr,‘f’Lm — 0 (A).
It follows from (5.2) that
(nA)m—177 ™ = 0(1)
by Theorem 3. By Lemma 3, we obtain
(@ +m)(nA)m—1 T,?-I_m_l - (nA)m—lf;?-i_m) = (nA)ng-i_m-

Substituting (5.2) and (5.29) into (5.30), we have

(nA)p—172 T > —Hy,,.
Since
m—2 . ) .
(nA)m_z.[r(:l-l-m—l — Z(_l)]-l-lAin_z(a_i_ l)nA.[gH-l-i-J
j=1

(5.28)

(5.29)

(5.30)

(5.31)

= A} @+ DnAtd T2 — A2 (a+1)nAt? T3 4.

+ (=D AR5 (@ + DAy
by Lemma 5, we have
(nA) -t 0 (A).
From (5.31) and (5.32), we obtain, by Theorem 3,
(A m—a 2™ 1 =0(1).

By Lemma 3, we obtain

(@+m—1)((nA) 2t 2 — (nA) a2 ™) = (nA) g 2L

Substituting (5.31) and (5.33) into (5.34), we have
(A m—pt@™™ 2 > _Hyy.

Since

m—3
(nA)m_3.C,(1Jt+m—2 _ Z(_l)j—HAljn_3(a + l)nA.E’;H-l-I—j
j=1

(5.32)

(5.33)

(5.34)

(5.35)

= Al @+ DnAt?T?— A2 (a+1DnA?T3 4
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+ (=) AR TS (e + Dndgy T3

by Lemma 3, we have

(nA)m—3tg T2 >0 (A). (5.36)
From (5.35) and (5.36), we have, by Theorem 3,
(nA)m—3t2 "2 =0(1). (5.37)

By Lemma 3, we obtain
(@+m—=2)((nA)m—3ty "> = (D375 ") = (nA) -2ty ", (5.38)

Substituting (5.35) and (5.37) into (5.38), we have

(nA) -3t 3 > _Hyy. (5.39)
Continuing in this way, we obtain
(nA)2t273 = 0 (A). (5.40)
and
(nA)3td > > —His. (5.41)
From (5.40) and (5.41), we have, by Theorem 3,
(nA)t2 13 = o0(1). (5.42)
By Lemma 3, we obtain
(@+3)((nA)2t2 12— (nA)212 %) = (nA)3 2 3. (5.43)
Substituting (5.41) and (5.42) into (5.43), we have
(nA)2t2 % > —Hyy. (5.44)
From nAt®*2 — 0 (A) and (5.44), we have, by Theorem 3,
nAt?t? =o(1). (5.45)
By Lemma 3, we obtain
(@+2) (AT —nAT?T2) = (nA), 22 (5.46)
Substituting (5.44) and (5.45) into (5.46), we have
nAt*t > _His. (5.47)

Substituting (5.47), (5.25) and (5.27) into
(@+ Dy~ ™) =nagy™!
we have
T, =nAsy > —Hje. (5.48)
By Lemma 8 i) and (5.48), we have

o o+l _ (04 |:[/\n] +1 (U[An](sa+1)_0n(sa+l)) + (O,n(SOH-l) _S’(;l-i-l)]

T T T [An]—n
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[An] k

T[An]4+1 44y a+1)
Pl S W k;ﬂj;ﬂm
An]+1
B ) 7]

[An] k
TAn]+1 o0y a+1) a
T [An]—n (5% = [)W] k;i-lj;‘l
A 1
< HAZ}; (0 6* ) =on(s* ) + (om (s* ) — "’“)]
1[An]+1 (s2+1 [An]
o [An]—n n

Taking the lim sup of both sides, we get

—s¢t1) + Hlog

A 1
limsup(s® —s*1) <11msup{o{i):_1 |:[ nl+ (J[An](saﬂ)—on(saﬂ))

n—>o00 n—>o00 [An]—n
 (on (s =58 ]+~ 1 Bnr'l (se1—ser )l 4 Hioga,
where H > 0. Since X | 2
n
{M}J—r - (549

oa+1

for A > 1 and sufficiently large n and sy ™ — s, we have

lim limsup(s® —s**1) <0 (5.50)

A—>1T n—oo

By Lemma 8 ii) and (5.48), we have

o o A‘ +1 o o o Ol
5 _Sn+1 _ %H[Lf][)m] (0 (s +1)_0[M](S +1))+(an(s 1y +1)}

+l[)tn]+1 (S’?H_S&t]l) Z Z A5

o k [An]+1j=n+1
A
T« (_T_ 1 |:,[1 f][j\_nﬁ (on(s* T = o (s* ) + (o (s*Th) _Sz+1):|

LB L e gy LS Z—

o n—[An] k=[an]+1j=n+1 7

(O’n(Sa+l)—O'[An](Sa+l)) 4 (On(sa+1)_sg+l):|

a [[An]+1
Ta+1 [n—[/\n]
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l[)m]—i_l ( a+1l oz+1) Hl M”]

an—[An] o S[an] n
Taking the liminf of both sides, we get
o a [[An]+1
liminf(s; — satly > llﬂloféf{ po [n_—Mwn(S“H)—U[An](SaH))
atl) ot An]+1 7 a1 at1
+ (Un(s )— )]—'_ozn—[)tn] (s S[An]) + Hlogh
where H > 0. Since ] 41 N
n|+
< 5.51
n—|[An] ~ 1=A4 (5-51)
for 0 < A < 1 and sufficiently large n and s¢*! — s, we have
lim hmlnf(s s¢t1y >0, (5.52)

A—1t
Combining (5.50) and (5.52) provides

limsy = hms”"'“1

This completes the proof.
We like to note that we used H to denote a constant, possibly different at each
occurrence above.
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